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Abstract: 
 

In this paper, an efficient method for human facial expression recognition is 
presented. first we have proposed a representation model for facial 
expressions, namely the spatially maximum occurrence model (SMOM), 
which is based on the statistical characteristics of training facial images and 
has a powerful representation capability. Then the elastic shape–texture 
matching (ESTM) algorithm is used to measure the similarity between images 
based on the shape and texture information. By combining SMOM and ESTM, 
the algorithm, namely SMOM–ESTM, can achieve a higher recognition 
performance level. The recognition rates of the SMOM–ESTM algorithm 
based on the AR database and the Yale database are 94.5% and 94.7%, 
respectively.[1] 

 
 
Introduction: 
Humans interact with each other far more naturally than they do with machines. This 
is why face-to-face interaction cannot be still substituted by human-computer 
interaction in spite of the theoretical feasibility of such a substitution in numerous 
professional areas including education and certain medical branches. In fact, existing 
man-machine interfaces are perceived by a broad user audience as the bottleneck in 
the effective utilization of the available information flow. Hence, to improve man-
machine interaction one should emulate the way in which humans communicate with 
each other.[4] 
 Human facial expression contains extremely abundant information of human’s 
behavior and can further reflect human’s corresponding mental state. [5] 
 As human face plays a crucial role in interpersonal communication, facial 
expression analysis is active in the fields of affective computing and intelligent 
interaction. Influenced by race, culture, personality etc, facial expression is extremely 
complex, much research on which has been limited to some prototype facial 
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expressions. However, we expect machine to recognize as many emotions as possible 
through facial expressions. To achieve the goal, abundant and effective data of facial 
expressions is necessary, and methodology of multiple facial expression recognition is 
to be studied.[5] 
 In this paper, a novel and accurate method is proposed for facial expression 
recognition. Our method includes two major techniques: the spatially maximum 
occurrence model (SMOM), which is based on the statistical characteristics of the 
training set and can be used to describe the different facial expressions; and elastic 
shape–texture matching (ESTM), which is used to compute the similarity between 
two images. The combination of these two techniques, namely the SMOM–ESTM 
method, is used to classify the facial expressions. SMOM considers the spatial 
distribution of intensities in training images, and has a powerful representation 
capability to describe the expressions. However, SMOM does not concern the spatial 
correlation between neighboring pixels within an image. Therefore, ESTM is also 
adopted, which measures the similarity between images based on both the shape and 
the texture information. To measure the similarity, the positions of the two eyes and 
middle of the mouth are used for normalization and alignment. The shape and texture 
information about a face image are complementary to each other, and both are useful 
for expression recognition. The LEM, which mainly represents the shape information 
about a face, is used to describe an expression. Lyons et al. adopted the 2D Gabor 
wavelet to describe the texture, but the feature points, which represent the shape 
information, have to be detected manually.[1] 
 In our algorithm, ESTM is combined with SMOM for facial expression 
recognition. Compared with those methods based on the global features of a human 
face, e.g. PCA, our method considers the local information in an image, which can 
describe facial expressions more exactly. Furthermore, the proposed approach can be 
considered as a combination of template matching and geometrical feature matching, 
which not only possesses the advantages of feature-based approaches—such as low 
memory requirement—but also has the advantage of a high recognition performance 
in template matching.[1] 
 
 
Recent Trends And Developments In The Field 
Facial expressions are the means to convey emotions, feelings, warning signs of 
dangers, happiness, disappointments, confidence etc. of man. It is injected into the 
living things from the womb to tomb. Psychologists, Saints and Men of spirituality 
consider facial expressions as indications of hidden truth and exposition of sudden 
feelings, in the right way, at the right time without any reservations. In man, facial 
expressions were well studied, since 1971 by the pioneers Ekman and Friesen. Even 
in the theory of evolution of Darwin, there are reminiscence of the rule of automatic 
facial expression, to grab new shapes and intelligence in the transformation process of 
one animal into another. Ekman and Friesen are acclaimed of their contributions to 
the postulation of six primary emotions - happiness, sadness, fear, disgust, surprise 
and anger. These six distinctive facial expressions are unique in their feature. [7] 
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 In the areas of research, lots of controversy still exist that Facial Expression 
Recognition is distinct to Human Emotion Recognition (B Fasel and J Luettin ). 
However, it appears that facial expression is a mirror image that is being reflected on 
the face, which gives scope for facial expression recognition to expose the hidden 
truth and feelings of human mind. [7] 
 
