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Abstract 
 

Power quality of electric power system has become an increasing concern for 
electric utilities and their customers over the last decade. The goal of 
monitoring non-stationary signal is to quantify the dynamic nature of these 
signals and to extract the important features that support the integrated 
monitoring system that can be used in maintenance scheduling and system 
operation. The paper discusses the use of different time-frequency domain 
methods for power system disturbance analysis. The use of time-frequency 
analysis method is difficult to accurately detect all power system events by 
single method. The adaptive notch filter has been used for the power signal 
event detection. This method gives best performances than the time-frequency 
analysis.  
 
Index Terms: Adaptive comb filters, power system events/disturbances, event 
detection. 

 
 
Introduction 
Power system signals are often polluted and distorted by undesired components as a 
result of nonlinear loads mainly power-electronic devices. Harmonics are spectral 
components at frequencies that are integer multiples of the ac signals fundamental 
frequency. Interharmonics are spectral components at frequencies that are not integer 
multiples of the system fundamental frequency. Besides the typical problems caused 
by harmonics such as overheating and useful life reduction, the interharmonics also 
create some new problems, such as subsynchronous oscillations, voltage fluctuations, 
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and light flicker, even for low-amplitude levels. Interharmonics can be observed in an 
increasing number of loads in addition to harmonics. These loads include static 
frequency converters, adjustable speed drives for induction or synchronous motors, 
arc furnaces, and certain loads that are not pulsating synchronous with the 
fundamental power system frequency as discussed in [1-3]. The presence of 
interharmonic components strongly increases difficulties in modeling and measuring 
the distorted waveforms. This is mainly due to the variability of the waveform 
periodicity, the variability of their frequencies and amplitudes and the great sensitivity 
to the spectral leakage phenomenon. 
 A signal detection algorithm requires accurate and real time measurement of 
individual harmonic and interharmonics within a signal and their signal attributes, 
such as magnitudes, phase angles and frequencies. Mutual erroneous impacts of 
harmonics/interharmonic components on each other, their dynamic nature, and the 
noise are the challenging factors in power system events, thereby rendering it an 
active field of research. A variety of techniques exists and used to analyze harmonics 
which has been discussed in [4-5]. In order to overcome these difficulties proper 
signal detection algorithm requires for accurate and real time measurement of 
individual harmonic within a signal and their signal attributes, such as magnitudes, 
phase angles and frequencies. Most of the methods for signal analysis are based on 
the use of the Fourier transform (FT) [6], which breaks down a signal into constituent 
sinusoids of different frequencies. The Fourier analysis transforms the signal from a 
time-based or space based domain to a frequency-based one. Unfortunately, in 
transforming to the frequency domain, the time or space information is limited, as it is 
impossible to determine when or where a particular event took place [7]. To overcome 
this deficiency a new technique, named as short time Fourier Transform (STFT), was 
proposed by Dennis Gabor [8]. This windowing technique analyzes only a small 
section of the signal at a time. The STFT maps a signal into a 2-D function of time or 
space and frequency which helps in studying the variation of various frequency 
components with time. But STFT suffers from several pitfalls including aliasing, the 
time window effect, the picket fence, bandwidth localization tradeoff along with other 
window constraints which reduces the effectiveness of STFT in analysis of non 
stationary signals. The linear time-frequency representation, wavelet transform has 
been used for transient detection and harmonic signal decomposition, in which the 
different frequency signals are not shown in order. The selection of sampling 
frequency and the mother wavelet is of greater importance [9-13]. A number of 
algorithms, e.g., least-square techniques [14-19], Kalman filtering [20], Parseval’s 
relation and energy concept [21], adaptive infinite impulse response line enhancer 
[22], and artificial neural networks [23], have been proposed to extract and measure 
harmonics under time-varying conditions. Although each exhibits specific advantages, 
none is reported to demonstrate good performance in frequency-varying environments 
while having a simple and robust structure suitable for practical applications. The 
adaptive comb filters are of good choice compared to other methods, whose 
applications on parameter estimation, harmonic and interharmonic decomposition and 
harmonic cancellation are important as discussed as in [24-38]. 
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 Selective harmonic cancellation has become of primary importance in a wide 
range of power electronics applications, for example, uninterrupted power systems, 
regenerative converters, and active power filters. In such applications, the primary 
objectives are an accurate cancellation of selected harmonics and a quick speed of 
response under transients.  Recently Enhanced Phase Locked Loop (EPLL) [34-36] 
and Adaptive Notch Filter (ANF) [29] algorithms are proposed in the literature which 
allows the particular band of frequencies to pass through, therefore it can be called as 
Adaptive comb-peak filter (APF). These algorithms are more effective in the 
harmonics estimation and decomposition. In this paper a detailed analysis of these 
two methods is carried out. This paper is organized as follows: Section II gives a 
formal definition and statement for the problem encountered in power system through 
power quality disturbances. Section III discusses on Time-Frequency analysis 
methods. The detailed analysis of Adaptive comb filters in section IV, results and 
performance analysis are discussed in Section V with conclusion in Section VI. 
 
