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Abstract 
 

Wireless sensor networks have revolutionized the ability to sense and 
understand phenomena in a region of interest. Sensor networks offer a great 
potential with wide scope and find applications in military surveillance, 
environmental observation, building or infrastructure monitoring and health 
care, to name a few. This paper concentrates only on structural health 
monitoring application in which the damage detection of civil engineering 
structures can de done by using a frequency decomposition based 
decentralized recovery of sensor measurements.  
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INTRODUCTION 
Wireless Sensor Networks (WSN)[1, 2] is an upcoming technology which has a wide 
range of applications [3] including infrastructure protection, industrial sensing and 
diagnostics, environment monitoring, context-aware computing (for example 
intelligent home and responsive environment) and so on. This kind of network usually 
consists of a large number of nodes that communicate together to form a wireless 
network. It is however essential to improve the energy efficiency for WSNs as the 
energy designated for sensor nodes is usually extremely limited.  
 Recently most of the applications in signal processing need to find out a sparse 
solution to a linear system of equations[4, 5]. For finding out the sparse solution the 
process involved is to minimize the objective function such as 
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 Where x  RD, y  RM, A is an M × D measurement matrix with M << D. The 
formulation (1) corresponds to the maximum a posteriori [6, 7] estimate of x given the 
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observations of the form y = Ax + n when the prior on x is Laplacian and n represents 
white Gaussian noise of variance σ2.  
 The proposed method is concentrates on structural health monitoring [8, 9] which 
is the process of implementing a damage detection and characterization strategy for 
engineering structures. Here damage is defined as changes to the material and/or 
geometric properties of a structural system, including changes to the boundary 
conditions and system connectivity, which adversely affect the system’s performance. 
The SHM process involves the observation of a system over time using periodically 
sampled dynamic response measurements from an array of sensors, the extraction of 
damage-sensitive features from these measurements, and the statistical analysis of 
these features to determine the current state of system health.  
 This paper proposes a decentralized approach [10, 11] for collecting the noisy 
observations from a large set of sensor nodes distributed in a large area. Because of 
the difficulty to see directly from the time domain data representation with what 
frequencies the bridge vibrates it is better to convert the characteristics of a signal into 
a frequency domain representation. Therefore, Fast Fourier transform, a mathematical 
operation that decomposes a signal into its constituent frequencies is used here. Here 
FFTacts as data compression technique and the singular value decomposition [12, 13] 
is applied to those values for reducing the data redundancy.  
 Here the wireless sensor network is considered as a non-bipartite connectivity 
graph which encodes the information flow between the sensors, and assume that each 
sensor measures only a few projections of the unknown vector x. The rest of the paper 
is organized as Section 2 describes the system setup and formulation, and Section 3 
presents the decentralized method, FFT and SVD. Section 4 analyzes the performance 
of the proposed method using simulations, and Section 5 provides conclusions.  
 
 
2. SYSTEM SETUP AND FORMULATION 
The sensor network whose topology is described using an undirected graph G(S, L) 
where S represents the set of S sensor nodes and L represents the set of all edges. An 
edge (i, j)  L exists if and only if information flow is possible between the nodes 
(direct neighbors). The measurement model across the sensors is given by,  
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 (2) 
where ys  RMs denotes the measurement made by sensor s using the Ms × D 
measurement matrix As, x  RD is the signal of interest to be recovered, ws  RMs is 
the additive Gaussian noise with zero mean and covariance σ2I. y  RM is the overall 
measurement vector.  
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 Let ns represents the set of neighbors of sensor S then the network is deployed to 
estimate the D × 1 vector x. Assume that observations ys collected at different sensors 
are conditionally independent and that the conditional probability density function 
(pdf) P (y|Ax) is known at each sensor. The goal is to estimate the vector x by 
stacking the observation samples[y1, y2….. ys] at all sensor nodes. The estimated 
vector Ax can be defined as  
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 Recalling the conditional independence of the observations at different sensors, 
the conditional probability in (3) can be rewritten as  
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 The estimation of Ax is obtained through the maximization of objective function 
given in (3) 
 
 
3. PROPOSED METHOD 
In this section a detailed description of estimating a sparse signal from the sensory 
measurements is considered. A decentralized method is used for collecting the sensor 
measurements and after receiving the measurement data matrix they are converted 
into frequency domain using fast fourier transform and the singular value 
decomposition is performed for avoiding the data redundancy. Here FFT acts as a data 
compression technique and SVD eliminates data redundancy and hence reduce the 
transmitted and received data volume and hence increase the speed of operations.  
 
3. 1. DECENTRALIZED METHOD 
In a large scale sensor network the estimation of sparse signal is possible only through 
the collaboration and processing of the sensor measurements. Most of the energy 
consumption in WSN is used for exchanging collected data between nodes and among 
nodes and substations. This energy consumption can be reduced through a 
decentralized method in which nodes need to communicate only with their local 
neighbors. So the amount of data to be processed by each sensor is reduced and the 
sensors no longer need to transmit data to the fusion center as in the centralized 
approaches. Hence the communication cost is reduced and this requires very low 
bandwidth.  

 
 

Fig 1:centralized processing and distributed processing 
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4. PERFORMANCE ANALYSIS 
To simulate the proposed algorithm and to demonstrate its performance the MATLAB 
software is used. In this simulation, 8 nodes are considered as distributed in a civil 
structure which resonates with a natural frequency. A decentralized approach is used 
to collecting the sensor measurements and for analyzing those datas convert those into 
frequency domain representation using FFT. After that SVD of those datas are done 
for detecting the sensor node which measures the variation from the natural frequency 
signal.  

 
Fig 2:Time domain representation of signals from different nodes 

 
Fig 3:Frequency domain representation of signals from sensor nodes 

 
 
5. CONCLUSION 
A FDD based algorithm for recovering the natural frequency in a civil structure is 
developed and validate the algorithm using numerical experiments. Here a 
decentralized method is used for collecting the sensor measurements and singular 
value decomposition on those values in frequency domain is performed for removing 
the data redundancy. This work can be extended for finding out the damage of the 
civil structures.  
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