
International Journal of Electronics and Communication Engineering.

ISSN 0974-2166 Volume 9, Number 1 (2016), pp. 55-62

© International Research Publication House

http://www.irphouse.com

Error Correction Using Extended Orthogonal Latin

Square Codes

P. Vamsi Krishna

M. TECH, ECE Department, JNTUACE, Ananthapuramu, India.,

Smt D. Lalitha Kumari

Assistant Professor, ECE Department, JNTUACE, Ananthapuramu, India.

Abstract

To protect memories against errors, error correction codes (ECCs) are used.

As frequency of occurring multiple errors are common, we need to go for

advanced ECCs. Among advanced ECCs, Orthogonal Latin Squares (OLS)

codes have gained renewed interest for memory protection due to their

modularity and the simplicity of the decoding algorithm that enables low delay

implementations. An important issue is that when ECCs is used, the encoder

and decoder circuits can also suffer errors. In this brief, multiple errors

correction technique using Extended OLS codes is implemented. The use of

more complex codes that can correct more errors is limited by their impact on

delay and power, which can limit their applicability to memory designs. To

overcome those issues, the use of codes that are one-step majority logic

decodable (OS-MLD) has been evolved recently. OS-MLD codes can be

decoded with low latency. Therefore they are used to protect memories.

Keywords: Error correction codes (ECCs), Orthogonal Latin square (OLS),

One step majority logic decodable (OS-MLD), Memory, Parity.

1. INTRODUCTION

Reliability is a major concern in advanced electronic circuits. To ensure errors do not

affect the circuit functionality a number of mitigation techniques can be used. Among

them, Error Correction Codes (ECC) are used to protect memories and registers in

electronic circuits. The general idea for achieving error correction is to add some

redundancy which means to add some extra data to a message, which receiver can use

to check uniformity of the delivered message, and to pick up data determined to be

corrupt. Error correction scheme may be systematic or it may be non-systematic. In

56 P. Vamsi Krishna and Smt D. Lalitha Kumari

the system of the module non-systematic code, an encoded is achieved by

transformation of the message which has least possibility of number of bits present in

the message which is being converted. Another classification is the type of systematic

module unique data is sent by the transmitter which is attached by a fixed number of

parity data like check bits that obtained from the data bits. The receiver applies the

same algorithm when only detection of the error is required to the received data bits

which is then compared with its output with the receive check bits if the values does

not match, there we conclude that an error has occurred at some point in the process

of transmission. Error correcting codes are regularly used in lower-layer

communication, as well as for reliable storage in media such as CDs, DVDs, hard

disks and RAM.

Provision against soft errors that apparent they as the bit-flips in memory is the main

motto of error detection and correction. Several techniques are used present to

mitigate upsets in memories. For example, the Bose – Chaudhuri– Hocquenghem

codes, Reed–Solomon codes, punctured difference set codes, and matrix codes has

been used to contact with MCUs in memories. But the above codes mentioned

requires more area, power, and delay overheads since the encoding and decoding

circuits are more complex in these complicated codes. Reed-Muller code is another

protection code that is able to detect and correct additional error besides a Hamming

code. But the major drawback of this protection code is the more area it requires and

the power penalties. Hamming Codes are mostly used to correct Single Error Upsets

(SEU’s) in memory due to their ability to correct single errors through reduced area

and performance overhead. Although it is brilliant for correction of single errors in a

data word, but they cannot correct two bit errors caused by single event upset. An

extension of the basic SEC-DED Hamming Code has been proposed to form a special

class of codes known as Hsiao Codes to increase the speed, cost and reliability of the

decoding logic. One more class of SEC-DED codes known as Single-error-correcting,

double error-detecting, Single-byte-error-detecting SEC-DED-SBD codes be

proposed to detect any number of errors disturbing a single byte. These codes are

additional suitable than the conventional SEC-DED codes for protecting the byte-

organized memories. Though they operate through lesser overhead and are good for

multiple error detection, they cannot correct multiple errors. There are additional

codes such as the single-byte-error-correcting, double-byte-error detecting (SBC-

DBD) codes, double-error-correcting, triple error-detecting (DEC-TED) codes that

can correct multiple errors. The Single-error-correcting, Double-error-detecting and

Double-adjacent-error-correcting (SEC-DED-DAEC) code provides a low cost ECC

methodology to correct adjacent errors as proposed. The only drawback through this

code is the possibility of miss-correction for a small subset of many errors.

