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Abstract 
 

To evaluate the overall performance of Self-excited Induction generator 
(SEIG), prior information of three unknown variables i.e. per unit value of 
saturated magnetizing reactance ‘Xm’, generated frequency ‘a’ and air-gap 
voltage ‘E1’ at rated frequency are essentially required. Analytical methods 
along with the laboratory test on machine are the only alternative to determine 
these unknown variables. Nonexistence of direct mathematical relationship of 
these variables and their dependence on machine parameters, load admittance, 
speed and terminal capacitance has forced the researchers to evolve new 
computational techniques. Artificial Neural Networks (ANNs) are the latest 
computational tools that are widely used for function approximation of 
systems having non-linear characteristics. ANNs have the capability to model 
the behaviour of the system to any degree of accuracy. Artificial Neural 
Networks (ANNs) are very useful tool for solution of such complex problems 
that do not require any a priori knowledge of the relationship of input and its 
output. In this paper, an attempt is made to use artificial neural networks to 
determine the saturated magnetizing reactance and generated frequency of 
SEIG with varying terminal conditions of load and speed.  

 
 
Introduction 
The utility of Self-Excited Induction Generator (SEIG) in power system networks had 
started gaining importance when it was found difficult to wheel out power through 
transmission and distribution lines in remote areas due to difficult geographical 
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conditions. With the passage of time and use of non-conventional energy sources 
particularly wind energy, the operation of SEIG emerged as a cost-effective 
alternative, where it was not economical to connect the consumer through electric 
lines. This has led to the intensive investigations pertaining to the performance of self-
excited induction generator by various researchers. The concept of self-excitation of 
induction machine emerged, for the first time in 1935, when Basset and Potter [1] 
reported that the induction machine can be operated as an induction generator in 
isolated mode by using external capacitors. Wagner [2] in 1939 gave an approximate 
method of analysis of self-excited induction generator by separating the real and 
reactive parts of the circuit. The use of series capacitor for the analysis was also 
reported by Wagner [3] in 1941 to improve voltage across the load and presented 
systematic analysis of SEIG. Since then, different researchers have made various 
attempts in this field. Barkle and Fergusen [4] in 1954 proposed the analysis of SEIG 
using modified synchronous machine transient theory. 
 Murthy et. al. [5] presented Newton Raphson (NR) method to identify the 
saturated magnetizing reactance and generated frequency of self-excited induction 
generator for given capacitance, speed and load. Malik and Haque [6] predicted 
steady state performance of an isolated self -excited induction generator feeding 
balanced R-L load considering core losses for accurate analysis, which was neglected 
earlier in the analysis by some of the researchers. Chan [7] used MACSYMA (MAC’s 
Symbolic Manipulation) for the analysis of SEIG based on nodal admittance method. 
Bhim [8] studied the effect of variable speed operation employed in case of an 
isolated induction generator operation to feed frequency in-sensitive loads. Sandhu 
and Jain [9-10] suggested new equivalent circuit model for the analysis of self -
excited induction generator, which resulted in only quadratic equation for slip instead 
of fourth or higher order polynomial solutions to predict the behaviour of machine.  
 From the literature survey carried out, it is clear that techniques like Artificial 
Neural Networks are being applied to study and analyze the behaviour of electrical 
machines and other power system networks. Chaturvedi et. al. [11] used back 
propagation gradient descent learning algorithm for training the Flexible Neural 
Network (FNN) models for electric machines to map complicated functions. Krüger 

et. al. [12] studied two types of artificial Neural Networks i.e. Multilayer Perceptron 
(MLP) Network and the Radial Basis Function (RBF) Network, which were used to 
model the process dynamics. Resilient Back propagation Technique, Levenberg-
Marquardt (LM) and Successive Over-Relaxation Resilient Back propagation, 
(SORRPROP) algorithms is suggested by some of the researchers to enhance the 
training capability of neural networks [13-14]. Lucia and Petrecca [15] established the 
possibility to use neural networks for load torque monitoring of an induction motor. 
Velpula and Das [16] used artificial neural networks technique for estimation of 
system bus voltage in power systems. The neural networks are trainable but the black-
box models are able to identify a system through its input-output data, without having 
any knowledge of the physical insights of the system. Neural Network can be 
configured to solve a number of difficult and complex problems. ANNs find a wide 
variety of applications in diverse areas including functional approximation, nonlinear 
system identification and control [17-19].  
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Self–Excited Induction Generator and its ANN Model 
Induction machine when driven with prime mover can be made to operate as an 
isolated induction generator by supplying the necessary exciting or magnetizing 
current from capacitors connected across the stator terminals of the machine. 
Excitation to the induction machine when supplied by the capacitor bank makes the 
operation of machine as self-excited induction generator. Per phase equivalent circuit 
of SEIG is shown in Figure 1. 

