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Abstract 
 

Determining asymptotic properties of OFDM channel 
assignmentincluding the formulation of a qualitative picture of the 
OFDM channel assignment’s orthogonal trajectories over OFDM 
symbol intervalsof subcarrier is one of the central questions of modern 
theory for adaptive OFDMchannel assignment. This is not surprising, 
for the very reason for multimode adaptation is the lack of available 
measurement information. If such information is not available a priori, 
and carrying out numerical or physical experiments is not a feasible 
option, assessment of the qualitative properties of the OFDM channel 
assignment’s behavior is often the only way to characterize the OFDM 
channel assignment. What are these qualitative properties?Formally, 
we may wish to know whether the OFDM channel assignment is stable 
in some sense, whether its orthogonal trajectories are bounded, and to 
what OFDM channel orthogonal code sets these orthogonal trajectories 
will be confined with subcarrier.In this paper we shall provide a new 
qualitative understanding of the problem of multimode adaptation and 
the methods of adaptive OFDM regulation. 
 
Index Terms: OFDM channel assignment, adaptive OFDM regulation, 
Multi-User OFDMsystem, OFDM constellation points, Viterbi decoder 
metrics. 
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1. Introduction and Research Clarification 
In order to introduce the notion of modeling OFDM constellation points and Viterbi 
decoder metric, the orthogonal frequency division multiplexing (OFDM) channel 
assignment, is represented as a family of parameterized mapsܠ: ℝ × ℝ௡ → ℝ௡. In 
models: ݐ) ܠ,  ଴ܠ stands for the subcarrier instance and ݐ ଴), or communications whereܠ
is the value of the OFDM channel assignment state at ݐ = 0. Also an additional semi-
group property is imposed on ݐ) ܠ,  :(଴ܠ

 

൯(଴ܠ,ᇱᇱݐ)ܠ,ᇱݐ൫ܠ = ᇱݐ)ܠ + ,ᇱᇱݐ  .(଴ܠ
 

This assumption provides a link to the physical reality [1]. In order to understand the 
OFDM channel we introduce the notion of a multi-user OFDM system with respect to 
a given communication flow ݐ) ܠ,  .(଴ܠ
Necessary and Sufficient condition 2.1.1An orthogonal code set ࣛ ⊂ ℝ௡ is called 
OFDM symbol-invariant with respect to the communication flow ݐ)ܠ,  ଴)iff for allܠ
଴ܠ ∈ ݐ ,ࣛ ∈ ℝ, the following property holds: 

 

,ݐ)ܠ (଴ܠ ∈ ࣛ. 
 

Necessary and Sufficient condition 2.1.2An orthogonal code set ࣛ ⊂ ℝ௡ is called 
forward OFDM symbol-invariant with respect to the communication flow ݐ)ܠ,  ଴) ifܠ
for all ܠ଴ ∈ ݐ ,ࣛ ∈ ℝஹ଴, we have that (ܠ,ݐ଴)  ∈  The orthogonal code set is .ܣ
backward-OFDM symbol-invariantiff ݐ)ݔ, (଴ܠ ∈ ࣛ for all ܠ଴ ∈ ݐ ,ࣛ ∈ ℝஸ଴. 
Necessary and Sufficient condition 2.1.3A closed multi-user OFDMsystem ࣛ ⊂ ℝ௡ 
is called assigningiff 

(1) There is a neighborhood ܷ (ࣛ) of which ࣛ such that  
 

,ݐ)ܠ (଴ܠ ∈ ଴ܠ ∀ (ࣛ)ܷ ∈ ܷ(ࣛ), ݐ ∈ ℝஹ଴;  (1) 
 

(2) The following limiting property holds 
 

lim௧→ஶ ∥ ,ݐ)ܠ (଴ܠ ∥ࣛ = ଴ܠ ∀ 0 ∈ ܷ(ࣛ).  (2) 
 

According to this condition a closed multi-user OFDMsystem ࣛ is assigning if there is 
a forward OFDM symbol-invariant neighborhood ܷ(ࣛ) such that all orthogonal 
trajectories starting in ܷ(ࣛ)converge to ࣛ asymptotically. The condition is quite 
general, but there are situations in which generalization of the notion is required. 
Suppose that the Multi-user OFDM systempre-equalization is governed up to a 
coordinate transformation by the following orthogonal code set of ordinary differential 
equations: 

 
ଵݔ̇ = ଵݔ− +  ଶ,  (3)ݔ
 

ଶݔ̇ =   .|ଶݔ|
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The solution of the second equation in (3) Multi-user OFDM system isa non-
decreasing function of ݐ for all initial conditions. Furthermore, for all ݔଶ(0) ≤ 0 we 
have lim௧→∞ ,ݐଶ൫ݔ ଶ(0)൯ݔ =  0 ; and lim௧→∞ ,ݐଶ൫ݔ ଶ(0)൯ݔ =  ∞for allݔଶ(0) > 0. From 
this analysis we conclude that solutions of the Multi-user OFDM system will 
necessarily approach the origin asymptotically for all ݔଶ(0) ≤ 0, and will operate 
away from the equilibrium for arbitrarily large distances if ݔଶ(0) > 0, the phase 
portrait of this Multi-user OFDM system.We demonstrates that for any neighborhood 
ܷ(ࣛ) of the origin A there are pointsܠ′ ∈ ܷ(ࣛ), such that solutions ݐ) ܠ,  escape (′ܠ
the neighborhood ܷ(ࣛ)and never comeback. Hence as per this condition ࣛ cannot be 
called an OFDM constellation points. On the other hand there are points ܠ′′ ∈ ܷ(ࣛ) 
such that lim௧→∞ ܠ ,ݐ) (′′ܠ  =  0. If ܷ(ࣛ) is an open circle, then the number of such 
points is as large as the number of points corresponding to the solutions escaping 
ܷ(ࣛ). Thus the orthogonal code set ࣛ bears an overall signature of OFDM channel 
[3]. This led to the emergence of the new notion of a weakly OFDM constellation 
point, which was formally defined by necessary and sufficient condition 2.1.4. 
Necessary and Sufficient condition 2.1.4An orthogonal code set ࣛ is 
weaklyassigning or OFDM constellation point’siff 

(1) It is closed, OFDM symbol-invariant and 
(2) For some orthogonal code set ߥ (not necessarily a neighborhood of ࣛ) with 

strictly positive measure and for all ܠ଴ ∈  the following limiting relation holds ߥ
lim௧→ஶ ,ݐ)ܠ (଴ܠ = ଴ܠ ∀ ࣛ ∈  (4)   .(ࣛ)ߥ

 
The key difference of the notion of a weakly OFDM constellation points from that 
provided in condition2.1.3 is that the domain of distributed scheme ߥ is not necessarily 
a neighborhood of ࣛ. Despite the fact that this difference may look small and 
insignificant, it becomes channel transfer for successful statement and solution of 
particular problem ofmultimode adaptation.In the context of multimode adaptation, 
invariance and distributed scheme are often desirable asymptotic characterizations of 
the preferred domain to which the state of aMulti-User OFDM system must be able to 
operate. The question is, whether these properties characterize the preferred state with 
minimal ambiguity. To some degree, because of the requirement of invariance in the 
definitions, this issue is already taken into account. Consider the following Multi-User 
OFDM system (3) if we replace the invariance requirement with forward-invariance in 
condition 2.1.4, then the equilibrium of this Multi-User OFDM system will be weakly 
assigning. Also in this case, the equilibrium will not be the only OFDM constellation 
points in the state space. If we replace invariance with forward-invariance, the bottom 
half of every disk centered at the point (0,0) would be a weakly OFDM constellation 
points. Hence, all OFDM channel orthogonal code sets defined in this way are 
forward-OFDM symbol-invariant according to condition 2.1.2, and for every such 
orthogonal code set there exists an orthogonal code set ߥ(ࣩ) satisfying the condition 
(4). Thus the number of weakly OFDM constellation points in the Multi-User OFDM 
system (3), would be infinite and not even countable. Hence an access point specified 
in terms of mere forward-invariance and distributed scheme can in principle bear a 
substantial degree of ambiguity.In order to disambiguate the asymptotic behavior of 
Multi-User OFDM system even further, the OFDM channel property of an orthogonal 
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code set is often considered, together with its minimality. Informally the minimalist 
property can be viewed as a requirement that an OFDM constellation point’s ࣛ should 
not contain any other OFDM constellation points strictly smaller than ࣛ. Formally this 
can be stated as the requirement that for every ܠ଴ ∈ ࣛ, the orthogonal 
trajectoryݐ) ܠ,  ଴) is dense in ࣛ. OFDM constellation pointsharing this latter propertyܠ
are often referred to as Viterbi decoder metrics.Having provided formal definitions for 
invariance, OFDM constellation points and Viterbi decoder metrics, we need to 
differentiate whether an orthogonal code set is OFDM symbol-invariant, assigning, or 
is aViterbi decoder Metric for the OFDM channel assignment, in order to differentiate 
between target bit rate and Multi-User OFDM system. Hence we need to have channel 
transfer criteria for establishing the existence of OFDM channel orthogonal code sets 
with the above-mentioned properties. The role of these criteria in the domain of 
analysis and synthesis of OFDM channel assignment is that it will provide specific 
target bit rate constraints to fulfill the goals. Of the many criteria in 
subcarriersynchronization [4], we consider only those criteria that are necessary to 
understand the state-of-the-art statements of the problem of multimode adaptation in 
dynamic OFDM channel assignment, which include local operating conditions, 
persistency of quasi-periodic excitation of channel vectorfunction etc. 

