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Abstract 

 
Direct torque control (DTC) of induction motors fed by a two level inverter 
has drawbacks like more torque, flux and current ripples in steady state. This 
results in incorrect speed estimations. All these drawbacks can be overcome 
by DTC of induction motor fed by a three level inverter. Speed performance of 
the drive will be poor because of the uncertainties caused by load 
disturbances. In this paper a fuzzy controller is proposed to improve the speed 
performance of the drive. To validate the proposed method, simulation results 
are presented. 
 
Keywords: Direct torque control, fuzzy control, Neutral point clamped 
inverter, space vector. 

 
 
Introduction 
One of the prominent members of the AC motors, Induction motors are called as the 
work horses of the industry. For low performance applications, open loop 
voltage/frequency control strategies are employed. For high-performance 
applications, vector control (VC), and Direct Torque Control (DTC) are used. Vector 
controlled drives were introduced in Germany by Blaschke and Hussey. Later Direct 
torque controlled drives were introduced in Japan by Takahashi. The mentioned 
control techniques have undergone research over the last decade.  Vector control is 
very dependent on knowledge of the rotor time constant when using an induction 
machine. DTC, in its traditional form, results in a non-constant inverter switching 
frequency, which may result in high inverter/motor losses. DTC of induction motor is 
preferred because, this technique is based on the space vector approach, where the 
torque and flux of an induction motor can be directly and independently controlled 
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without any coordinate transformation [1]. The merits of DTC can be summarized as 
fast torque response, simple structure (no need of complicated coordinate 
transformation, current regulation or modulation block), and robustness against motor 
parameter variation [2]–[5]. Multi-level inverters were extensively used especially in 
high power application areas [6]–[9]. The three-level neutral-point-clamped (NPC) 
inverter is one of the most commonly used multilevel inverter topologies. Three-level 
inverter offers superiority in terms of lower voltage distortion, lower stress across the 
semiconductors, less harmonic content and lower switching frequency when 
compared with the conventional two level inverters[10]. Variable speed drives for 
Induction Motor requires wide operating range of speed and fast torque response, 
regardless of load variations. Hence there is a need to go for  more advanced control 
methods to meet the real demand. Conventional control methods have the difficulties 
like dependency on the accuracy of mathematical model of the system, shows good 
performance at only one speed, model of the control system should be known etc. 
Fuzzy logic is a technique which incorporates human-like thinking into a control 
system that is, the process how people use to infer conclusions from what they know.  
 The aim of this paper is to achieve high performance DTC for a three-level 
inverter-fed induction motor  drive, as well as considering the neutral point potential 
balance and smooth vector switching. To enhance the low speed performance, a fuzzy 
logic controller (FLC) is incorporated in the system. Simulation is carried out to 
validate the effectiveness of the schemes proposed. 
 
 
Mathematical Modeling of Induction Motor 
The induction motor has been modeled by using the following equations. 
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Neutral Point Clamped Inverter 
The three level neutral point clamped inverter has many advantages over the 
conventional two level inverter, such as smoother waveform, less distortion, less 
switching frequency and low cost [11]. The topology of a three level NPC inverter is 
shown in figure 1. 
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 The space vector diagram consists of two hexagons, the inner hexagon and the 
outer hexagon. A three level inverter has basically 27 switching states out of which 
three are zero states and the remaining twenty four states are the active states. The 
zero states produce a zero vector where as the twenty four active states produce 
eighteen different voltage vectors. These eighteen active vectors are classified as 
small, medium and large voltage vectors based on their magnitude. This classification 
is shown in Table 1. 

 
Table I: Classification of Voltage Vectors. 