2. LITERATURE SURVEY

Most prior work in memory ECC has focused on low failure rates present at normal

operating voltages, and has not focused on the problem of persistent failures in cache

memory operating at ultralow voltage where defect rates are very high.

Error Correction Using Extended Orthogonal Latin Square Codes 57

Error correction codes (ECCs) have been used to protect memories for many years.

There are wide ranges of codes that used or proposed for the applications in the

memory. The codes that can correct one bit per word called the Single error correction

are commonly used known as SEC. More sophisticated studies are carried on the

codes that correct the two adjacent errors or the two errors. Further the use of more

complex codes that corrects more errors is limited by their impact on delay and

power, which limits their applicability to the design of memory. To surmount the

issues, the use of codes that are one step majority logic decodable (OS -MLD) has

been proposed recently. OS-MLD codes can be decoded with low latency and so they

are used for the protection of memories. Another type of code that is OS-MLD is

orthogonal Latin squares called the OLS codes. While OLS codes require more

redundancy than conventional ECC, the one-step majority encoding and decoding

process is very fast and can be scaled up for handling large numbers of errors as

opposed to BCH codes, which while providing the desired level of reliability requires

multi-cycles for decoding. The post-manufacturing customization approach proposed

in this paper can be used to reduce the number of check bits and hence the amount of

redundancy required in the memory while still providing the desired level of

reliability. Note that the proposed approach does not reduce the hardware

requirements for the OLS ECC as the whole code needs to be implemented on-chip

since the location of the defects is not known until post-manufacturing test is

performed.

3. ORTHOGONAL LATIN SQUARE CODES

The concept of Latin squares and their applications are well known. A Latin square of

size m is an m * m matrix that has permutations of the digits 0, 1,… and m-1 in both

its rows and columns . There can be more than one Latin square for each value of m.

In that case, two latin squares are said to be orthogonal if every ordered pair of

elements appears only once when they are superimposed. Orthogonal Latin Squares

(OLS) codes are derived from Orthogonal Latin squares. These codes have k=m2 data

bits and 2tm check bits where ‘t’ is the number of errors that the codes can

correct.OLS codes can be decoded using OS-MLD. OS-MLD is a simple procedure in

which each bit is decoded by simply taking the majority value of the set of the

recomputed parity check equations, in which it participates. This is shown in Fig. 1

for a given data bit di . The reasoning behind OS-MLD is that when an error occurs in

bit di, the recomputed parity checks in which it participates will take a value of one.

58 P. Vamsi Krishna and Smt D. Lalitha Kumari

Fig-1: Illustration of OS-MLD decoding for OLS codes

Therefore, a majority of ones in those recomputed checks is an indication that the bit

is in error and therefore it needs to be corrected. However, it may also occur that

errors in other bits different from di provoke a majority of ones that would cause

miss-correction. For a few codes, their properties ensure that this miss-correction

cannot occur, and therefore OS-MLD can be used. For a Double Error Correction

(DEC) code t=2 and therefore 4m check bits are used. This means that to obtain a

code that can correct t+1 errors, simply 2m check bits are added to the code that can

correct t errors. The modular property enables the selection of the error correction

capability for a given word size. As mentioned in the introduction, OLS codes can be

decoded using One Step Majority Logic Decoding (OS-MLD) as each data bit

participates in exactly 2t check bits and each other bit participates in at most one of

those check bits. This enables a simple correction when the number of bits in error is

‘t’ or less. The 2t check bits are recomputed and a majority vote is taken, if a value of

one is obtained, that bit is error and must be corrected. Otherwise it is correct. As long

as number of errors is t or less ensures the error correction as the remaining ‘t-1’

errors can, in the worst case it effect t-1 check bits so that still a majority of t+1

triggers the correction of an erroneous bit. For an OLS code that can correct t errors

using OS-MLD, t+1 errors can cause miss-corrections. This occurs for example if the

errors affect t+1 parity bits in which bit di participates as this bit will be miss-

corrected. The same occurs when the number of errors is larger than t+1. Each of the

2t check bits in which a data bit participates is taken from a group of m parity bits.