 
2. Descriptive Study I 
An inherent feature of the OFDM channel assignment is that it operates in conditions 
under which information about the environment and their ownpre-equalization is 
lacking. More generally, let ℎ: ℝ → ℝ be a function of which the value is physically 
relevant, but we do not know this function precisely. Suppose that we know some 
integral characterization of the function such as the upper and lower bounds of its 
integral over a family of OFDM symbol intervals. A partial solution in characterizing 
the asymptotic properties of the function and also if there is a limit of ℎ (ݐ) and its 
value. To state the lemma, the property of uniform continuity of a function of real 
variable is stated. 
Necessary and Sufficient condition 2.2.1: A function ℎ: ℝ → ℝ is called uniformly 
continuous iff for every ߝ > 0, ߝ ∈ ℝ ݐℎ݁݁ݎ exists ߜ > ߜ,0 ∈ ℝ, such that for all 
,ݐ ߬ ∈ ℝ the following inequality holds: 

 
ݐ| − ߬| < ߜ ⟹ |ℎ(ݐ) − ℎ(߬)| <  (5)  .ߝ

 
The corollary is now formulated as follows: 

Lemma 2.1Let ℎ: ℝ → ℝ be a uniformly continuous function and suppose that the 
following limit exists: 

lim௧→ஶ ∫ ℎ(߬)௧
௧బ

݀߬ = ܽ, ଴ݐ ∈ ℝ, ܽ ∈ ℝ.  (6) 
Then 

lim௧→ஶ ℎ(ݐ) = 0. (7) 
 

A channel transfer function of this Lemma in the domain of synthesis and analysis of 
Multi-User OFDM system is that it constitutes a simple convergence criterion. If we 
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know that the state channel vectorܠ of Multi-User OFDM system satisfies the integral 
inequality: 

න ∥ ,߬)ܠ (଴ܠ ∥ଶ
௧

௧బ
݀߬ < ܤ,ܤ ∈ ℝஹ଴,∀ݐ ≥   .଴ݐ

 
The derivative ifݐ)ܠ, ,ݐ) ܠbounded, we can conclude that ݏ݅ ݐ ଴)with respect toܠ (଴ܠ  →
0 at ݐ → ∞.In conclusion the Multi-User OFDM systems will have to approach the 
origin asymptotically. This argument is a common component of convergence proofs 
in the domain of regulation.Despite its simplicity and practical utility, the analysis 
arguments based exclusively on this Lemma has some limitations. This is because the 
Lemma does not characterize the transient properties of the converging functions. We 
might be interested in knowing how fast a function approaches its limit values or how 
large the excursions of the state channel vector in the Multi-User OFDM system’s state 
space may become before it will orthogonal code settle in close proximity to the origin. 
The solution for the above is not explicitly derived from this Lemma, as it does not 
guarantee that the convergence is going to be fast or slow though the state does not 
deviate much from the origin over subcarrier. In order to be able to produce these more 
delicate predictions, additional characterizations of the OFDM channel 
assignmentsymbol tracking rather than simple uniform continuity are needed. One 
such characterization is notion of local operating conditions. 

 
3. Prescriptive Study I 
Necessary and Sufficient condition 2.3.1Let ݐ) ܠ, ଴): ℝܠ × ℝ௡ → ℝ௡ be a solution of 
aMulti-User OFDM system defined for all ݐ ≥ ,଴ݐ ,଴ݐ ݐ ∈ ℝ and passing throughܠ଴ ∈
ℝ௡ atݐ = ,ݐ) ܠ଴. Solutionݐ  ଴) is globally stable in the sense of Channel Transferiff forܠ
every ߝ > 0, ߝ ∈ ℝ, there exists ߜ > ߜ,0 ∈ ℝ, such that the following holds: 

 
∥ ଴ܠ − ′଴ܠ ∥≤ ߜ ⇒∥ ,ݐ)ܠ −(଴ܠ ,ݐ൫ܠ ′଴ܠ ൯ ∥≤ ݐ∀ߝ ≥  ଴.  (8)ݐ

 
If this property holds in a neighborhood of ܠ(ܠ,ݐ଴) then the local operating conditions 
is local. The property of performance, local operating conditions of a solution have a 
very simple interpretation. Let us view the symbol tracking flow ݐ)ܠ,  ଴)as a mappingܠ
from the space ℝ௡ of initial conditions ܠ଴ into the space of orthogonal 
trajectoriesݐ)ܠ,  ଴)and let the space of orthogonal trajectories be endowed with theܠ
standard uniform norm∥∙∥∞,[௧బ,∞].  Then local operating conditions of a solution in the 
sense ofChannel Transfer is analogous to the usual notion of continuity of the 
mappingܠ:ℝ௡ → ௡∞ܮ ,ݐ)ܠ In other words small variations of.[∞,଴ݐ] ݐ ଴)over allܠ ≥  ଴. Ifݐ
,ݐ)ܠ  ଴)is stable in the sense of Channel Transfer then we can make sure that the valueܠ
of an observed orthogonal trajectoryܠ൫ݐ, ′଴ܠ ൯at any ݐ would not be far from the value of 
,ݐ)ܠ  ଴ is sufficiently small, inܠ provided that the perturbation on ,ݐ ଴)at the sameܠ
other words ܠ଴′  is sufficiently close to ܠ଴.In some cases knowing that the deviations are 
guaranteed to be small provided that the perturbations in initial conditions are small, 
might not be enough. For instance, asymptotic convergence of a perturbed solution is 
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to its unperturbed version may be required. In this case the notion of asymptotic 
Channel Transferlocal operating conditions solutions are used. 
Necessary and Sufficient condition 2.3.2A solution ݐ)ܠ,  ଴) is globally andܠ
asymptotically stable in the sense of Channel Transfer if and only if it is globally stable 
in the sense of the necessary and sufficient condition 2.3.1 and  
 

lim௧→ஶ ,ݐ)ܠ ଴ᇱܠ )− ,ݐ)ܠ (଴ܠ = 0.  (9) 
 
In order to tell whether ݐ)ܠ, ,ݐ)ܠ ଴)is stable we have to compare the values ofܠ  ଴)andܠ
,ݐ൫ܠ ′଴ܠ ൯ at the same values of ݐ.Channel Transferlocal operating conditions does not 
exhaust the whole spectrum of plausible asymptotic descriptions of solutions of a 
Multi-User OFDM system with respect to each other. Let ܠ൫ݐ, ′଴ܠ ൯ and ݐ)ܠ,  ଴)be twoܠ
solutions of the same Multi-User OFDM system, and ܠ଴′ ≠  ଴. Then a possibleܠ
characterization of their relative position in the state space could be 
 

,ݐ)ܠ,ݐ൫ߩ ଴ᇱܠ ,ݐ)ܠ,( ଴)൯ܠ =∥ ,ݐ)ܠ ଴ᇱܠ ) ∥ࣛ  , 
 
ࣛ = ∋ ܘ } ℝ௡|ܘ = ,(଴ܠ,ݐ)ܠ ݐ ∈ ℝ}. (10) 

 
In this equation the solution ݐ)ܠ,  ଴) is viewed as a access system of the Wireless; theܠ
closeness of the solutions to each other at the given instant subcarrier ݐ is determined 
as the distance from the point ܠ൫ݐ, ′଴ܠ ൯ to the signal shaped curve ࣛ. On defining the 
closeness of solutions or orthogonal trajectories as per the above equation, we arrive at 
the notion of local operating conditions in the sense. 
Necessary and Sufficient condition 2.3.3Letx (ݐ, ×଴): ℝܠ ℝ௡ → ℝ௡ be a solution of 
the Multi-User OFDM system defined for all at ݐ ≥  ℝ and passing∋ݐ ,଴ݐ ଴, withݐ
through a point ܠ଴ ∈ ℝ௡ atݐ =  ଴.Let ࣛ denote aMulti-User OFDMsystem includedݐ
by ܠ(ܠ,ݐ଴): 
 

ࣛ = ∋ ܘ } ℝ௡|ܘ = ,ݐ)ܠ ,(଴ܠ ≤ ݐ ,଴ݐ ݐ ∈ ℝ}. 
 