 

 
 

Figure 1: Per Phase Simplified Equivalent Circuit of Self-Excited Induction 
Generator. 
 
 
 Artificial Neural Networks (ANNs) are the latest computational tools that are 
widely used for function approximation of systems having non-linear characteristics. 
ANNs have the capability to model the behaviour of the system to any degree of 
accuracy. Mechanical disorder of machine components due to sudden disturbances, 
aging and abnormal use causes change in machine parameters and magnetizing 
behaviour of induction machinery. While using conventional techniques for the 
analysis of self-excited induction generator, the effect of such changes are not 
considered. But the ANN model can incorporate such changes. Apart from this ANNs 
have the capability to learn and adapt for any environmental changes. ANN model of 
the system can be given on-line training to adapt to any parametric changes in the 
system inputs, which automatically affects the corresponding changes in the outputs. 
In this work, selection of range of input-output variables for generation of training 
samples, training procedure and implementation of trained ANN for evaluation of 
unknown variables are discussed in detail.  
 
Selection of Range of Input Variables for ANN Model 
Though ANN model of self-excited induction generator need not to have prior 
knowledge of mathematical relationship of its inputs with the corresponding outputs 
but the upper and the lower limits of the input - output variables have to be chosen 
carefully so that the model can give adequate performance when applied on systems 
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having inputs within the range that should generally match with real life application 
of the system. To ascertain an acceptable range of machine parameters to be used for 
ANN model, data of different induction motors is recorded that was obtained during 
testing of motors which were referred to G.Z.S. College of Engg. & Tech. Bathinda 
by the enforcement wing of Punjab State Electricity Board to establish the HP of 
induction motors of consumers. The machines specifications and their parameters 
recorded during testing is given in Table 1. From the information recorded, it is 
observed that the value of stator and rotor resistance varies from 0.015 to 0.065 per 
unit approximately, whereas rotor and stator leakage reactance varies between 0.072 
to 0.147 per unit.  
 
 
Table 1: Specifications and Machine Parameters (measured / recorded) of Induction 
Motors Referred by Punjab State Electricity Board for Testing at GZS CET, Bathinda. 
 

Machine 
HP 

Vbas 
Volt 

Ibase 
Amp 

Zbase 
ohm 

Rs 
pu 

Rr 
pu 

Xls 
pu 

Xlr 
pu 

Re 
pu 

Xmu 
Pu 

23.08 415 17.49 23.723 0.035 0.032 0.072 0.072 45.875 2.350 
21.15 415 17.356 23.910 0.040 0.052 0.074 0.074 53.541 1.919 
15.34 415 14.202 29.220 0.055 0.064 0.141 0.141 34.690 1.830 
44.14 440 40.833 10.775 0.065 0.064 0.103 0.103 17.502 1.567 

101.62 435 73.236 5.9396 0.015 0.040 0.141 0.141 15.948 4.930 
62.14 425 47.143 9.0150 0.031 0.035 0.147 0.147 13.252 4.350 
77.24 433 63.331 6.8371 0.021 0.045 0.113 0.113 41.673 1.842 
80.17 433 58.202 7.4395 0.017 0.031 0.107 0.107 43.391 2.591 
75.07 440 56.124 7.8397 0.020 0.016 0.114 0.114 85.445 2.045 

 
 
Table 2: Range of Machine Parameters and Terminal Variables for Training of ANN 
Model of SEIG.  
 