Those groups are bits 1 to m, m+1 to 2m, 2m+1 to 3m and 3m+1 to 4m.

Error Correction Using Extended Orthogonal Latin Square Codes 59

[

1111000000000000|1000000000000000
0000111100000000|0100000000000000
0000000011110000|0010000000000000
0000000000001111|0001000000000000
1000100010001000|0000100000000000
0100010001000100|0000010000000000
0010001000100010|0000001000000000
0001000100010001|0000000100000000
1000010000100001|0000000010000000
0100100000010010|0000000001000000
0010000110000100|0000000000100000
0001001001001000|0000000000010000
1000001000010100|0000000000001000
0100000100101000|0000000000000100
0010100001000001|0000000000000010
0001010010000010|0000000000000001]

Fig-2: Parity check matrix for OLS code with k = 16 and t = 2.

The parity matrix for OLS codes is built from their properties. The matrix is capable

of correcting two errors. By the fact that in direction of the modular structure it might

be able to correct many errors. The OLS codes have check bits of number “2tm” in

which “t” stands for number of errors that code can corrects.

4. IMPLEMENTING METHOD

The implementing method is based on the observation that by construction, the groups

formed by the m parity bits in each Mi matrix have at most a one in every column of

parity matrix. For the example in Fig. 2, those groups correspond to bits (or rows) 1–

4, 5–8, 9–12 and 13–16. Therefore, any combination of four bits from one of those

groups will at most share a one with the existing columns in parity matrix. For

example, the combination formed by bits 1, 2, 3, and 4 shares only bit 1 with columns

1, 2, 3, and 4. This is the condition needed to enable OS-MLD. Therefore,

combinations of four bits taken all from one of those groups can be used to add data

bit columns to the parity matrix. For the code with k=16 and t=2 shown in Fig. 2, we

have m=4. Hence, one combination can be formed in each group by setting all the

positions in the group to one. This is shown in Fig. 3, where the columns added are

highlighted. In this case, the data bit block is extended from k= 16 to k=20 bits.

60 P. Vamsi Krishna and Smt D. Lalitha Kumari

[

1111000000000000|1000|1000000000000000
0000111100000000|1000|0100000000000000
0000000011110000|1000|0010000000000000
0000000000001111|1000|0001000000000000
1000100010001000|0100|0000100000000000
0100010001000100|0100|0000010000000000
0010001000100010|0100|0000001000000000
0001000100010001|0100|0000000100000000
1000010000100001|0010|0000000010000000
0100100000010010|0010|0000000001000000
0010000110000100|0010|0000000000100000
0001001001001000|0010|0000000000010000
1000001000010100|0001|0000000000001000
0100000100101000|0001|0000000000000100
0010100001000001|0001|0000000000000010
0001010010000010|0001|0000000000000001]

Fig- 3: Parity check matrix for the extended OLS code with k= 20 and t= 2.

The implementing method first divides the parity check bits in groups of m bits given

by the Mi matrices. Then, the second step is for each group to find the combinations

of 2t bits such that any pair of them share at most one bit. This second step can be

seen as that of constructing an OS-MLD code with m parity check bits. Obviously, to

keep the OS-MLD property for the extended code, the combinations formed for each

group have to share at most one bit with the combinations formed in the other 2t − 1

groups. When m is small, such combinations are found easily. When m is larger,

several combinations can be formed in each group. This occurs, for example, when m

= 8. In this case, the OLS code has a data block size k = 64. With eight positions in

each group, now two combinations of four of them that share at most one position can

be formed. This means that the extended code will have eight (4 × 2) additional data

bits. As the size of the OLS code becomes larger, the number of combinations in a

group also grows. For the case m = 16 and k= 256, each group has 16 elements.