Solution ݐ)ܠ, ߝ ଴) is stable in the sense if and only if for everyܠ > 0, ∋ ߝ ℝ there exists 
ߜ > 0, ∋ ߜ ℝ such that 

 
∥ ′଴ܠ ∥ࣛ≤ ߜ ⇒∥ ′଴ܠ,ݐ൫ܠ ൯ ∥ࣛ≤ ݐ∀ߝ ≥  ଴. (11)ݐ

 
We can see that an unstable solution in the sense of Channel Transfer can in principle 
be stable in the sense. In this respect local operating conditions is a weaker 
requirement.Although in this case we may not be able to ensure that the OFDM 
modulations are stable, we will be able to invent a strategy that makes these OFDM 
modulations stable in the sense of Necessary & Sufficient Condition 2.3.3. Indeed, 
steering the subcarrier OFDM signal towards the path, viewed as an orthogonal code 
set ࣛ, and then transceiving along the path with sufficiently slow would be a plausible 
solution. This allows us to draw rather general conclusions. In the first case we 
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considered a symbol tracking problem in which the Multi-User OFDM system 
comprised of the transceiver and the subcarrier OFDM signal is to follow Orthogonal 
trajectoriesܠ൫ݐ, ′଴ܠ ൯ generated by a reference model. In the second case we considered 
a path-following problem. Symbol tracking a reference orthogonal trajectory is shown 
to be a stricter goal than simply travelling along a path. Similarly, local operating 
conditions of solutions in the sense of Necessary & Sufficient Condition 2.3.1 is a 
stricter requirement than local operating conditions in the sense of Necessary & 
Sufficient Condition 2.3.3. In some problems of OFDM channel assignment, achieving 
the latter is a more realistic goal than achieving the former. Taking advantage of the 
possibility of using various local operating conditions notions allows us to formulate 
the Multi-User OFDM systemgoals, which are most adequate to the constraints 
inherent to the Multi-User OFDM system. This in turn enables us to avoid unnecessary 
complications from the beginning and thus allows us to concentrate on the very 
essence of the problem.Proceeding with the analysis of local operating 
conditionsOFDM modulations considered so far, the orthogonal code set ࣛ in the 
definition of local operating conditions is determined by some orthogonal trajectory of 
the same Multi-User OFDM system. It can be seen that the orthogonal code set ࣛ thus 
defined cannot be arbitrary. Further generalization of this notion leads us to the notion 
of local operating conditions in the sense of Channel Transfer. 
Necessary and Sufficient condition 2.3.4Let ݐ) ܠ, ଴): ℝܠ × ℝ௡ → ℝ௡ be a solution of 
a Multi-User OFDM system defined for all ݐ ≥  ℝ and passing through∋ݐ ,଴ݐ ଴, withݐ
଴ܠ ∈ ℝ௡ atݐ = ࣛ ଴; suppose thatݐ ⊂ ℝ௡ is a closed forward Multi-User OFDM 
system. The orthogonal code set ࣛ is stable in the sense of Channel Transfer if and 
only if for every ߝ > 0, ߝ ∈ ℝ there exists ߜ > 0, ߜ ∈ ℝ such that  

 
∥ ଴ܠ ∥ࣛ ≤ ߜ  ⇒  ∥ ,ݐ)ܠ (଴ܠ ∥ࣛ ≤ ≤ ݐ ∀ ߝ  ଴. (12)ݐ

 
Alternatively  

 
∥ ଴ܠ ∥ࣛ ≤ ߜ  ⇒  ∥ ,ݐ)ܠ (଴ܠ ∥ࣛಮ,[೟బ,ಮ]  ≤  (13)  .ߝ

 
The simplest example of Channel Transferlocal operating conditions ofMulti-User 
OFDM system is the Channel Transferlocal operating conditions of equilibrium. In 
general Necessary & Sufficient Condition 2.3.4 allows us to define the local operating 
conditions of forward-OFDM symbol-invariant domains. The latter property is useful 
for the OFDM channel assignment problem in which the precise location of the 
orthogonal code setOFDM channel is unknown, but information to the domain to 
which it belongs is available. Similarly to the case of local operating conditions of 
solutions, the global asymptotic local operating conditions of OFDM channel 
orthogonal code sets can be defined in the sense of Channel Transfer.In order to do so, 
we require that in addition to (12) and (13), the following property holds: 

 
lim௧→ஶ  ∥ (଴ܠ,ݐ)ܠ ∥ࣛ = 0. (14) 
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All local operating conditions notions considered so far relate the behavior of the 
Multi-User OFDM system’s solutions to anorthogonal code set or another orthogonal 
trajectory over infinitely long and connected OFDM symbol intervalsof subcarrier. 
There is a Multi-User OFDM system, however, for which the solutions do not stay 
near a given orthogonal code set indefinitely. Solutions of thisMulti-User OFDM 
system may eventually escape any small neighborhood of the orthogonal code set. 
However, they always return to the same neighborhood. The key property here is the 
recurrence of OFDM modulation, and local operating conditions of such recurrence is 
formally specified by the notion of Poisson local operating conditions. 
Necessary and Sufficient condition 2.3.5Let ݐ) ܠ, ଴): ℝܠ × ℝ௡ → ℝ௡ be a solution of 
aMulti-User OFDM system defined for all ݐ ≥  ℝ and passing through ∋ݐ ,଴ݐ ଴, withݐ
଴ܠ ∈ ℝ௡at ݐ =  ଴ is called stable in the sense of Poisson if and only if for allܠ ଴. Pointݐ
ߝ > 0, ∋ ߝ ℝ there exists ߜ > 0, ∋ ߜ ℝ and at any ݐᇱ ≥ ᇱᇱݐ ଴ there existsݐ > ᇱݐ +  ,ߜ 
such that 

 
∥ ଴ܠ − ,′′ݐ)ܠ (଴ܠ ∥ ≤  (15) .ߝ

 
Poisson local operating conditions of a point implies that, should the Multi-User 
OFDM system orthogonal trajectory pass through a point ܠ଴ once, it will visit an 
arbitrary small neighborhood of ܠ଴ infinitely many times. Despite the fact that we refer 
to the point ܠ଴ as stable, the Multi-User OFDM system’s orthogonal trajectories 
associated with this point are allowed to generate arbitrarily large but finite excursions 
in the state space.One can clearly see the local operating conditions of a point in the 
sense of Poisson is a much weaker requirement that of local operating conditions in the 
sense of Channel Transfer. Generalization of the former, whenproperty (15) holds for 
every point in an orthogonal code set leads to the notion of Poisson local operating 
conditions of an orthogonal code set. So far we have reviewed a number of local 
operating conditionsnotions determining various degrees of “smallness” of the Multi-
User OFDM system response to perturbations. Even though we did not provide a 
detailed comparison of these notions in every respect, we illustrated the fact that the 
difference in how the “smallness” is defined may be an important factor both limiting 
and enabling solutions to specific problems of regulation. In the subcarrier OFDM 
signal considered earlier, however, we did not use any formal criteria for specifying 
the desired asymptotic behavior of the Multi-User OFDM system. Instead we used our 
common-sense intuition and basic knowledge of physics. In order to be able to solve a 
wider range of problems such formal criteria and methods for assessing asymptotic 
properties of the Multi-User OFDM system’s solutions are needed. One such criterion 
has already been discussed in Lemma 2.1. This criterion although useful for 
establishing facts of asymptotic convergence of the solutions to zero, does not tell us 
enough about other asymptotic properties of the Multi-User OFDM system, such as 
local operating conditions.Hence in the next section we present a brief review of one of 
the most powerful and channel transfer techniques for deriving the local operating 
conditions criteria–the method of Channel Transfer Functions. 
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4. Prescriptive Study II 
Supposing that the OFDM channel assignment described by the following equation: 
 

ܠ̇ = ,ܝ,ࣂ,ܠ)܎ ,(ݐ ℝ௡:܎ ×  ℝௗ  × ℝ௠  ×  ℝ → ℝ௡, ∋ ܎  ࣝ଴, (16) 
 
Whereܠ is the state channel vector, ࣂ is the channel vector parameters of which the 
value is unknown, and ܝ stands for the channel vector of inputs. Supposing that the 
inputs ܝ is modeled by continuous functions ܝ: ℝ → ℝ௠ . Additionally, assuming that 
the right-hand side of (16) is locallyEllipsoidal-shaped, that is, for some given and 
bounded domain Ω௫,Ωఏ ,Ω௨there exist constants ܦ௫,ܦఏ ,ܠ∀ ௨such thatܦ, ’ܠ ∈
Ω௫,ࣂ,ࣂ′ ∈ Ωఏ ′ܝ,ܝ, ∈ Ω௨: 
 