 
Type Vector numbers Magnitude 
Small V1, V2, V3, V4, V5, V6 0.5 Vd 
Medium V7, V8, V9, V10, V11, V12 0.866 Vd 
Large V13, V14, V15, V16, V17, V18 Vd 

 
 
Direct Torque Control of Induction Motor 
Principle of DTC 
The electromagnetic torque of 3-phase induction motor  is given by, 
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 Where ψr and ψs are the rotor and stator flux linkages and η is the angle between 
the fluxes and σ is the leakage coefficient. The direct torque control of induction 
motor fed by a three level NPC inverter is as shown in figure 3. 
 According to this block diagram, the scheme includes two hysteresis controllers. 
They are the torque hysteresis and the flux hysteresis controllers. The flux controller 
imposes the time duration of the active voltage vectors, which move the stator flux 
along the reference trajectory. The torque controller determines the time duration of 
the zero vector, which keeps the developed electromagnetic torque within the defined 
hysteresis band.  
 The adaptive motor controller block provides the information related to the actual 
torque, speed, flux and the angle to the hysteresis torque and flux controllers and the 
sector estimator blocks. The stator flux, torque and the stator flux linkages phase 
angle can be estimated by using the equations (7) - (9). 
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Figure 3: DTC
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 The adaptive motor model shown in figure 3 generates the angle as one of the 
output signals. Based on this angle, the sector number will be selected. For example, 
if the angle is in the range of 23π/12 to π/12, that corresponds to sector 1. According 
to the DTC control principle, the voltage vectors should be selected based on the 
increase or decrease of the torque and flux [15]-[17]. In order to select the voltage 
vectors, the sector selection should be done primarily. This sector selection is done 
based on the Table 2.  

 
Table 2: Selection of the Sectors. 

 
Flux Torque Selected Sector Number
Increase Increase Sm = Sn+1,Sn+2 
Increase Decrease Sm = Sn-1, Sn-2 
Decrease Increase Sm = Sn+4,Sn+5 
Decrease Decrease Sm = Sn-4, Sn-5 
No Change Zero Vector 

 
 
 In the table, Sm represents the selected vector and Sn represents the sector where 
the current flux linkage is located. Variable n is selected between 1 and 12. If the 
value of m is over 12, m is forced to be m-12. If m is less than 1, then m is forced to 
be m+12. 
 
Fuzzy Speed Control for DTC of Induction Motor 
Fuzzy control is an adaptive and nonlinear control which gives robust performance for 
any system with parameter variation. These controllers can handle complicated non 
linear systems which have a degree of uncertainty. It does not require exact system 
modeling and parameters which makes the controller suitable for the motor control 
[18]-[20]. The fuzzy logic controller has two inputs (1) speed error ‘E’(2) derivative 
of the speed error ‘CE’. The block diagram of a fuzzy PI controller is shown in figure 
5 [21].  

 
 

 
 

Figure 5: Block diagram of fuzzy PI controller 
 
 
 Inputs E and CE are expressed in per unit values. Expressing fuzzy control in 
terms of PU variables ensures that the algorithm can be applied to all the plants of the 
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same family. The output of the controller is dTe* which is the change in the torque 
command. This is a PU value. The actual value of the torque command is obtained as 
shown in the figure 5. The membership functions of the input and output variables are 
shown in figures 6 – 7 [21].  
 The rule base of a fuzzy system is IF – THEN statement. The execution of the 
rules goes like this: IF there exists a case,  THEN a particular condition has to be 
executed.  
 
For example,  IF e(PU) = PS AND  ce(PU) = NM, THEN dTe*(PU) = NVS. 

 
 

 
 

Figure 6: Membership functions of the input variables (a) speed error (e) (b) change 
in speed error (de) 

 
 

 
 

Figure 7: Membership functions of the output variable change in torque 
command(dTe*) 
 
 
 The number of input variables chosen is 7 and hence the possible number of fuzzy 
rules is 7X7 = 49. All these rules are shown in table 3. The membership functions and 
the rules are purely based on the knowledge of the system.  
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Table 3: Fuzzy Rules 
 

e(pu) ce(pu) NB NM NS Z PS PM PB 
NB NB NB NB NM NS NVS Z 
NM NB NB NM NS NVS Z PVS 
NS NB NM NS NVS Z PVS PS 
Z NM NS NVS Z PVS PS PM 
PS NS NVS Z PVS PS PM PB 
PM NVS Z PVS PS PM PB PB 
PB Z PVS PS PM PB PB PB 

 
 
 Where NB=Negative Big, NM=Negative Medium, NS=Negative Small, Z=Zero, 
PS=Positive Small, PM=Positive Medium, PB=Positive Big, NVS=Negative Very 
Small, PVS=Positive Very Small.  
 The mapping relationship between the input variables and output variables is 
shown in figure 8.  