Interestingly enough, there are 20 combinations of four elements that share at most

one element. In fact, those combinations are obtained using the extended OLS code

shown in Fig. 3 in each of the groups. Therefore, in this case, 4 × 20 = 80 data bits can

be added in the extended code. The parameters of the extended codes are shown in

Table I, where n − k = 2tm is the number of parity bits. The data block size for the

original OLS codes (kOLS) is also shown for reference.

Error Correction Using Extended Orthogonal Latin Square Codes 61

The method can be applied to the general case of an OLS code with k = m2 that can

correct t errors. Such a code has 2tm parity bits that as before are divided in groups of

m bits. The code can be extended by selecting combinations of 2t parity bits taken

from each of the groups. These combinations can be added to the code as long as any

pair of the new combinations share at most one bit. When m is small, a set of such

combinations with maximum size can be easily found.

However, as m grows, finding such a set is far from trivial (as mentioned before,

solving that problem is equivalent to designing an OS-MLD code with m parity bits

that can correct t errors). An upper bound on the number of possible combinations can

be derived by observing that any pair of bits can appear only in one combination.

Because each combination has 2t bits, there are (2t 2) pairs in each combination. The

number of possible pairs in each group of m bits is m2. Therefore, the number of

combinations NG in a group of m bits has to be such that

(
𝑚
2

) ≥ (
2𝑡
2

) ∗ 𝑁𝐺

which can be simplified as
𝑚2−𝑚

4𝑡2−2𝑡
≥ 𝑁𝐺

5. Results

The Xilinx ISE software used to perform compilation and synthesis. A test bench is

created to execute the simulation. The decoder is stimulated using the Xilinx ISE

software. The simulation results for the decoder using OLS code with k=16, t=2,

r_data=32 bits (16 data bits and 16 parity bits) and the decoder using extended OLS

code with k=20, t=2, r_data=36 (20 data bits and 16 parity bits) is shown as follows,

where k- data bits, t- number of errors that extended OLS code can correct, r_data -

input of decoder and data_op1 - output.

Simulation data: d= 0010_1000_0001_1000. The error is introduced in d0, d1 bits.

The corrected simulation output seen in fig 4 with k = 16 bits and t = 2 errors.

Fig- 4: For k = 16 bits OLS codes.

62 P. Vamsi Krishna and Smt D. Lalitha Kumari

For d = 0010_1000_0001_1000_0100. The error is introduced in d4 ,d5 bits. The

simulation output with corrected output seen in fig 5 with k= 20 bits and t = 2 errors.

Fig- 5: For k= 20 bits extended OLS codes.

CONCLUSION

In this brief, error correction technique for extended OLS codes is implemented. The

extended codes have the same number of parity bits as the original OLS codes but a

larger number of data bits. The data bits in extended OLS codes are 20 bits whereas

parity bits are 16 bits. The number of errors extended OLS codes can correct is 2

adjacent errors. Therefore, the relative overhead is smaller. The derived codes can be

decoded using OS-MLD as the original OLS codes. The decoding area and delay are

also similar. Therefore, the new codes can be an interesting option to reduce the

number of parity bits required to implement multiple bit error correction in memories

or caches.

REFERENCES

[1] Pedro Reviriego, Salvatore Pontarelli, Alfonso Sanchez-Macian and Jaun

Antonio Maestro”A Method to Extend Orthogonal Latin square Codes” Vol.

22,No.7,July 2014.

[2] R. Datta and N.A. Touba, “Generating burst-error correcting codes from

orthogonal Latin square Codes” IEEE int. symp. DFT, 2011.

[3] A. Dutta and N. A. Touba, “Multiple bit upset tolerant memory using a

selective cycle avoidance based SEC-DED-DAEC code,” in Proc. 25th IEEE

VLSI Test Symp. May 2007.

[4] R. Naseer and J. Draper, “DEC ECC design to improve Memory reliability

in sub-100 nm Technologies,” in Proc. IEEE ICECS, Sep. 2008.