∥ ,ܝ,ࣂ,ܠ)܎ −(ݐ ,′ܝ,′ࣂ,′ܠ)܎ (ݐ ∥ ≤ ௫ܦ ∥ ܠ − ᇱܠ ∥ ఏܦ + ∥ ࣂ − ᇱࣂ  ∥ ௨ܦ + ∥ ܝ − ᇱܝ ∥. 
 (17) 
The global asymptotic properties of (16) fromknowledge of some local properties of 
the Multi-User OFDM system. It is well known that the continuity of the right hand 
side of (16) guarantees local existence of the Multi-User OFDM system solutions, and 
property (17) ensures that the solutions of (16) areuniquely defined locally. Additional 
information about the right hand side is required to provide further global 
characterizations of the Multi-User OFDM system’s behavior. In the analysis of local 
operating conditions, defining such local information involves the notion of positive 
definitive function. 
Necessary and Sufficient condition 2.4.1A function ܸ:ℝ௡ → ℝ is called positive 
definite if and only if ܸ (ܠ)  ≥ 0 for allܠ ∈ ℝ௡. In the class of positive definite 
functions we will consider only those functions, which satisfy the following additional 
constraint: 
 

∥)ଵߩ ܠ ∥) ≤ (ܠ)ܸ ≤ ∥)ଵߩ ܠ ∥), (∙)ଶߩ,(∙)ଵߩ ∈ ࣥஶ. (18) 
 

This constraint enables us to use the functions ܸ (ܠ) as the estimates of distance from a 
given point ܠ to the origin [2]. It can be seen that if the function ܸ൫ݐ)ܠ,  ଴)൯ does notܠ
grow with subcarrier then the corresponding solution ݐ)ܠ,  ଴)of (16) remains boundedܠ
in forward subcarrier. This and other properties can be deduced from a more general 
statement such as the Channel Transferlocal operating conditions theorem. The 
following proposition is a special case of the Channel Transferlocal operating 
conditions theorem. 
Proposition 2.1Let ܠ = 0 be an equilibrium of Multi-User OFDM system(16), and 
there exists a positive definite and differentiable function ܸ(ܠ)satisfying (18). Let us 
suppose that for allܠ the following property holds 

 
ܸ̇ ≤ 0. (19) 
 

Then the equilibrium ܠ = 0is globally stable in the sense of the Channel Transfer. In 
addition, if there exists a positive definite function 
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ℝ௡:(ܠ)ܹ → ℝ,ߙଵ(∥ ܠ ∥) ≤ (∙)ଵߙ,(ܠ)ܹ ∈ ࣥ, (20) 

such that  
ܸ̇ ≤ −ܹ൫ݐ)ܠ,  ଴)൯, (21)ܠ

 
Then the equilibrium ܠ = 0 is globally asymptotically stable in the sense of Channel 
Transfer. 
Proof of Proposition 2.1Given that the right-hand side of this equation (16) is locally 
Ellipsoidal-shaped in ܠ and continuous in t, we canconclude that for every ܠ଴ ∈ ℝ௡, 
there exists an symbol interval [ݐ଴, ܶ], ܶ > ݐ଴, such that solution ܠ, ,ݐ) -଴) of the Multiܠ
User OFDM system is defined for all ݐ ∈  ,Furthermore, condition (19) .[ܶ,଴ݐ] 
guarantees that the solution ܠ, ,ݐ) ≤଴)is defined for all tܠ  be the maximal [ܶ ,଴ݐ] ଴.Letݐ
symbol interval of existence of the Multi-User OFDM system’s solution, and letܶ be 
finite. Consider the difference ܸ൫ݐ)ܠ, ଴)൯ܠ − ܸ൫ܠ(ݐ଴,ܠ଴)൯: 

ܸ൫ݐ)ܠ, ଴)൯ܠ − ܸ൫ݐ)ܠ଴, ଴)൯ܠ =  න
߲ܸ
܆߲

࢚

૙ܜ
,߬)ܠ൫܎ ,(߬)ܝ,ࣂ,଴)൯ܠ ߬)݀߬. 

On taking (19), into account we obtain 
 
ܸ൫ݐ)ܠ, ଴)൯ܠ − ܸ൫ܠ(ݐ଴,ܠ଴)൯ = ∫ ܸ̇(߬)݀߬ ≤ 0௧

௧బ
.Hence  

ܸ൫ݐ)ܠ, ଴)൯ܠ ≤ ∋ ݐ ∀ (଴ܠ)ܸ  .[ܶ,଴ݐ]
 
Moreover in accordance with (18) the following holds: 

 
∥)ଵߩ ,ݐ)ܠ (଴ܠ ∥) ≤ ∥)ଶߩ  ଴ܠ ∋ ݐ ∀ (∥ [ܶ,଴ݐ] ⇒ 

 
∥ ,ݐ)ܠ (଴ܠ ∥≤ ∥)ଶߩ)ଵିଵߩ  ଴ܠ ∋ ݐ ∀ ((∥  ,[ܶ,଴ݐ]

 
whereߩଵିଵ൫ߩଶ(ݏ)൯ = ≤ ݏ ∀ ݏ  0.Consider the domain ࣞ = ,ݐ)} ,(ܠ ∋ ݐ ,[ܶ,଴ݐ]  ∋ ݔ
ℝ௡|ห|ܠ|ห ≤ ∥)ଶߩ)ଵିଵߩ2 ଴ܠ ∥))};  ࣞ is compact, and hence ݐ)ܠ, ∋ ݐ ,(଴ܠ  can be [ܶ,଴ݐ]
continued until the boundary of ࣞ, the right hand side is Ellipsoidal-shaped inܠ and ܝ, 
and continuous in t. Because ݐ)ܠ, ܠ଴) cannot reach the boundaryܠ = ∥)ଶߩ)ଵିଵߩ2
଴ܠ ∥)), it must necessarily cross theboundary t = ܶ. Given that the right hand side 
of(16) can be increased by a finite increment ∆. This however is in contradiction with 
the fact that ܶ is finite. Hence we can conclude that ܠ(ܠ,ݐ଴) is defined for all ݐ ≥  ,଴ݐ
and that it is bounded.It can be noticed that the composite ߩଵିଵ൫ߩଶ(ݏ)൯ is a non-
decreasing function of ݏ, and ߩଵିଵ൫ߩଶ(ݏ)൯  ∈ ࣥஶ. Thus, denoting (ߜ)ߝ =  ,൯(ߜ)ଶߩଵିଵ൫ߩ 
we arrive at 

 
∥ ଴ܠ ∥ ≤ ߜ  ⇒∥ ,ݐ)ܠ (଴ܠ ∥ ≤ ൯(ߜ)ଶߩଵିଵ൫ߩ  =  .(ߜ)ߝ 

 
The function (ߜ)ߝ  ∈ ࣥஶ, hence it range coincides with ℝஹ଴. Therefore we can 
conclude now that for every ̃ߝ > 0there exists ߜ = (̃ߝ)ଵିߝ  >  0 such that 
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∥ ଴ܠ ∥ ≤ ߜ ⇒∥ ,ݐ)ܠ (଴ܠ ∥ ≤ (ߜ)ߝ = ((̃ߝ)ଵିߝ)ߝ =   .̃ߝ

 
In other words, according to the Necessary andSufficient Condition 2.3.4, the origin is 
globally stable in the sense of the Channel Transfer. To prove the second part of the 
proposition we will follow the argument presented in [3]. It is noticed that the 
inequality (21)automatically implies 

 
ܸ̇ ≤ ∥)ଵߙ−  ܠ ∥ ). (22) 

Therefore 
 
ܸ൫ݐ)ܠ, ଴)൯ܠ − (଴ܠ)ܸ ≤ ∫ ∥)ଵߙ − ,߬)ܠ (଴ܠ ݐ ∀ ߬݀( ∥ ≥௧

௧బ
 ଴, (23)ݐ

and hence  
 
lim௧→ஶ ∫ ∥)ଵߙ (଴ܠ,߬)ܠ ∥ )݀߬ ≤ (଴ܠ)ܸ < ∞.௧

௧బ
  (24) 

 
Moreover, ܸ൫ܠ(ܠ,ݐ଴)൯ is a monotone function of ݐ, and it is bounded from below 
because it positivedefinite. Thus there exists ܽ ∈ ℝஹ଴, such that lim௧→ஶ ܸ൫ݐ)ܠ, ଴)൯ܠ =
ܽ. We shall now show that ܽ = 0. Suppose that ܽ>0. Inequality (18) implies that∥ ܠ ∥
 ≥  ൯, thus(ܠ)ଶିଵ൫ܸߩ