Machine Parameters and Range Terminal Variables and Range 
Parameters Range 

(pu value) 
Parameters Range 

( pu value) 
Stator Resistance  
(Rs) 

0.02 -0.10 Excitation Capacitance (C) 0.60 – 1.20 

Rotor Resistance  
(Rr) 

0.02 -0.10 Load Admittance (YL) 0.01 – 1.00 

Stator Reactance  
(Xls) 

0.04 -0.15 Load Power Factor (Pf) 0.85 – 1.00 

Rotor Reactance  
(Xlr) 

0.04 -0.15 Operating Speed (b) 0.90 – 1.10 

Core- loss Branch  
Resistance (Re) 

25 - 60  
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 Based on these investigations and keeping in view the real life situations, the 
range for all the input variables required for training of ANN model of SEIG are 
chosen which are given in Table 2 and ANN model of SEIG is shown in Figure 2. 
 
Generation of Input Output Data Samples and Training Procedure 
For training of ANNs, the input-output data samples are obtained either from 
experimentation or from past data records or by using any mathematical technique. In 
this work the output data samples are obtained by using the analytical technique with 
randomly chosen input variables within the range specified above. For training the 
neural network, four thousand input-output data samples are taken covering the full 
range of input variables as described earlier. The ANN structure with nine neurons in 
the input layer accounting for input variables and two neurons representing the output 
variables with single hidden layer is proposed. Neural network having ANN structure 
[9 - 12 - 2] as shown in Fig 2 is proposed for determination of two unknown variables 
i.e. pu value of magnetizing reactance and generated frequency. 

 

 
 

Figure 2: ANN Model of SEIG to Determine Mag. Reactance and Frequency. 
 
 
 Before presenting the data to the neural network, input-output data samples are 
scaled or normalized to improve the mapping capability of the neural nets. Though 
input-output data can be scaled between any lower and upper limits, but in this work 
input-output data sample are scaled between lower and higher limits of 0.10 and 0.90 
respectively. To scale any vector within the limits of 0.10 and 0.90 the following 
expressions are used: 
 In any system if ( )Y f X=  for any input value of X , the scaled value scaledX

and scaledY  are given in equation (1) and (2) 
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X X
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max min

Y Y
Y

Y Y
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⎛ ⎞−
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where  

 minX = Minimum value of vector X for input data samples. 

 maxX = Maximum value of vector X for input data samples. 

 minY = Minimum value of vector Y for output data samples. 

 maxY = Maximum value of vector Y for output data samples. 
 
Training Parameters and Validation of ANN Model 
Using artificial neural network tools in MATLAB, the neural network is trained using 
Levenberg–Marquardt (LM) training algorithm. The sum-square error (SSE) goal is 
set at 0.0075. Initially the network is trained with randomly chosen weights and 
biases. Leaning rate for the hidden and output layer is initially set at 0.01. The training 
procedure is repeated till the minimum sum square error goal is achieved and the 
trained weights and biases are saved for implementation of ANN model. The 
performance of the trained ANN is then tested with validation data samples (10% to 
15 % of training samples) which are other than training samples. In case the sufficient 
function approximation accuracy in terms of sum-squared error on validation data 
samples is not achieved then network can be further trained by setting a new error 
goal otherwise trained ANN is implemented for execution of testing data samples. In 
this case the minimum error goal is achieved in 5741 training epochs and sufficient 
accuracy in output results on randomly chosen validation data samples is observed.  
 
 
Implementation of ANN Model of SEIG (Resistive Loading) 
The trained ANN model of SEIG is implemented to evaluate the magnetizing 
reactance and generated frequency of self-excited induction generator under the 
following operating conditions: 

• Variable Load Operation 
• Variable Speed Operation 

 
• Variable Load Operation of SEIG 

For variable load operation of machine, the load is varied in eight steps keeping 
the speed and excitation capacitance constant. In first case the trained ANN 
model is tested for variable load operation with excitation capacitance of 27.57 
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micro farad and 1485 Rpm speed. Similarly the output of ANN model is 
obtained with terminal capacitance of 23.58 micro farads and speed of 1570 
Rpm. The results obtained from ANN model are recorded in Table 3(a) & 3(b) 
for comparison with analytical and experimental data. The variation of 
generated frequency and magnetizing reactance of SEIG with variable load is 
shown in Figure 3 & 4. Thus air gap voltage (Ea) for evaluating the overall 
performance of the SEIG can be determined from the magnetizing 
characteristics of machine given in Appendix – I. 

