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Abstract 

 

In this paper, we propose and analyze a novel method of picoseconds optical 

pulse compression down to femtosecond level by the combined action of a 

highly nonlinear fiber and an optical time lens. Typical pulse width ~ 300 

femtosecond can be achieved with pulse repetition period of 2 picosecond. 
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1. Introduction: 

Generation of high repetition rate, narrow optical pulses [1, 4-19] is a topic of current 

research in optical engineering all over the globe. Conventional techniques of optical 

pulse generation produce pulses of widths typically in the picosecond range. In order 

to generate optical pulses in the femtosecond domain, pulse compression [2-3, 20-25] 

is necessary. Applications of high repetition rate, narrow optical pulses lie in optical 

time division multiplexing (OTDM) [26-27], light detection and ranging (LIDAR), 

chemical sensing of poisonous gases, high speed optical data transmission, etc. The 

maximum number of channels in wavelength division multiplexing (WDM) is limited 

by fiber dispersion. OTDM-WDM communication system can utilize the super wide 

bandwidth of the low loss optical fiber. 

This paper proposes and analyses a novel method of optical pulse compression 

where picoseconds input optical pulse can be compressed down to femtosecond 

domain by using a moderate length of highly nonlinear fiber (HNLF) followed by an 

optical time lens. Normal geometrical optical lens compresses the lightwave in space 

whereas the time lens compresses the optical pulse in the time domain. 
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2. System Description: 

A mode-locked laser diode (MLLD) operating at a central wavelength c  produces 

optical pulses with a repetition frequency mf . This pulse train contains many optical 

frequency components which when demultiplexed by an arrayed waveguide grating 

(AWG), we can get different optical frequency components. We select four 

lightwaves having frequencies c mf nf and 2c mf nf  where n  is a fixed integer and 

cf  is the central frequency of the MLLD. These four lightwaves are amplified by four 

laser diodes in the injection-locked mode. The free-running frequencies of these LDs 

are identical with the injection lightwave frequencies (viz. c mf nf  and 2c mf nf ). 

The free-running powers of LDs lasing at 2c mf nf  are 2  times those of LDs lasing 

at c mf nf . Here,   is a constant fraction, less than unity. These four lightwaves when 

combined in an optical  4 1  power combiner we get a train of optical pulses. The 

scheme is shown in Fig. 1. 

 
Figure 1.  Schematic diagram of optical pulse synthesizer. 

 

The intensity of the light pulse thus generated is described as 
2

0 2 2

1 1
( ) 1 cos2 cos4

2 1 1
m mI t I n t n t


 

 

 
   

  
    (1) 

Here, 0I  is the peak intensity of the pulse at 0t  . The normalized intensity 

0( )I t I  of the pulse as a function of time is plotted in Fig. 2. The pulse has a width of 

5 ps and a repetition frequency of 100 GHz with 01.02  . 

 

 
 

Figure 2.  Normalized intensity of the pulse as a function of time. Pulse width 

5 ps. Pulse repetition frequency = 100 GHz. 
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3. Analysis: 

The input optical pulse is passed through a highly nonlinear fiber of length HL  and 

then it propagates through an optical time lens. The time taken by light of angular 

frequency   in propagating through the HNLF is 
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is the group velocity of the lightwave and p  is the phase constant of the lightwave. 

The time taken by light of angular frequency  c    can be expanded in Taylor’s 

series as 
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where ct  is the time taken by light of angular frequency c . Taking mkn    (for 

k = 1 , 2 ), the phase shift  t is given by 
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neglecting second order small terms in (5). Now, 
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  . Here, 0gv  is the group velocity of 

lightwave of frequency c . The corresponding wavelength is c . HD is the dispersion 

parameters of the HNLF. We consider zero dispersion slope of HNLF so that 03 H  

and hence, 01  . 

The intensity-dependent refractive index of the highly nonlinear fiber is written 

as 

 tInnn 20                                   (7) 

where 2n is the Kerr nonlinearity constant and  tI  is the optical pulse intensity. The 

nonlinear coefficient    is related to Kerr nonlinearity as 

effA

n




 22
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where   is the wavelength of light and effA  is the effective cross-sectional area of the 

core of the HNLF. The phase shift of the lightwave due to nonlinear refractive index is 

given by 

  NLHmcNL kn                                (9) 
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where  
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Here, the subscript H indicates HNLF. 

After the HNLF, there is an optical time lens consisting of an optical phase 

modulator (OPM) followed by a single mode fiber (SMF). 

The modulation frequency applied to the OPM is 

   tj
mPM ejnH                          (12) 

where     tnmt m cos         (13) 

and 
V

V
m m0 , where 0mV  is the voltage amplitude of the modulator drive signal and 

V is the half-wave voltage of the modulator. The instantaneous frequency change 

generated due to phase modulation is calculated as 
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The output lightwave from the OPM passes through a SMF of length L  which 

is dispersive. 

The transfer function of the SMF is 
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where 
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L
t   and 2,1 k . 2  is the group velocity dispersion (GVD) parameter. 

Here, cmk nkL  2 . We have neglected terms proportional to 2
m  since cm   . 

The composite lightwave output from the HNLF and time lens combination is 

expressed as 
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where A  amplitude constant of a single-wave with frequency c mn  , 
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Then,  
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The normalized intensity of the resultant optical pulse is given by 
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When solved numerically, the pulse waveforms obtained are shown in Figs. 3, 

4, 5 and 6 for a value of drive parameter 0.1m  . Other parameters have values as 

mentioned in the caption. The pulses are compressed relative to the input pulses and 

have calculated widths in the range of 303 fs to 327 fs. 

 

 
 

Figure 3.  0.1m  , 1HL m , 1L m , 2 0.5  , 10mf GHz , Pulsewidth = 315 fs 

 

 
 

Figure 4.  0.1m  , 1HL m , 10L m , 2 0.5  , 10mf GHz , Pulsewidth = 303 fs 
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Figure 5.  0.1m  , 10HL m , 1L m , 2 0.5  , 10mf GHz , Pulsewidth = 327 fs 

 

 
 

Figure 6.  0.1m  , 10HL m , 10L m , 2 0.5  , 10mf GHz , Pulsewidth = 315 fs 

 

The values of parameters used in numerical calculation are given in Table I. 

 

Table I 

 

1.  n  5  

2.  mf  GHz10  

3.  2  5.0  

4.  c  sm8103  

5.  c  m55.1  

6.  0n  458.1  

7.  2n  Wm220109.2   

8.  effA  for HNLF 27.9 m  

9.    for HNLF 12.11 11  kmW  

10.  0gv  8
0 102nc m/sec 

11.  HL  10m, 1m 

12.  L  m1 , 10m 

13.  m  0.1 

14.  0  HL1.3  
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15.  1  0  

16.  2  

mps2

210167.2 
 

17.  0t for L=10 m 8105  sec 

18.  0P  mW10  

 

 

4. Conclusion: 

In this paper, we have proposed and analyzed the possibility of optical pulse 

compression produced by the combined action of a highly nonlinear fiber and an 

optical time lens. The dependence of optical pulse compression on various physical 

parameters such as highly nonlinear fiber length and SMF length have been presented. 

The ps pulse can be compressed down to fs domain by the HNLF-time lens 

combination. The OPM is underdriven, the drive parameter m  being only 10%. 
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