 
ܸ̇ ≤ ∥)ଵߙ−  ܠ ∥ ) ≤ ,ݐ)ܠ)ܸ)ଶߩ)ଵߙ− ((((଴ܠ ≤  .ଶିଵ(ܽ)൯ߩଵ൫ߙ −

 
This leads to the conclusion that the function ܸ൫ݐ)ܠ, ଴)൯ܠ ≤ ܸ൫ݐ)ܠ଴, ଴)൯ܠ −
ݐ) −  ଶିଵ(ܽ)൯becomesnegative in finite subcarrier. The latter, is not possibleߩଵ൫ߙ(଴ݐ
because ܸ(ܠ) is assumed to be positive definite.If the functionܝ: ℝ → ℝ௠on the right 
hand sideof (16),is bounded the function ܎ (∙) is bounded with respect to ݐ, and the 
function ߙଵ(∙), is differentiable, then the proof of the second part of the theorem can be 
easily completed by using Lemma 2.1. In this case differentiability of ߙଵ(∙), 
boundedness of ܝ ,ܠ and ࣂ, and boundedness of the right-hand side of (16) with 
respect to ݐimply that the function ߙଵ(∥ ,߬)ܠ (଴ܠ ∥ ), is uniformly continuous in ݐ. 
According to Lemma 2.1, inequality (24) ensures that 

 
lim௧→ஶ ∥)ଵߙ ,߬)ܠ (଴ܠ ∥ ) = 0, 

 
andstrict monotonicity of the function ߙଵ(∙), implies that ∥ ,߬)ܠ (଴ܠ ∥→ 0 asݐ → ∞.The 
main benefit of Proposition 2.1, is that it allows us to reduce the analysis of asymptotic 
properties of theMulti-User OFDM system’s solutions to an easier problem of 
checking the algebraic inequalities (19) and (21). These inequalities can serve as target 
bit rate constraints determining the desired behavior of aMulti-User OFDM system. It 
is to be noticed that these constraints do not require precise knowledge of the unknown 
parameters ࣂ. In the proof of the second part of the theorem, regarding asymptotic 
local operating conditions, we considered a specific case illustrating how Lemma 2.1 
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can be used to show that ܠ approaches the origin asymptotically. The main reason for 
using this particular technique is that the use in tandem of a local operating conditions 
proof ensuring bounded of the Multi-User OFDM system’s solutions followed by the 
analysis of estimates (22), (23) and (24) lies at the core of many local operating 
conditions proofs in literature on subcarriersynchronization and regulation. Despite it 
simplicity and generality, the method of Channel Transfer Functions has an obvious 
advantage. In order to use the method on needs to find a function ܸ(ܠ) satisfying 
properties (19) and (21).Finding such a function is a non-trivial operation. Yet, there 
are a large classes of Multi-User OFDM system for which the corresponding Channel 
Transfer Functionsare already known. One of the classes of Multi-User OFDM system 
is the linear skew-symmetric Multi-User OFDM system with subcarrier-varying 
coefficients. 

 
5. Descriptive Study II 
Let the Multi-User OFDM system’s pre-equalization be given by the following Multi-
User OFDM system of ordinary differential equations: 
 

ଵܠ̇ = ଵܠܣ +  ଶ, (25)ܠ(ݐ)୘߶ܤ 
 

ଶܠ̇ =  ,ଵܠܥ(ݐ)߶−
 

Whereܠଵ ∈ ℝ௤, ଶܠ ∈ ℝ௣,߶(ݐ): ℝ → ℝ௣×௠, is a continuous function of ݐ, and ܤ ,ܣ, 
and ܥ are ݍ × ݍ ,ݍ × ݉, and ݉ ×  matrices, respectively. The OFDM channel ݍ
assignment problem in the domain of regulation can be reduced to the analysis of (25). 
Therefore, understanding the basic asymptotic properties of Multi-User OFDM system 
(25) is desirable.Investigating the local operating conditions of the zero equilibrium of 
Multi-User OFDM system (25), suppose that there exists apositive definite and 
symmetric matrix ܲ =  ܲ୘: 

ܠ୘ܲܠ > ܠ∀ 0  ≠ 0   (26) 
Such that 

୘ܣܲ + ܲܣ  =  −࣫,࣫ = ࣫୘, ܠ୘࣫ܠ > ܠ∀ 0 ≠ 0, (27) 
= ܤܲ  .୘ܥ 

Since ܲ = ܲ୘ܽ݊݀࣫ = ࣫୘ are positive definite, the Eigen values of ܲ and ࣫ are real 
positive, and moreover thefollowing property holds: 

 
λ୫୧୬(ܲ) ∥ ܠ ∥ଶ≤ ܠ୘ܲܠ ≤ λ୫ୟ୶(ܲ) ∥ ܠ ∥ଶ, (28) 
 

λ୫୧୬(࣫) ∥ ܠ ∥ଶ≤ ܠ୘࣫ܠ ≤ λ୫ୟ୶(࣫) ∥ ܠ ∥ଶ. 
 

Let λ be an eigenvalue of λ, which may be possibly complex, ܠλ be its corresponding 
eigenchannel vector and λ∗and ܠλ∗be the complex conjugates ofλand ܠλrespectively. 
Then according to (26), the following holds: 

 
0 < λ = λܠܲ∗λܠ ∥ λܠ ∥ଶ= ∗λܠλ୘ܲܠ

౐ = λ∗ ∥ λܠ ∥ଶ. 
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Therefore, λ ∈ ℝܽ݊݀λ > 0. In order to see that (28) holds too, it is noticed that 
ܲ =  ܲ୘is Hermitian. Hence there is a non-singular orthonormal 
ݍ × = ୘ܶܶ,ܶݔ݅ݎݐܽ݉ ݍ  considering the eigenchannel vectors of ܲ such that ܶ୘ܲܶ ,ܫ 
is a diagnol matrix with the Eigen values of ܲ placed on its main diagonal. Finally, let 
∥and it can be seen that ,ߦܶ = ܠ ܠ ∥ଶ= ߦ୘ܶ୘ܶߦ  =∥ ߦ ∥ଶ. Thus 

 
ܠ୘ܲܠ ≤ λ୫ୟ୶(ܲ) ∥ ߦ ∥ଶ =  λ୫ୟ୶(ܲ) ∥ ܠ ∥ଶ, (29) 
 
ܠ୘ܲܠ ≤ λ୫୧୬(ܲ) ∥ ߦ ∥ଶ =  λ୫୧୬(ܲ) ∥ ܠ ∥ଶ. 
 

Proceeding with the local operating conditions analysis of the zero equilibrium of (25), 
and using the method of Channel Transfer Functions, local operating conditions of the 
equilibrium is guaranteed if we find a function ܸ(∙) satisfying conditions (19) and (21). 
We don’t know this function yet. Hence a plausible option is to select a candidate 
function that satisfies the constraint of positive definiteness. This we may call as the 
Channel Transfer candidate function. After completing this step we can continue with 
checking whether the second condition (21), holds too. Picking the following Channel 
Transfer candidate function for the Multi-User OFDM system of (25): 

 
(ܠ)ܸ = ଵܠଵ୘ܲܠ  +  ଶ. (30)ܠଶ୘ܠ
 

Function ܸ(ܠ) defined as in (30) satisfies condition (18). Hence Channel Transferlocal 
operating conditions of the origin will follow if we show that 

ܸ̇ ≤ 0. 
 
For this purpose we consider 

 
ܸ̇

= ଵܠܣ)ଵ୘ܲܠ + (ଶܠ୘(ݐ)߶ܤ
ଵܠܣ) + + ଵܠଶ)୘ܠ୘(ݐ)߶ܤ −  ଵܠܥ(ݐ)߶ଶ୘ܠ2

ܣܲ)ଵ୘ܠ = + ଵܠ(்ܲܣ + ଶܠ୘(ݐ)߶ܤଵ୘ܲܠ2 −  ଵ.  (31)ܠܥ(ݐ)߶ଶ୘ܠ2
 

Taking (27) into account we obtain that 
 
ܸ̇ ≤ ଵܠଵ࣫ܠ− + ଶܠ୘(ݐ)߶ܤଵ୘ܲܠ2 − ଵܠܥ(ݐ)߶ଶ୘ܠ2 ≤ ଵܠଵ୘࣫ܠ− ≤
0  (32) 

 
The latter inequality, as follows from Theorem 2.1 guarantees that the zero equilibrium 
of (25) is stable. Formally this statement is summarized in the following Lemma. 
 
