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Abstract 
 

This paper presents a new class of adaptive wavelet decompositions that can 
capture the directional nature of the picture information. Our method exploits 
the properties of semi norms to build lifting structures able to choose between 
different update filters, the choice being triggered by a local gradient of the 
input. In order to discriminate between different geometrical information, the 
system makes use of multiple criteria, giving rise multiple choice of update 
filters. It establishes the conditions under which these decisions can be 
recovered at synthesis, without the need for transmitting overhead 
information. 
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I. INTRODUCTION 
Uncompressed multimedia (graphics, audio and video) data requires considerable 
storage capacity and transmission bandwidth. Despite rapid progress in mass-storage 
density, processor speeds, and digital communication system performance, demand 
for data storage capacity and data-transmission bandwidth continues to outstrip the 
capabilities of available technologies. The recent growth of data intensive 
multimedia-based web applications have not only sustained the need for more 
efficient ways to encode signals and images but have made 
 Compression of such signals central to storage and communication technology 
[13]. 
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I.1. PRINCIPLES BEHIND COMPRESSION 
A common characteristic of most images is that the neighboring pixels are correlated 
and therefore contain redundant information. The foremost task then is to find less 
correlated representation of the image. Two fundamental components of compression 
are redundancy and irrelevancy reduction. Redundancy reduction aims at removing 
duplication from the signal source (image/video). Irrelevancy reduction omits parts of 
the signal that will not be noticed by the signal receiver, namely the Human Visual 
System (HVS) [13]. 
 In general, three types of redundancy can be identified:  
 Spatial Redundancy or correlation between neighboring pixel values. Spectral 
Redundancy or correlation between different color planes or spectral bands.  
 Temporal Redundancy or correlation between adjacent frames in a sequence of 
images (in video applications). Image compression research aims at reducing the 
number of bits needed to represent an image by removing the spatial and spectral 
redundancies as much as possible. 
 
I.2. DIFFERENT CLASSES OF COMPRESSION TECHNIQUES 
Two ways of classifying compression techniques are mentioned here. 
 
(a) Lossless vs. Lossy compression: 
In lossless compression schemes, the reconstructed image, after compression, is 
numerically identical to the original image. However lossless compression can only 
achieve a modest amount of compression. Often this is because the compression 
scheme completely discards redundant information. However, lossy schemes are 
capable of achieving much higher compression. Under normal viewing conditions, no 
visible loss is perceived (visually lossless)[13]. 
 
(b) Predictive vs. Transform coding: 
In predictive coding, information already sent or available is used to predict future 
values, and the difference is coded. Since this is done in the image or spatial domain, 
it is relatively simple to implement and is readily adapted to local image 
characteristics [13]. 
 Differential Pulse Code Modulation (DPCM) is one particular example of 
predictive coding. Transform coding, on the other hand, first transforms the image 
from its spatial domain representation to a different type of representation using some 
well-known transform and then codes the transformed values (coefficients). This 
method provides greater data compression compared to predictive methods, although 
at the expense of greater computation [13]. 
 
I.3 WAVELETS AND IMAGE COMPRESSION: 
 Wavelets are functions defined over a finite interval and having an average value of 
zero. The basic idea of the wavelet transform is to represent any arbitrary function (t) 
as a superposition of a set of such wavelets or basis 
 Functions. These basis functions or baby wavelets are obtained from a single 
prototype wavelet called the mother wavelet, by dilations or contractions (scaling) and 
translations (shifts). 
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Fig. 1 a: Original Lena Image. Fig. 1 b: Reconstructed Lena to show 

Blocking artifacts 
 
 
 Since there is no need to block the input image and its basis functions have 
variable length, wavelet coding schemes at higher compression avoid blocking 
artifacts. Wavelet based coding is more robust under transmission and decoding 
errors, and also facilitates progressive transmission of images. In addition, they are 
better matched to the HVS characteristics. Because of their inherent multi resolution 
nature, wavelet coding schemes are especially suitable for applications where 
scalability and tolerable degradation are important. 
 
 
II. WAVELET-BASED IMAGE CODING SCHEMES 

• Embedded Zero tree Wavelet (EZW) Compression. 
• Set Partitioning in Hierarchical Trees (SPIHT) Algorithm. 
• Scalable Image Compression with Embedded Block Coding with Optimized 

Truncation of the embedded bit-streams EBCOT. 
• Lossless Image Compression using Integer-Integer WT. 
• Image Coding using Adaptive Wavelets. 