 
Power quality disturbances 
Power quality disturbances have been organized into seven categories based on wave 
shape as transients, interruptions, sag or under voltage, swell or overvoltage, 
waveform distortion, voltage fluctuations, frequency variations.  

1. Transients are potentially the most damaging type of power disturbance, 
transients fall into two subcategories namely impulsive and oscillatory. 
Impulsive transients are sudden high peak events that raise the voltage and/or 
current levels in either a positive or a negative direction. Impulsive transients 
can be very fast events (5 nanoseconds [ns] rise time from steady state to the 
peak of the impulse) of short-term duration (less than 50 ns). Causes of 
impulsive transients include lightning, poor grounding, the switching of 
inductive loads, utility fault clearing, and ESD (Electrostatic Discharge). The 
results can range from the loss (or corruption) of data, to physical damage of 
equipment, of these causes, lightning is probably the most damaging. An 
oscillatory transient is a sudden change in the steady-state condition of a 
signal’s voltage, current, or both, at both the positive and negative signal 
limits, oscillating at the natural system frequency. These transients occur when 
an inductive or capacitive load, such as a motor or capacitor bank is turned off. 
An oscillatory transient results because the load resists the change. 

2. Interruptions: An interruption is defined as the complete loss of supply voltage 
or load current. Depending on its duration, an interruption is categorized as 
instantaneous (0.5 to 30 cycles), momentary (30 cycles to 2 seconds), 
temporary (2 seconds to 2 minutes), or sustained (greater than 2 minutes). 

3. Sag/Under voltage: sag is a reduction of AC voltage at a given frequency for 
the duration of 0.5 cycles to 1 minute’s time. Sags are usually caused by 
system faults and switching loads on with heavy startup currents. Common 
causes of sags include starting large loads (starting of a large air conditioning 
unit) and remote fault clearing performed by utility equipment. 

4. Swell/Over voltage: A swell is the reverse form of sag, having an increase in 
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AC voltage for duration of 0.5 cycles to 1 minute’s time. The sources of swells 
are high-impedance neutral connections, sudden (especially large) load 
reductions, and a single-phase fault on a three-phase system. The result can be 
data errors, flickering of lights, degradation of electrical contacts, 
semiconductor damage in electronics, and insulation degradation. 

5. Waveform distortion: there are five primary types of waveform distortion 
namely DC offset, harmonics, interharmonics, notching and noise. 

6. Voltage Fluctuations:  Since, voltage fluctuations, fundamentally different 
from the rest of the waveform anomalies, they are placed in their own 
category. A voltage fluctuation is a systematic variation of the voltage 
waveform or a series of random voltage changes, of small dimensions, namely 
95 to 105% of nominal at a low frequency, generally below 25 Hz. Any load 
exhibiting significant current variations can cause voltage fluctuations. Arc 
furnaces are the most common cause of voltage fluctuation on the 
transmission and distribution system. One symptom of this problem is 
flickering of incandescent lamps. 

7. Frequency Variation: Frequency variation is extremely rare in stable utility 
power systems, especially systems interconnected via a power grid. The sites 
having dedicated standby generators or poor power infrastructure, frequency 
variation is more common especially if the generator is heavily loaded. The 
most affected are the motor devices or sensitive device that relies on steady 
regular cycling of power over time. 