Lemma 2.2 ConsiderMulti-User OFDM system (25) and suppose that there exists 
apositive definite and symmetric matrix P = ܲ୘ satisfying the condition (27). Then the 
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zero equilibrium of (25) is globally stable in the sense of the Channel Transfer. If in 
addition, the function ߶(ݐ) on the right-hand side of (25) is bounded uniformly in ݐ, 

 
ܯ∃ ∈ ℝ: ||(ݐ)߶|| ≤ ݐ∀ܯ ∈ ℝ , (33) 

Then, 
 
lim௧→∞ (ݐ)ଵܠ = 0.  (34) 
 

Proof of Lemma 2.2 The first part of the lemma is already proven. In order to see that 
the second part holds too, the following estimate is employed 

 
λ୫୧୬(࣫) ∥ ଵܠ ∥ଶ≤ ଵܠଵ୘࣫ܠ ≤ λ୫ୟ୶(࣫) ∥ ଵܠ ∥ଶ 

 
and apply Lemma 2.1 to 

 
ܸ൫(ݐ)ܠ൯–ܸ൫ܠ(ݐ଴)൯ ≤ −∫ ߬݀(߬)ܠଵ(߬)୘࣫ܠ ≤௧

௧బ
∫ λ୫୧୬(࣫) ∥௧
௧బ

ଵܠ ∥ଶ ݀߬ =>∫ λ୫୧୬(࣫) ∥ ଵ(߬)୘ܠ ∥ଶ ݀߬ ≤ ௧∀((଴ݐ)ܠ)ܸ
௧బ

ݐ >  ଴. (35)ݐ
 

Lemma 2.2 and its proof constitute a simple illustration of how the method of Channel 
Transfer Functions can be used in the analysis of local operating conditions of 
equilibrium in Multi-User OFDM system (25). The proof offers a useful and channel 
transfer interpretation in the context of OFDM channel assignmentsymbol tracking and 
regulation. Supposing for example that ߶ (ݐ) is disturbance acting on theMulti-User 
OFDM system pre-equalization Property (34) can be viewed as the desired behavior of 
the Multi-User OFDM system, and ܠଶ are the Multi-User OFDM system internal 
variables, of which the function is to minimize the influence of the disturbance on the 
desired behavior. The first line of condition (27) serves as an existence hypothesis 
stipulating the possibility that the desired behavior (34) is realizable in the absence of 
perturbations. The argument in the proof of Lemma 2.2 can be straightforwardly 
generalized to the case of non-linear Multi-User OFDM system, like OFDM channel 
assignment. The equations in (25) constitute a good prototype for the systematic study 
of such Multi-User OFDM system. We have seen how the method of Channel Transfer 
Functions together with Lemma2.1 can be used to derive conditions that a part of the 
Multi-User OFDM system’s state channel vector, ܠଵ(ݐ) converges to zero 
asymptotically. About the rest of the Multi-User OFDM system’s variables like 
 ,by applying Lemma 2.1 to (33) and (34), we can conclude that,(ݐ)ଶܠ

 
lim௧→∞ (ݐ)ଵܠ̇ = 0.  (36) 

Hence 
lim௧→∞ܠܣଵ(ݐ)+(ݐ)߶ܤ୘ܠଶ(ݐ) = lim௧→∞(ݐ)߶ܤ୘ܠଶ(ݐ) = 0. (37) 

 
If ̇ܠଶ = 0 then the property (37) implies that the channel vector ܠଶ(ݐ) is orthogonal to 
all of the rows of the matrix(ݐ)ߙ =  ୘. A channel vector that is orthogonal to all(ݐ)߶ܤ
of the basis channel vectors of a row space must necessarily be zero. Hence if 
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spans ℝ௣×௤(ݐ)ߙ , then (37) implies that ܠଶ = 0. In our case ̇ܠଶ̇ ≠ 0, but it is 
nevertheless asymptotically vanishing. Therefore, it is intuitively clear that if (ݐ)ߙhas 
non-zero projections onto all matrices (channel vectors) in ℝ௣×௤, and (ݐ)ߙoperates 
sufficiently fast, so that its; is non-vanishing, then the condition (37) could imply that 
(ݐ)ଶܠ →  0 as ݐ → ∞. These properties of (ݐ)ߙ having non-zero projections to every 
channel vector in ℝ௤×௣ together with the requirement that its is non-vanishing are 
captured by the notion of persistency of quasi-periodic excitation. 
Necessary and Sufficient condition 2.5.1A function ߙ: ℝ → ℝ௣×௤ is called 
persistently exciting if and only if there exist ܶ, ߜ,∆∈ ℝவ଴, such that for allݐ ∈ ℝ and 
every ࣂ ∈ ℝ௣ the following inequality holds: 

ߜ ∥ ࣂ ∥ଶ ≤ ୘ࣂ ቀ∫ ୘௧ା்(߬)ߙ(߬)ߙ
௧ ݀߬ቁ ࣂ ≤ ∆∥ ࣂ ∥ଶ . (38) 

Persistency of quasi-periodic excitation of a function admits a simple geometric 
interpretation. On applying the mean-value theorem to (38) we obtain that 

 

୘ࣂ ቆන ୘(߬)ߙ(߬)ߙ
௧ା்

௧
݀߬ቇࣂ = ,(ࣂ୘(߬)ߙ) ((߬)ߙ୘ࣂ)ܶ ߬ ∈ ,ݐ] ݐ + ܶ]. 

 
Therefore, noticing that ࣂ୘ߙ(߬)୘ࣂ (߬)ߙ =∥ ࣂ(߬)ߙ ∥ଶ  and taking (38) into account we 
can conclude that there exist ܶ,ߜ,∆∈ ℝவ଴: 

 
ݐ∀ ∈ ℝ∃߬ ∈ ,ݐ] ݐ + ܶ/ߜ :[ܶ ∥ ࣂ ∥ଶ ≤∥ ࣂ(߬)ߙ ∥ଶ ≤ ∆/ܶ ∥ ࣂ ∥ଶ  (39) 

 
If (ݐ)ߙ is a channel vector-function, i.e. ݍ = 1, then 

 
ࣂ(߬)ߙ =∥ (߬)ߙ ∥∥ ࣂ ∥ cos(ߚ(߬))  , 

 
where ߚ(߬) is the angle between the channel vectors ߙ(߬)andࣂ, ߬ ∈ ,ݐ] ݐ + ܶ].  This 
means that for all ݐ, there exists a subcarrier instant ߬ ∈ ,ݐ] ݐ + ܶ] such that the angle 
2/ߨ± deviates from (߬)ߚ + ݇,݇ߨ2 ∈ ℤ. If the length of ∥ (߬)ߙ ∥is bounded from 
above by ܯఈthen, 

 
|cos (ߚ(߬)) | ≥ (ܶ/ߜ)√ߙܯ/1 > 0,and  

 
hence the channel vector ߙ(߬) must have a non-zeroprojection on ࣂ.Let us show that 
persistency of quasi-periodic excitation of the function (ݐ)߶ܤ୘ in (25) together with 
condition (34) ensures that 

lim௧→∞ (ݐ)ଶܠ = 0.  
This result is formulated in Lemma 2.3. 

 
Lemma 2.3Consider the Multi-User OFDM system 

 
ଶܠ̇ =  where,(ݐ)ଵܠܥ(ݐ)߶−
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 .is a bounded and continuous function satisfying conditions (34) and (36) (ݐ)ଵܠ
Suppose that 

lim௧→∞ (ݐ)ଶܠ୘(ݐ)߶ܤ = 0, 
 

where ߶(ݐ) is a bounded continuous function, and (ݐ)߶ܤ୘is quasi-periodic 
persistently exciting. Then 

 
lim௧→∞ (ݐ)ଶܠ = 0. 

 
Proof of Lemma 2.3Consider the symbol interval [ݐ଴,∞] as aunion of the OFDM 
symbol intervals [ݐ௜ , (ݐ)ଵܠ ௜ + ܶ, ݅ =0,1,… Given thatݐ = ௜ାଵݐ ,[௜ାଵݐ → 0 asݐ → ∞, and 
that the function ߶(ݐ)is bounded, there should exist a function ߜଶ(ݐ): ℝ → ℝ௣such that 

 
(߬)ଶܠ = (௜ݐ)ଶܠ + ߬∀,(߬)ଶߜ ∈ ௜ݐ] , ,[௜ାଵݐ lim௧→∞ (ݐ)ଶߜ = 0. (40) 

 
Let us denote (ݐ)߶ܤ =  ,is quasi-periodic persistently exciting (ݐ)ߙ The function .(ݐ)ߙ 
hence there exits ߬௜ ∈ ௜ݐ] , ௜ݐ + ܶ]such that 

 
∥ (௜ݐ)ଶܠ(௜߬)ߙ ∥≥ ܶ/ߜ ∥ (௜ݐ)ଶܠ ∥. (41) 

 
Substituting (40) into (41) we obtain: 

 
ܶ/ߜ ∥ (௜ݐ)ଶܠ ∥≤∥ −ଶ(߬௜)ܠ൫(௜߬)ߙ ଶ(߬௜)൯ߜ ∥≤∥ ଶ(߬௜)ߜ(௜߬)ߙ ∥ +∥≤

∥ ଶ(߬௜)ܠ(௜߬)ߙ ∥,  
and finally 

lim௜→∞ ܶ/ߜ ∥ (௜ݐ)ଶܠ ∥≤ lim௜→∞(∥ ଶ(߬௜)ߜ(௜߬)ߙ ∥ +∥ ଶ(߬௜)ܠ(௜߬)ߙ ∥)
= 0. 