 
II.1 EMBEDDED ZERO TREE WAVELET (EZW) COMPRESSION 
In octave-band wavelet decomposition, each coefficient in the high-pass bands of the 
wavelet transform has four coefficients corresponding to its spatial position in the 
octave band above in frequency. Because of this very structure of the decomposition, 
it probably needed a smarter way of encoding its coefficients to achieve better 
compression results.  
 The zero tree is based on the hypothesis that if a wavelet coefficient at a coarse 
scale is insignificant with respect to a given threshold T, then all wavelet coefficients 
of the same orientation in the same spatial location at a finer scales are likely to be 
insignificant with respect to T. The idea is to define a tree of zero symbols which 
starts at a root which is also zero and labeled as end-of-block. Many insignificant 
coefficients at higher frequency sub-bands (finer resolutions) can be discarded, 
because the tree grows as powers of four. The EZW algorithm encodes the tree 
structure so obtained. This results in bits that are generated in order of importance, 
yielding a fully embedded code.  
 The main advantage of this encoding is that the encoder can terminate the 
encoding at any point, thereby allowing a target bit rate to be met exactly. The 
algorithm produces excellent results ithout any pre-stored tables or  
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II.2 SET PARTITIONING IN HIERARCHICAL TREES (SPIHT) 
ALGORITHM 
An alternative explanation of the principles of operation of the EZW algorithm to 
better understand the reasons for its excellent performance. Partial ordering by 
magnitude of the transformed coefficients with a set partitioning sorting algorithm, 
ordered bit-plane transmission of refinement bits, and exploitation of self similarity of 
the image wavelet transform across different scales of an image are the three key 
concepts in EZW. In addition, they offer a new and more effective implementation of 
the modified EZW algorithm based on set partitioning in hierarchical trees, and call it 
the spiht algorithm. 
 A scheme for progressive transmission of the coefficient values that incorporates 
the concepts of ordering the coefficients by magnitude and transmitting the most 
significant bits first is presented. A uniform scalar quantize made this simple 
quantization method more efficient than expected. Results from the SPIHT coding 
algorithm in most cases surpass those obtained from EZQ algorithm. 
 
II.3. IMAGE CODING USING ADAPTIVE WAVELETS 
All images are not equal, and so in wavelet-based image coding, the wavelet filter 
should be chosen adaptively depending on the statistical nature of image being coded. 
The performance in lossy coders is image dependent; while some wavelet filters 
perform better than others depending on the image, no specific wavelet filter performs 
uniformly better than others on all images. This adaptive filter selection is important 
because, when the performance of the wavelet filter is poor in the first place, use of 
even sophisticated quantization and context modeling of the transform coefficients 
may not always provide significant enough gain. 
 Hence, the importance of searching and using good wavelet filters in most coding 
schemes cannot be over emphasized. Wavelet based coding provides substantial 
improvement in picture quality at low bit rates because of overlapping basis functions 
and better energy compaction property of wavelet transforms. Because of the inherent 
multiresolution nature, wavelet-based coders facilitate progressive transmission of 
images thereby allowing variable bit rates. 
 
 
III. PROBLEM STATEMENT 
Classical linear wavelet representations of images have the drawback of not being 
optimally suited to represent edge information. To overcome this problem, new 
multiresolution decompositions have been designed that can take into account the 
characteristics of the input signal/image In [7], [11] we have introduced an adaptive 
wavelet decomposition based on an adaptive update lifting step. In particular, we have 
studied the case where the update filter coefficients are triggered by a binary decision 
obtained by thresholding the semi norm of the local gradient-type features of the 
input. The lifting scheme can therefore choose between two different update linear 
filters: if the semi norm of the gradient is above a threshold, it chooses one filter, 
otherwise it chooses the other. 
 At synthesis, the decision is obtained in the same way but using the gradient 
computed from the decomposition coefficients available at synthesis. With such a 
thresholding decision scheme, perfect reconstruction amounts to the so called 
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Threshold Criterion, which says that the semi norm of the gradient at synthesis should 
be above the threshold only if the semi norm of the original gradient is. In [7] we have 
derived necessary and sufficient conditions for the invariability of such adaptive 
schemes for various scenarios. Several simulation results have been given to illustrate 
the potential of our adaptive schemes for preserving the discontinuities in signals and 
images even at low resolutions. Furthermore, it has been shown that adaptive schemes 
often yield decompositions that have lower entropies than schemes with fixed update 
filters, a highly relevant property in the context of compression. 
 However, the adaptive scheme proposed in [7] is not very flexible in the sense that 
it can only discriminate between two ‘geometric events’ (e.g., edge region or 
homogeneous region). In this paper, we extend the aforementioned scheme so that it 
can use multiple criteria giving rise to multi-valued decision for choosing the update 
filters. In this way, we can discriminate between different geometric structures in 
order to capture the directional nature of picture information.  
 