 
 
Time-Frequency Analysis Methods 
The frequency content of a signal localized in time is of interest in many applications 
in which the signal parameters (frequency content etc.) evolve over time.  These 
signals are called non-stationary. The standard Fourier Transform is not suitable for 
analyzing the nonstationary signal. Information which is localized in time such as 
spikes and high frequency bursts cannot be easily detected from the Fourier 
Transform. 
 Time-frequency localization can be achieved by first windowing the signal to cut 
a well localized slice and then taking its Fourier Transform. This gives rise to the 
Short Time Fourier Transform, (STFT) or Windowed Fourier Transform. The 
magnitude of the STFT is called the spectrogram. 
 
Spectrogram 
The time localization can be obtained by suitably pre-windowing the signal, as the FT 
(spectrum) does not show the time localization of frequency components explicitly. 
The spectrogram is a time-frequency distribution based on the FT of the product of a 
sliding window ( )h t with the signal. It is given by the following expression for a 
signal ( )x t is  

  
2

2( , ) ( ) *( ) j f
xS t f x h t e dπ ττ τ τ

+∞
−

−∞

= −∫   (1) 
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where 't τ= . The length of the sliding window ( )*h t determines time and frequency 
resolution, i.e., a good frequency resolution needs a long observation window and 
therefore leads to a bad localization in time and vice versa. The window length has to 
be chosen based on the prior knowledge of the signal. 
 
Gabor spectrogram 
The Gabor transform is a special case of the STFT. It is used to determine the 
sinusoidal frequency and phase content of local sections of a signal as it changes over 
time. The function to be transformed is first multiplied by a Gaussian function, which 
can be regarded as a window, and the resulting function is then transformed with a 
Fourier Transform to derive the time-frequency analysis. The Gabor transform for a 
signal ( )x t is 

 
21

22( , ) ( )
t

j f
xG t f e e x d

τ
π τσ τ τ

−⎛ ⎞+∞ − ⎜ ⎟ −⎝ ⎠

−∞

= ∫   (2) 

 
Wigner-Ville Distribution 
WVD is a quadratic joint TF distribution, which offers a high TF resolution. Given a 
time signal ( )x t , WVD is defined by 

  ( ) *1,
2 2 2

jW t z t z t e dωττ τω τ
π

∞
−

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫   (3) 

 
where ( )z t is the analytic signal corresponding to ( )x t  and ( )*z t is the complex 

conjugate of ( )z t . 
 WVD possesses a great number of good properties, and it has wide interest for 
fault detection with nonstationary signal analysis. The WVD method suffers from 
cross-term interference, if the analyzed signal contains more than one frequency 
component, due to its quadratic nature, resulting in a difficult way of discriminating 
the actual frequency components. 
 
Choi william distribution 
Choi Williams distribution function is one of the members of cohen’s class 
distribution function. This distribution function adopts exponential kernel to suppress 
the cross-terms. The kernel gain doesnot decrease along the ,η τ axes in the ambiguity 
function. The kernel function of choi-williams distribution can only filter out the cross 
terms result from the components differs in both time and frequency center. 
 The definition of the cone-shape distribution function is  

  ( ) ( )2( , ) , ( , ) j t f
x xC t f A e d dπ η τη τ φ η τ η τ

∞ ∞
−

−∞ −∞

= ∫ ∫   (4) 
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where 

  ( ) * 2,
2 2

j t
xA x t x t e dtπ ητ τη τ

∞
−

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫   (5) 

 
and the kernel function is  
  

2( )( , ) e α ητφ η τ −=   (6) 
 
 Following are the magnitude distribution of the kernel function in ,η τ domain 
with different α values. The kernel function indeed suppress the interference which is 
away from the origin, but for the cross-term locates on the η and τ axes, this kernel 
function can do nothing about it. 
 
Adaptive spectrogram 
The adaptive spectrogram method is similar to the gabor spectrogram method. The 
difference is that the adaptive spectrogram uses the adaptive expansion to decompose 
the signal and the Gabor spectrogram uses the Gabor expansion to decompose the 
signal before applying the WVD. The adaptive spectrogram sums only the WVD of 
the elementary functions, or autoterms, and ignores the crossterms between every two 
elementary functions. The adaptive spectrogram has a fine and adaptive time-
frequency resolution because the elementary functions of the adaptive expansion have 
a fine and adaptive time frequency resolution with respect to the signal characteristics. 
The adaptive spectrogram does not include cross-term interference, because it ignores 
all the crossterms. 
 