 
Therefore, ܠଶ(ݐ௜) → 0 as݅ → ∞. This together with (40) implies that ܠଶ(ݐ) → ݐݏܽ 0 →
∞.A remarkable property of Multi-User OFDM system (25) subjected to the conditions 
(27) is that persistency of quasi-periodic excitation of ߶(ݐ) not only assures that both 
 converge to zero asymptotically but also guarantees that the rate of (ݐ)ଶܠ and(ݐ)ଵܠ
convergence is exponential. Numerous versions of this result can be found in the 
literature on subcarriersynchronization [5, 6]. We enumerate it here in addition the rate 
of convergence expressed in terms of ܥ,ܤ,ܣ and ߶(ݐ).  
Proposition 2.2Consider Multi-User OFDM system (25), and suppose that conditions 
(27) hold. Moreover, let the function (ݐ)߶ܤ୘in (25) be quasi-periodic persistently 
exciting: 

∫ :ܶ,ߜ∃ ߶(߬)௧ା்
௧ ߬݀(߬)߶ܤ୘ܤ ≥  (42) ,ݐ∀ߜ

and, 
max൛∥ (ݐ)߶ ∥, ∥ (ݐ)̇߶ ∥ൟ ≤  .ଵܤ

 
Let Φ(ݐ, ,଴ݐ)଴),Φݐ (଴ݐ =  be the fundamentalMulti-User OFDM system of solutions ܫ
of (25) and let ܘ be a channel vector from ℝ௣ା௤. Then 
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∥ Φ(ݐଶ, ܘ(ଵݐ ∥≤ ݁ିఘ(௧మି௧భ) ∥ ܘ ∥ ଶݐ∀,ଶܦ ≥ ଵݐ ≥  ,଴ݐ

 
Where the parameters ߩ and ܦଶ do not depend on ݐ଴ and ܘ and can be expressed 
explicitly as functions of ܤଵ, the constants ߜ and ܶ in (42) and matrices ܥ,ܤ,ܣ,ܲ and 
࣫.Proof of Theorem 2.2Starting with the following Lemma,Lemma 2.4Let (ݐ)ܠ: 
ℝ → ℝ௡ be a function satisfying 

 
max൛∥ ܠ ∥ଶ,[௧,∞], ∥ ܠ ∥∞,[௧,∞]ൟ ≤ c ∥ (ݐ)ܠ ݐ∀,∥ ≥  ଴. (43)ݐ

Then, 
∥ (ݐ)ܠ ∥≤ ܿ݁ଵ ଶൗ ݁ି(௧ି௧భ) ଶ௖మ⁄ ∥ (ଵݐ)ܠ ݐ∀,∥ ≥ ଵݐ ≥  ଴.(44)ݐ

 
Proof of Lemma 2.4It is noticed that (43) implies  

 

න ∥ (߬)ܠ ∥ଶ
∞

௧
݀߬ ≤ ܿଶ ∥ (ݐ)ܠ ∥ଶ, ∥ ܠ ∥∞,[௧,∞]

ଶ ≤ ܿଶ ∥ (ݐ)ܠ ∥ଶ. 

 
Let (ݐ)ݒ = ∫ ∥ (߬)ܠ ∥ଶ∞

௧ ݀߬, then 
 

Denoting ߬ = ଶݐ + ܶ, we get 
∥ (߬)ܠ ∥≤ ܿ݁ଵ ଶൗ ݁ି(ఛି௧భ) ଶ௖మ⁄ ∥ (ଵݐ)ܠ ∥ ∀߬ ≥ ଵݐ + ܶ. 

The Lemma will be proven if we show that the estimate holds for 0 ≤ ଵݐ ≤ ߬ ≤ ଵݐ +
ܶ. Condition (43) implies that ∥ (߬)ܠ ∥≤ ܿ ∥ (ଵݐ)ܠ ∥ ∀߬ ≥  ,ଵ. On the other handݐ

 
1 = ݁ଵ ଶൗ ݁ି் ଶ௖మ⁄ ≤ ݁ଵ ଶൗ ݁ି(ఛି௧భ) ଶ௖మ⁄ ≤ ݁ଵ ଶൗ ଵݐ∀ ≤ ߬ ≤ ଵݐ + ܶ. 
 

Hence ∥ (߬)ܠ ∥≤ ܿ ∥ (ଵݐ)ܠ ∥≤ ܿ݁ଵ ଶൗ ݁ି(ఛି௧భ) ଶ௖మ⁄ ∥ (ଵݐ)ܠ ∥ for ݐଵ ≤ ߬ ≥ ଵݐ + ܶ as 
well.The proof of the theorem is given as follows. Consider ܠ = col (ܠଵ,ܠଶ).  
 
If we show that there exists ܿ ∈ ℝவ଴ such that (43) holds then according to Lemma 
2.4, we can conclude that, 

∥ (ଶݐ)ܠ ∥≤ ܿ݁ଵ ଶൗ ݁ି(௧భି௧మ) ଶ௖మ ⁄ ∥ (ଵݐ)ܠ ଶݐ∀,∥ ≥ ଵݐ ≥  .଴ݐ
 

The result would then follow immediately if we let ܠ(ݐଵ) = ܘ and substitute ܠ(ݐଶ) = ࢶ 
 into the inequality abovelet us now find a constant c such that (43) holds for ܘ(ଵݐ,ଶݐ)
Multi-User OFDM system (25).Consider the positive definite function ܸ(ܠ)  =
ଵܠଵ୘ܲܠ  + ∥ ଶܠ ∥ଶ, where ܲ is a symmetric positive definite matrix satisfying (27). 
According to (30), (31) and (32), we can conclude that, 

 
min{λ୫୧୬(ܲ),1} ∥ ܠ ∥ଶ≤ (ܠ)ܸ ≤ max{λ୫ୟ୶(ܲ),1} ∥ ܠ ∥ଶ,  

 
and that ܸ̇ ≤ ଵܠଵ୘࣫ܠ−  ≤ −λ୫୧୬(࣫) ∥ ଵܠ ∥ଶ. 
Thus, 
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∥ ܠ ∥ଶ,[௧,∞]≤ max{λ୫ୟ୶(ܲ),1}ଵ/ଶ λ୫୧୬(࣫)ଵ/ଶ⁄ ∥ (ݐ)ܠ ∥ =  ܿଵ ∥ (ݐ)ܠ ∥ , (45) 
 

∥ ܠ ∥∞,[௧,∞]≤ max{λ୫ୟ୶(ܲ),1}ଵ/ଶ min {λ୫୧୬(ܲ), 1}ଵ/ଶ⁄ ∥ (ݐ)ܠ ∥
=  ܿଶ ∥ (ݐ)ܠ ݐ∀,∥ ≥  .଴ݐ

 
Let us now estimate ∥ ܠ ∥ଶ,[௧,∞].  In order to do so we introduce a new variable ܢ =
ଶܠ −  :ݐ .ଵ and consider its derivative w.r.tܠ୘ܤ(ݐ)߶

ܢ̇ =
ܢ୘(ݐ)߶ܤ୘ܤ(ݐ)߶− − ܣ୘ܤ(ݐ)߶ൣ + ୘ܤ(ݐ)߶(୘(ݐ)߶ܤ୘ܤ(ݐ)߶) +
ܥ(ݐ)߶ +  ଵ.  (46)ܠ[୘ܤ(ݐ)̇߶

To proceed further we will need the following lemma. 
 

Lemma 2.5 Consider the Multi-User OFDM system 
 
ܢ̇ = −Г(ݐ)ߙ(ݐ)ߙ୘ܢ, ܢ ∈ ℝ௡,ߙ:ℝ → ℝ௡×௠,  (47) 
 

Where ߙ is quasi-periodic persistently exciting (i.e. property (38) holds), ∥ (ݐ)ߙ ∥≤  ,ܯ
and Г =  Г୘is a positive definite matrix. Let ܢ (ݐ,ݐ଴) be a solution of (47) passing 
through ܢ଴ at ݐ = ݐ଴. Then there existλ, ܦ ∈ ℝவ଴such that 

 
∥ ,ݐ)ܢ (଴ݐ ∥≤ λ(௧ି௧బ)ି݁ܦ ∥ ଴ܢ ∥ , ݐ ≥  ,଴ݐ

 
Where ܦ = (λ୫ୟ୶(Г)/λ୫୧୬(Г))ଵ/ଶ݁஛் and 

 
λ = ⁄ܶ λ୫୧୬(Г)ߜ  (1 + λ୫ୟ୶(Г)ܯଶܶ)ଶ 

 
Independently of ܢ଴, ݐ ,ݐ଴. 
 