 
IV. ADAPTIVEUPDATE LIFTING 
Here x(n) = x0(2n), y(n) = x0(2n +1) are the polyphase components of an input signal 
x0. Both x and y are the input for a decision map D whose output at location n is a 
binary decision dn = D(x, y) (n) a{0, 1},  
 This decision triggers the update filter Ud and the addition d. More precisely, if dn 
is the binary decision at location n, then the updated value x’ (n) is given by 
 '( ) ( ). ( )( )......(1)x n x n dnUdn y n=  
 We assume that the addition d is of the form x.du =ad (x + u), where ad is a scalar 
normalization factor. In particular, this means that the operation d is invertible. The 
update filter is taken to be of the form  
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 Where yj(n) = y(n+j), and L1 and L2 are nonnegative integers. Henceforth, we will 
denote j = - L1… L2 by j. The filter coefficients λd, j depends on the decision d at 
location n. From (1) and (2), we deduce the update equation used at analysis  
 ,'( ) ( ) ( )......(3)dn dn j j

j

x n x n y nα β= +∑  

 Where â dj = α d λ dj. Although it may appear at first sight that x (n) can easily be 
recovered by means of the formula  
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 It is not true, in general, that perfect reconstruction holds. Toward that end, it must 
be possible to recover the decision dn = D(x, y) (n) from x’ (rather than x) and y.  
 This amounts to be problem of finding another decision n map D' such that 
 ( , )( ) '( ', )( )......(5)D x y n D x y n=  
 If x’ is given by (1). It can be shown [8] that a necessary, but in no way sufficient, 
condition for perfect reconstruction is that the value kd =âd + jâd does not depend on 
d. Throughout the remainder of this letter, we normalize the previous constants by 
setting k0 = k1 = 1. 
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V. DECISION MAP 
The decision map D is assumed to depend on the gradient vector v = (vL1, …., vL2) 
T given by  

 
1 2

( ) ( ) ( ) ( ) ( )

... ......(6)
j jv n x n y n x n y n j

j L L

= − = − +

= −
 

 It is assumed that  
 ( , )( ) [ ( ( )) ]......(7)D x y n p v n T= >  
 Where [P] = 1 if the predicate P is true and 0 if false. In [8], p can be an arbitrary 
seminorm. Here we restrict ourselves to a so-called weighted gradient seminorm 

 ( ) ......(8)T
j j

j
p v a v a v= = ∑  

 Where a ª RN is a weight vector. We are exclusively interested in the case where 
the decision map D’ at synthesis is of the same form as, but possibly with a different 
threshold. To have perfect reconstruction, the condition in (5) must be satisfied, i.e.,  
 ( ) '( ) '......(9)T Ta v n T a v n T≤ ⇔ ≤  
 where v’ (n) is the gradient vector at the synthesis,  
 i.e., v’j (n) = x’ (n) – yj (n). 
 
Proposition 1: Under the previous assumptions, perfect reconstructions are possible 
if and only if one of the following two conditions holds: 
1) A: =. j aj =0; 
2) There exists constants γ0, γ1. R such that ¦1- γ0 A¦. ¦1- γ1 A¦, and βd, j = γd α j 
for d = 0, 1 and j = -L1, ….., L2. 
In both cases, one can choose T’=T. 
 The proof of this result, as well as many others for different semi norms, can be 
found in [8]. Notice that the first case where A = 0 is not very interesting from a 
theoretical point of view, as it corresponds to 
 ( ) ( ) ......(10)T Ta v n a y n=  
 The no adaptive case where the decision map depends only on and not on yj and 
not x; namely in this case. 
 
 
V. RESULTS AND COMPARISONS 
The Quality of the reconstructed image is measured interms of Mean square error 
(MSE) and Peak signal to noise ratio (PSNR). The PSNR value for different bit rates 
and different decomposition levels of the sharp edge preserved image and image 
without sharp edge as shown below. 
 
V.1 ADAPTIVE BASED ON COMBINING NORMS 
Image compression based on Adaptive Wavelet decomposition is presented. The 
adaptive Lifting technique includes an adaptive update lifting and fixed prediction 
lifting step.  
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Table II Peak Signal to Noise Ratio Image Circles raw (256X256) 
 

Decom/Bit rate 1 2 3 4 5 6 7 8 
0.1 5.9 9.4 13.2 16.1 15.2 13 12.8 12.2 
0.5 11.8 14.2 22.2 31.9 31.7 30.6 29.9 27.5 
1 14.7 22.1 43.5 49.5 50.1 49.9 50.2 48.8 

 
V.2 NON- ADAPTIVE (HARR) LIFTING BASED IMAGE COMPRESSION 

 
Table III Peak Signal to Noise Ratio Image Circles raw (256X256) 

 
Decom/ Bit rate 1 2 3 4 5 6 7 8 

0.1 5.9 9.5 13.2 14.5 12.7 10.4 8.5 9.3 
0.5 11.8 14.1 18.17 16.53 13.7 11.5 9.6 9.32 
1 14.7 20.1 19.9 16.58 13.8 11.5 9.6 9.3 

 
The adaptive wavelet decomposition works better than non – adaptive wavelet 
decomposition. The Image Quality is increased by 5% for high decomposition and bit 
rate. 
  
 
VI. CONCLUSION 
Image compression based on Adaptive and Non-Adaptive Wavelet decomposition is 
presented. The adaptive Lifting technique includes an adaptive update lifting and 
fixed prediction lifting step. The adaptively here of consists that, the system can 
choose different update filters in two ways (i) the choice is triggered by combining the 
different norms (ii) Based on the arbitrary threshold. The results of adaptive and Non 
– adaptive based image compression are compared from the result. The adaptive 
wavelet decomposition works better than non – adaptive wavelet decomposition. 
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