 
 

Table 3(a): Results of ANN Model of SEIG for Variable Load Operation. 
 

Speed = 1485 Rpm Capacitance = 27.57 micro farad 
Load 

Admittance 
(pu) 

Magnetizing Reactance 
(pu) 

Generated Frequency (pu) 

Analytical 
Model 

ANN 
Model

Analytical 
Model 

ANN 
Model 

Experimental

0.2250 1.2323 1.2276 0.9757 0.9755 0.9762 
0.4131 1.3401 1.3367 0.9671 0.9672 0.9680 
0.5384 1.4342 1.4316 0.9616 0.9618 0.9630 
0.5808 1.4710 1.4692 0.9598 0.9599 0.9614 
0.6389 1.5261 1.5258 0.9573 0.9575 0.9588 
0.8191 1.7404 1.7470 0.9499 0.9502 0.9516 
0.8712 1.8179 1.8250 0.9478 0.9482 0.9494 
0.9489 1.9501 1.9527 0.9448 0.9453 0.9462 

 
 
 

Table 3(b): Results of ANN Model of SEIG for Variable Load Operation. 
 

Speed = 1570 Rpm Capacitance = 23.58 micro farad 
Load 

Admittance 
(pu) 

Magnetizing Reactance 
(pu) 

Generated Frequency (pu) 

Analytical 
Model 

ANN 
Model 

Analytical 
Model 

ANN 
Model 

Experimental

0.2250 1.2948 1.2849 1.0320 1.0321 1.0330 
0.4131 1.4162 1.4112 1.0230 1.0229 1.0240 
0.5384 1.5252 1.5227 1.0172 1.0170 1.0182 
0.5808 1.5684 1.5671 1.0152 1.0150 1.0164 
0.6389 1.6339 1.6343 1.0126 1.0124 1.0142 
0.8191 1.8956 1.8993 1.0048 1.0045 1.0064 
0.8712 1.9930 1.9947 1.0026 1.0024 1.0038 
0.9489 2.1627 2.1559 0.9994 0.9993 1.0012 
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Figure 3: Effect of Load Admittance on Generated Frequency of SEIG. 
 

 
 

Figure 4: Effect of Load Admittance on Magnetizing Reactance of SEIG. 
 
 
• Variable Speed Operation of SEIG 

The trained ANN model of SEIG is implemented for machine operation with 
22.11 micro farad excitation capacitance and 232 ohm resistive load by varying 
the speed. Another set of outputs of ANN model is obtained with 26.45 
microfarad capacitance and 110 ohm resistive load. The results obtained from 
ANN model are recorded in Table 4(a) and 4(b) for comparative study relating 
to performance of SEIG. 

 
 The graphical presentation of results of ANN model, analytical solution and 
experimental data with varying speed is given in Fig. 5 & 6. From the results obtained 
from ANN model, it is clear that magnetizing reactance increases with increase in 
load admittance and decreases with the increase in speed which implies that air-gap 
voltage will also increases with increase in speed. Thus air gap voltage (Ea) for 
evaluating the overall performance of the SEIG can be determined from the 
magnetizing characteristics of machine given in Appendix – I. The closeness of 
results thus validates the applicability of the proposed ANN model. 
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Table 4(a): Results of ANN Model of SEIG for Variable Speed Operation. 

 
Capacitance = 22.11 micro farad Load Resistance = 232 ohms 

Speed 
(pu) 

Magnetizing Reactance (pu) Generated Frequency (pu) 
Analytical 

Model 
ANN 

Model 
Analytical 

Model 
ANN 

Model 
Experimental

0.9233 1.9697 1.9693 0.9036 0.9035 0.9044 
0.9307 1.9378 1.9382 0.9107 0.9106 0.9116 
0.9533 1.8441 1.8457 0.9327 0.9326 0.9336 
0.9900 1.7058 1.7065 0.9683 0.9682 0.9696 
1.0140 1.6233 1.6221 0.9916 0.9916 0.9926 
1.0467 1.5201 1.5158 1.0233 1.0232 1.0244 
1.0713 1.4484 1.4426 1.0472 1.0470 1.0482 
1.0967 1.3797 1.3747 1.0718 1.0710 1.0726 

 
Table 4(b): Results of ANN Model of SEIG for Variable Speed Operation. 