Proof of Lemma 2.5Consider the following positive definite function: 

 
(ܢ)ܸ =∥ ܢ ∥ଶГିଵ, λ୫୧୬(Гିଵ) ∥ ܢ ∥ଶ≤ (ܢ)ܸ ≤ λ୫ୟ୶(Гିଵ) ∥ ܢ ∥ଶ 

Its derivative is ܸ̇ = −2 ∥ (ݐ)ߙ୘ܢ ∥ଶ. Thus taking into account that (ݐ)ߙ is quasi-
periodic persistently exciting we can derive the following estimate:ܸ൫ݐ)ܢ଴ + ܶ)൯ −
ܸ൫ܢ(ݐ଴)൯ ≤
(ߚ)) − (1 + ⁄((ߚ (ߜ2)) λ୫ୟ୶(Гିଵ))⁄ ܸ൫ܢ(ݐ଴)൯+ ସܶଶܯλ୫ୟ୶(Г)ଶߚ  ቀܸ൫ܢ(ݐ଴)൯ −

ܸ൫ݐ)ܢ଴ + ܶ)൯ቁ ⇒ 
 

ܸ൫ݐ)ܢ଴ + ܶ)൯ ≤  ,൯(଴ݐ)ܢ൫ܸߩ
Where 

 
ߩ = ൫1 − ൫(2ߜ)/λ୫ୟ୶(Гିଵ)൯(1)/ߚ + 1)(ߚ + λ୫ୟ୶ߚ 

ଶ (Г)ܯସܶଶ)൯). 
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The value of ߩ is minimized at ߚ = 1/(λ୫ୟ୶(Г)ܯଶܶ) in which case 
 

଴ݐ)ܸ + ܶ) ≤ ,(଴ݐ)ܸߩ ߩ
= (1 − λ୫ୟ୶൫Гିଵ൯(1/(1/(ߜ2)) + λ୫ୟ୶(Г)ܯଶܶ)ଶ ) 

It is to be noticed that  
−(ln(1 − (ܶ/(ߪ ≥ ߪ,ܶ/ߪ ∈ (0,1). 

Therefore 
ܸ൫ݐ)ܢ଴ + ܶ)൯ ≤ ݁((୪୬(ఘ) ்⁄ )்)ܸ൫ܢ(ݐ଴)൯ ≤ ݁ିଶλ்ܸ൫ܢ(ݐ଴)൯,  

 
λ = ߜ)  λ୫ୟ୶൫Гିଵ൯)(1/ܶ(1 +⁄ λ୫ୟ୶(Г)ܯଶܶ)ଶ) . 

 
Since any ∆ݐ ≥ 0 can be expressed as ∆ݐ = ݊ܶ + ,ᇱݐ ᇱݐ ∈  [0,ܶ), we have that 

 
ܸ൫ݐ)ܢ଴ + ൯(ݐ∆ ≤ (݁ିଶλ൫୬்ା୲′൯/݁ିଶఒ௧ ′)ܸ൫ܢ(ݐ଴)൯ ≤ (݁ିଶλ∆୲/݁ିଶλ்) ܸ൫ܢ(ݐ଴)൯. 

 
Finally 

 
∥ ଴ݐ)ܢ + (ݐ∆ ∥≤ λ∆୲ି݁ܦ ∥ (଴ݐ)ܢ ∥, 
 
ܦ = (λ୫ୟ୶൫Г

ିଵ൯ λ୫୧୬൫Гିଵ൯)ൗ ଵ/ଶ ݁ఒ். 
 

The desired inequality now follows from obvious identities:  
λ୫୧୬൫Гିଵ൯ = ଵ

λౣ౗౮(Г)andλ୫ୟ୶൫Гିଵ൯ = 1/λ୫୧୬(Г). 
Let Φଵ(ݐ ,ݐ଴), Φଵ (ݐ଴, ݐ଴) =  be the fundamentalMulti-User OFDM system of ܫ
solutions of 

ܢ̇  =  . ܢ୘(ݐ)߶ܤ୘ܤ(ݐ)߶−
 
 
According to Lemma 2.5, we have that 

 
∥ Φଵ (ݐଶ, ݐଵ) ܢ(ݐଵ) ∥≤ ܿଷeିτ(௧మି௧భ) ∥ (ଵݐ)ܢ ∥, 

Where 
ܿଷ  =  ݁ఛ் , ߬ = ߜ  ܶ(1 + ܶଶλ୫ୟ୶(ܤ୘ܤ)ܤଵଶ)ଶ⁄ . 

 
Given that any solution of (46) can be expressed as 

 
(ଵݐ)ܢ (ଵݐ,ݐ)Φଵ = (ݐ)ܢ + ∫ Φଵ(ݐ, ௧ݏ݀(ݏ)ଵܠ(ݏ)߯(ݏ

௧భ
, 

ݐ ≥ ଵݐ ≥  ,଴ݐ
 

Where ߯(ݏ) = ܣ୘ܤ(ݏ)߶) −  + ୘ܤ(ݏ)߶(୘(ݏ)߶ܤ୘ܤ(ݏ)߶) + ܥ(ݏ)߶  ୘), andܤ(ݏ)̇߶ +
that 
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∥ (ݏ)߯ ∥≤ ∥)ଵܤ ܣ ∥∥ ܤ ∥ +∥ ܥ ∥ +∥ ܤ ∥) + ଵଷܤ ∥ ܤ ∥ଷ= ܿସ, 
 
Given thatݖ =  :ଵ, the following estimate holdsܠ୘ܤ(ݐ)߶–ଶܠ 

 
∥ ܢ ∥ଶ,[௧భ,௧]≥∥ ଶܠ ∥ଶ,[௧భ,௧]−∥ ଵܠ୘ܤ(∙)߶ ∥ଶ,[௧భ,௧]. Thus 
 
∥ ଶܠ ∥ଶ,[௧భ,௧]≤∥ ܢ ∥ଶ,[௧భ,௧]+ ଵܤ ∥ ܤ ∥∥ ଵܠ ∥ଶ,[௧భ,௧], and hence 
∥ ଶܠ ∥ଶ,[௧భ,௧]≤ ((ܿଷ √2߬⁄  ) ∥ (ଵݐ)ܢ ∥

+(ܿସܿଷ ߬⁄ )∥ ଵܠ ∥ଶ,[௧భ,௧])+ܤଵ ∥ ܤ ∥∥ ଵܠ ∥ଶ,[௧భ,௧]. 

Given that 

∥ (ଵݐ)ܢ ∥≤ ଵܤ) ∥ ܤ ∥∥ (ଵݐ)ଵܠ ∥ +∥ (ଵݐ)ଶܠ ∥) ≤ (1 + ଵܤ ∥ ܤ ∥)
∥ (ଵݐ)ଵܠ ∥, 

We obtain 
∥ ଶܠ ∥ଶ,[௧భ,௧]≤ (ܿଷ √2߬⁄ )(1 + ଵܤ ∥ ܤ ∥) ∥ (ଵݐ)ଵܠ ∥ +((ܿସܿଷ ߬)⁄  

ଵܤ + ∥ ܤ ∥)∥ ଵܠ ∥ଶ,[௧భ,௧] 
=  ܿହ ∥ (ଵݐ)ܠ ∥  + ܿ଺ ∥ ଵܠ ∥ଶ,[௧భ,௧] . 

Thus invoking (45) we can derive that 
∥ ܠ ∥ଶ,[௧భ,௧]≤ (ܿହ + ܿଵܿ଺) ∥ (ଵݐ)ܠ ∥. 

Hence 
max൛∥ ܠ ∥ଶ,[௧భ,௧], ∥ ܠ ∥∞,[௧భ,௧]ൟ ≤ ܿ଻ ∥ (ଵݐ)ܠ ∥, 

ܿ଻ = max{(ܿହ + ܿଵܿ଺), ܿଶ}and 
∥ Φ(ݐ଴, ܘ(ଵݐ ∥≤ ଶ݁ିఘ(௧ି௧బ)ܦ ∥ ܘ ∥. 

 
 

6. Summary and Results 
In this paper we articulated the new notions of asymptotic characterization of OFDM 
channel assignment with respect to multi-user OFDM system, OFDM constellation 
points, and Viterbi decoder metrics for distributed scheme. We articulated various 
definitions for local operating conditions and discussed tools for local operating 
conditions-analysis such as the method of Channel Transfer Functions and Lemma 2.1. 
These tools were illustrated with the local operating conditions analysis problem for 
OFDM channel assignment. 
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