 
Processing of harmonics and interharmonics using APF 
Let ( )r t  Denotes a measured (or computed) signal  

  

1 1
2

( ) sin ( ) sin ( ) ( )

( )

n

k k
k

k k k

r t A t A t n t

where t t

ϕ ϕ

ϕ ω ϕ
=

= + +

= +

∑     . . .  (7) 

 
is the total phase angle of the k th constituting component called ( )kr t , and ( )n t  
denotes the total noise imposed on the signal. The first component called the 
fundamental component is deliberately signaled out in (1) due to its significance in 
power signals. The signals attribute ,k kA ω and kϕ are magnitudes, frequencies and 
phase angles of the constituting components and can be time-varying. The noise n(t) 
is assumed as a zero-mean white Gaussain noise with a variance of 2σ . The kth 
component is primarily specified by its amplitude kA and its frequency kω  but its 
instantaneous value sin ( )k kA tϕ  can also be of interest in some applications. The APF 
technique is a structure composed of n-coupled parallel filters so that each one 
extracts a component of the power signal and estimates its frequency. The dynamic 



Comparison of Processing Power System Events 125 
 

 

behavior of the algorithm is characterized by the following set of differential 
equations as in [29]: 
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2

.

.

1

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ),
1,...,
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where the dot sign is used to denote the time derivative. In (2), kθ is the estimated 
frequency (in radians per second) of the kth component, k kandς γ are the real positive 
numbers which are the design parameters of the kth subfilter and it determines its 
behavior in terms of accuracy (steady state) and convergence speed (transient). The 
normalized kγ is used to remove the dependency of the averaged system to amplitude 
as given below 

  
0
2 2 2( )k
k k kN x x

γγ
μ θ

=
+ + �   (9)

 

 
where 0 Nγ α= , 2

0k kζ ς= ,μ  and N are real positive constants. The constant μ  is a 
small positive constant to prevent the denominator of kγ from becoming zero. The 
two design parameters α and 0ς determines the dynamical behavior of the whole 
algorithm in terms of the transient and steady-state responses. 
 The block diagram of the filter is shown in Fig.1. The dynamic system (2) for the 
input signal (1) with ( )k k kt tϕ ω ϕ= +  and ( ) 0n t = has a unique quasi periodic orbit 
given by 

  
1( ) ( ( )... ( ))T T T

nP t P t P t=

 
. . .  (10) 

 
where ( )kP t  is given by 

  

cos ( )

( ) sin ( )

1,...,

k
k

k k

k k k

k k

A
t

x

P t x A t

k n

ϕ
ω

ϕ
θ ω

⎛ ⎞−⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠
=

�

 

. . . (11) 

 
 This represents that the kth constituting component of the input signal as well as 
its frequency are directly provided by the kth set of the differential equations, and 
hence a full set of decomposition is achieved if a sufficient number of filters are 
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employed. The structural block diagram of the algorithm is shown in Fig.1 in which 
the detailed implementation block diagram of the kth subfilter is shown. The error 
signal e(t) is applied to each subfilter, and the kθ update law of (2) is employed to 
force the error signal to zero. This enables each subfilter to focus on a component and 
extract it. Each subfilter is not fixed at any specific components. The initial value of 
the integrator of the frequency update law in (2) is set to 0kθ , which is equal to the 
nominal value of the frequency of the kth component to be extracted. 
 The amplitude and the phase of kth component of the input signal is 

  

( )1/22 2 2
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 . . . (12) 

 
 Thus the ANF estimates harmonics and interharmonics as shown in the Fig.1 with 
five subfilters. 

 

 
 

Figure 1: Block diagram representation of the frequency estimator and the detailed 
representation of the kth paralleled subfilter. 
 
 
Results and Discussions 
Different power system events are considered and their event tracking using  
Time-frequency methods using LabVIEW and Adaptive comb-peak filters uing 
Matlab/simulink are discussed with synthetic signals in which f represents frequency 
in Hz, A represents amplitude and t represents time in seconds. 
 
Voltage Swell at 0.1-0.2s 
A 10% voltage swell begins at t = 0.1s and ends at 0.2s. The test voltage waveform 
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sampled at the rate of 1000Hz with f = 50Hz and A=1, is shown in Fig.2(a) 

 
 

Figure 2: TF analysis  of  Voltage swells (a) Input signal (b) STFT (c) Gabor 
spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
 
 
 The adaptive spectrogram gives the best frequency resolution, but there is poor 
time information. It is blurred and has inaccurate time information, as shown in 
Fig.2(d). The WVD and CWD gives better time and frequency resolution. The STFT 
and Gabor give better time resolution. The deep red part, starting at 1s, indicates the 
higher voltage level than the nominal voltage, identifying the PQ event as a voltage 
swell. 