 

 
 

Figure 8: Control surface of the fuzzy logic controller 
 
 
Results and Discussion 
To validate the effectiveness of the fuzzy logic controller, simulation of the three level 
DTC of induction motor with PI and fuzzy logic controllers is done. The block 
diagram of the system employing the fuzzy logic controller is shown in figure 9.  
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Figure 9: Three level DTC drive with fuzzy logic controller 
 
 
 Fuzzy logic controller is employed in the outer loop to control the speed of the 
motor. Parameters of the induction motor used in this paper are as shown below [22]. 
Stator resistance = 1.57 Ohms 
Rotor resistance = 1.21 Ohms 
Magnetizing inductance = 0.165H 
Stator leakage inductance = 0.17H 
Rotor leakage inductance = 0.17H 
Number of pole pairs = 4 
J = 0.089 Kg-m2. 
 
 
 For the simulation, the reference flux is taken as 1wb. The reference speed is 
chosen as 600 rpm. At 0.5 seconds, the reference speed is changed to 1200 rpm. The 
speed response of the motor employing the fuzzy logic controller is as shown in figure 
10.  

 

 
 

Figure 10: Speed response of the motor during speed change 
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 The dotted circles shows the time taken by the motor to reach the steady state 
speed. The stator  currents, torque and the speed of the motor during the transient 
period when the reference speed is set as 600 rpm is as shown in figure 11. The 
transient behavior of the system when the speed is changed from 600 rpm to 1200 
rpm is as shown in figure 12.  

 
 

 
 

Figure 11: Starting transients with the reference speed as 600 rpm 
 
 

 
 

Figure 12: Transients during the speed change from 600 rpm to 1200 rpm at 0.5 
seconds 
 
 
 Steady state plots of the stator currents, torque and speed at 1200 rpm is as shown 
in figure 13.  
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Figure 13: Steady state waveforms at 1200 rpm 
 
 
 Waveforms of the stator currents, torque and the speed when a load torque of 5 
Nm is applied at 0.5 sec is as shown in figure 14. The locus of the stator flux is shown 
in figure 15. 

 
 

 
 

Figure 14: Waveforms when load torque of 5Nm is applied at 0.5 seconds 
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Figure 15: locus of the stator flux 
 
 
 The proposed fuzzy logic controller is tested by considering different load torque 
disturbances. Figure 16 shows the external load torque disturbance. The speed 
response of the system with PI and fuzzy logic controller is as shown in figure 17.  

 

 
 

Figure 16: External load torque disturbance 
 

 
 

Figure 17: Speed comparison of the motor with PI, Fuzzy logic controller 
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Conclusions 
Fuzzy logic controller which has been proposed in this paper has achieved high 
performance speed control of the DTC of three level inverter fed induction motor. 
Also the problems of neutral point clamped inverter such as neutral point balance, 
torque ripple has been minimized by choosing appropriate intermediate vectors and 
by using a new vector synthesis sequence. A fuzzy logic controller is incorporated 
into the system to control the speed of the system. The comparison of speed responses 
with PI controller and with fuzzy logic controller is validated by considering external 
load disturbance that consists of step changes in load torque. It can be observed that, 
when the load disturbance is added or removed the speed response is almost same as 
that of the reference speed in case of the proposed controller. Thus, the speed tracking 
is not affected by the load torque. Finally it can  be concluded that the fuzzy logic 
based DTC scheme gives a stable speed response even during the external load torque 
disturbance and hence provides the robustness for the system. 
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