 
Capacitance = 26.45 micro farad Load Resistance = 110 ohms 

Speed 
(pu) 

Magnetizing Reactance (pu) Generated Frequency (pu) 
Analytical 

Model 
ANN 

Model 
Analytical 

Model 
ANN 

Model 
Experimental

0.9233 2.1966 2.1975 0.8851 0.8850 0.8858 
0.9307 2.1627 2.1643 0.8921 0.8921 0.8928 
0.9533 2.0628 2.0665 0.9135 0.9139 0.9144 
0.9900 1.9156 1.9215 0.9482 0.9485 0.9488 
1.0140 1.8280 1.8345 0.9708 0.9709 0.9716 
1.0467 1.7184 1.7253 1.0016 1.0015 1.0026 
1.0713 1.6423 1.6500 1.0248 1.0249 1.0260 
1.0967 1.5696 1.5794 1.0486 1.0494 1.0496 

 

 
 

Figure 5: Effect of Speed on Generated Frequency of SEIG. 
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Figure 6: Effect of Speed on Magnetizing Reactance of SEIG. 
 
 
Conclusions 
In this work, Artificial Neural Networks is implemented to model the behaviour of 
self-excited induction generator. The ANN model is trained with randomly chosen 
input-output samples which cover the full range of machine parameters and terminal 
variables mentioned in Table 2. Though ANN model is trained for specific number of 
input sample but it is capable of determining the two un-known variables for 
INFINITE set of input variables. The ANN model is just a black box and is 
implemented to determine magnetising reactance and generated frequency of self-
excited induction generator under varying conditions of load and speed. The 
deviations of results obtained from the proposed ANN model and conventional 
techniques are recorded in Table 5 and 6. The results obtained are quite encouraging 
and smaller values of deviations confirm that ANN model is fully capable of mapping 
the behaviour of machine under varying situations. From the results it is clear that the 
artificial neural network technique can be successfully implemented for the 
performance evaluation of self-excited induction generator. The closeness of the 
simulated results of ‘ANN Model’ with that of analytical and experimental results on 
the test machines confirms the validity of the proposed modelling using ANN. 
 
 
Table 5: Deviations of Results of ANN Model of SEIG for Evaluation of 
Magnetising Reactance with Varying Terminal Conditions  
 

Error Variable Load Operation Variable Speed Operation 
Sum Square Error 0.0023 0.0017 
Minimum error 0.0046 0.0007 
Maximum error 0.0196 0.0262 
Mean error 0.0131 0.0095 
Std. Deviation 0.0044 0.0075 
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Table 6: Deviations of Results of ANN Model of SEIG for Evaluation of Generated 
Frequency with Varying Terminal Conditions. 
 

Number of testing samples = 08 
Error Variable Load Operation Variable Speed Operation 

SSE 1.310 x 10-06 2.502 x 10-06 
Minimum error 7.631 x 10-05 1.843 x 10-05 
Maximum error 4.183 x 10-04 8.018 x 10-04 
Mean error 3.084 x 10-04 3.682 x10-04 
Std. Deviation 1.076 x 10-04 2.766 x 10-04 

 
 
Appendix – I 
 
a. Machine Specifications 
    5.0HP =    4P =    415baseV Volts=  
   base base baseP V I=    1500  baseN RPM=    4.33 baseI Amp=  
   50  baseF Hz=  33.21 baseC Fμ=    95.84 baseZ = Ω  
b. Machine parameters in ohms  
    5.76 sR = Ω    4.19  rR = Ω   
   9.37  lsX = Ω   9.37 lrX = Ω  
 
c. Magnetizing characteristics of machine: 

 2.6930   1.3818 -  0.2117m a mX E X< =  
 2.8386 &    2.6930   = 2.1697 -  0.5057m m a mX X E X< >=

 2.9716  &    2.8386    = 3.8732 -  1.1057m m a mX X E X< >=  
2.9716 0  m aX E> =  
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