 
Origin and Scope Of Facial Expression Analysis 
Emotions often come out as gestures, postures and even body languages in human 
beings. It may attain different forms with or without voice modulation to convey 
different needs, feelings, and anticipation. Initially, automatic facial expression was of 
great concern to psychologists but later it gained momentum due to its application for 
face detection, face tracking, face recognition, image understanding, facial nerve 
grading in medicine etc. Now, around the globe researches are being conducted on 
different areas like facial image compression, synthetic animation, video-indexing, 
robotics and virtual reality in addition to psychological studies. [7] 
 Various studies put forward many hypotheses, of which the most important one is 
that facial expression is a composite effect of mental state and physiological activities 
that attained exposition through verbal and non-verbal communications. Though 
mental state of the individual is of prime importance, it will be influenced by felt 
emotions, communication and cogitation. Similarly, physiological activities will be 
determined by manipulators, pain and tiredness. As a result of these composite 
influences and complexity, optimum accuracy still remains intricate. In fact, variety of 
facial expressions cannot be subjected to proper analysis and interpretation with the 
same type of facial expression measurements.[7] 
 
 
Objectives: 
Here, a novel and accurate method is proposed for facial expression recognition. Our 
method includes two major techniques: the spatially maximum occurrence model 
(SMOM), which is based on the statistical characteristics of the training set and can 
be used to describe the different facial expressions; and elastic shapetexture matching 
(ESTM), which is used to compute the similarity between two images. The 
combination of these two techniques, namely the SMOMESTM method, is used to 
classify the facial expressions. SMOM considers the spatial distribution of intensities 
in training images, and has a powerful representation capability to describe the 
expressions. However, SMOM does not concern the spatial correlation between 
neighboring pixels within an image. Therefore, ESTM is also adopted, which 
measures the similarity between images based on both the shape and the texture 
information. To measure the similarity, the positions of the two eyes and middle of 
the mouth are used for normalization and alignment. The shape and texture 
information about a face image are complementary to each other, and both are useful 
for expression recognition. The LEM, which mainly represents the shape information 
about a face, is used to describe an expression. Lyons et al. adopted the 2D Gabor 
wavelet to describe the texture, but the feature points, which represent the shape 
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information, have to be detected manually.[1] 
 In our algorithm, ESTM is combined with SMOM for facial expression 
recognition. Compared with those methods based on the global features of a human 
face, e.g. PCA, our method considers the local information in an image, which can 
describe facial expressions more exactly. Furthermore, the proposed approach can be 
considered as a combination of template matching and geometrical feature matching, 
which not only possesses the advantages of feature-based approachessuch as low 
memory requirementbut also has the advantage of a high recognition performance in 
template matching.[1] 
 Mainly the design will be consisting of 2 parts. 
 1. Construction of SMOM 
 2. Construction of ESTM 
 
 
Spatially Maximum Occurance Model 
Human facial expression is a complex patternit relies on the emotion of the expressor 
and varies from person to person. On the one hand, the expression is determined by 
movements or changes in facial features, which means that 
 it is person-dependent and is affected by the characteristics of the expressor, such 
as the shapes or positions of the facial features, motion habits, and so on. On the other 
hand, for the same person, there are also variations 
 in the same expression due to different degrees of emotion. Therefore, the within-
class variation of an expression is relatively large, and the betweenclass variation of 
different expressions is relatively small.[1] 
 In fact, even human beings sometimes cannot judge expressions correctly in a still 
image. In this case, knowing how to build proper expression models is very important. 
Using the mean image of a training set to represent a particular expression is simple, 
but most of the information is lost, and the within-class variations cannot be reflected. 
In this section, we will propose a new expression repre- sentation scheme, namely the 
spatially maximum occurrence model (SMOM), which is based on the statistical 
properties of the training set and contains most of the significant visual content.[1] 
 SMOM is constructed based on the probability of the occurrence of pixel values at 
each pixel position for all the training images, which is illustrated in Fig. Suppose that 
the number of training images is equal to N, and the size of an image isM ∗ H. 
Therefore, there are N possible values at each pixel position (x, y). Ranking these N 
intensity values, we can obtain the histogram H(b) for the pixel position (x, y) as 
follows: 
 B is the number of bins in the histogram, and f(x, y) is the intensity value of the 
kth image at position (x, y). In general, B is equal to the number of intensity levels in 
the images. However, when the number of training images is small, the number of 
bins should be reduced and the histogram should be 
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 The values of Pe(a) and Pa(a) are simply set as fixed values to compute the 
penalty P(a).[1] 
 
 
Conclusion: 
Thus we have seen the necessaty of facial expression recognition. There are various 
methods of recognizing facial expressions. Out of them we have seen here the method 
using shape and texture. 
 We have used here a combination of two models i.e. SMOM(Spatial maximum 
occurance model) and ESTM(Elastic shape and texture matching). The method gives 
an efficiency about 95 %. 
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