 

 
 

Figure 3: ACF analysis of Voltage swells (a) Input signal (b) Estimated Amplitude 
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(c) Estimated Frequency 
 The increase in the amplitude at 0.1s is clearly estimated and tracked as shown is 
Fig.3(b) and frequency in Fig.3 (c) 
 
Voltage Sag at 0.1-0.2s  
A 10% voltage sag begins at t=0.1s and ends at 0.2s. The test voltage waveform 
sampled at the rate of 1000Hz with f=50Hz and A=1, is shown in Fig.4(a) 

 

 

 
 

Figure 4: TF analysis  of  Voltage sag (a) Input signal (b) STFT (c) Gabor 
spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
 
 
 The STFT and Gabor give poor time and frequency resolution, as shown in 
Fig.4(b), 4(c). The WVD and CWD give better time and frequency resolution. The 
deep red part, starting at 1s, indicates the higher voltage level than the nominal 
voltage, identifying the PQ event as voltage sag. 
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Figure 5: ACF analysis of Voltage sags (a) Input signal (b) Estimated Amplitude (c) 
Estimated Frequency 
 
 
 The decrease in the amplitude at 0.1s is clearly estimated and tracked as shown in 
Fig.5(b). Frequency of the power signal is shown in Fig.5(c). 
 
Harmonics/Intreharmonics 50,150,210 Hz 
A voltage signal in which a fundamental f1 = 50Hz, amplitude A=1, third harmonic of 
f3 = 150Hz, A3 = 0.8 and an interharmonic of f4=210Hz, A4=0.6 are added as shown 
in Fig.6(a). 
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Figure 6: TF analysis  of  harmonics/interharmonics (a) Input signal (b) STFT (c) 
Gabor spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
 
 
 The adaptive spectrogram gives the better time and frequency resolution, as 
shown in Fig.6(d) the CWD gives better frequency resolution but both WVD and 
CWD includes crossterms. The STFT and Gabor provides poor frequency resolution. 
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Figure 7: ACF analysis of harmonics/interharmonics (a) Input signal (b) Estimated 
Amplitude (c) Estimated Frequency 
 
 
 By arranging three filters in parallel each estimates individual 
harmonics/interharmonics separately. Fig.7(b), 7(c) shows the estimated amplitude 
and frequency respectively. 
Transients at 0.1 & 0.2s 
A voltage signal containing two transient event at 0.1s and 0.2s of1.5 amplitude is 
shown in Fig.8(a). 

 
 

 
 

Figure 8: TF analysis  of  transients (a) Input signal (b) STFT (c) Gabor spectrogram 
(d) Adaptive Spectrogram (e) WVD (f) CWD 
 
 
 The STFT and Gabor transform as shown in Fig.8(b), 8(c) detects the transients 
but other methods are not able to show the transient event. 
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Figure 9: ACF analysis of transients (a) Input signal (b) Estimated Amplitude (c) 
Estimated Frequency 
 
 
 The transient events are detected accurately at 0.1s and 0.2s in the estimated 
amplitude as shown in Fig.9(b) 
 
Flickering at 0.1s 50+20Hz 
A voltage signal with voltage fluctuation, also known as flicker, begins at 0.1s. The 
50Hz signal added with 20Hz low frequency component as shown in Fig.10(a). 

 

 
 

Figure 10: TF analysis  of  Voltage flicker (a) Input signal (b) STFT (c) Gabor 
spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
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 The adaptive spectrogram gives better results in case of flicker when the other 
methods do not show the low frequency component as shown in Fig.10(d). 

 

 
 

Figure 11: ACF analysis of Voltage flicker (a) Input signal (b) Estimated Amplitude 
(c) Estimated Frequency 
 
 
 The low frequency component occurring at 0.1s is detected in the estimated 
frequency as shown in Fig.11(c) but the amplitude of the signal takes more time to 
settle. 
 
Interruption at 0.1-0.2s 
Voltage signal is absent in 0.1s to 0.2s as shown in Fig.12(a).  

 

 
 

Figure 12: TF analysis  of  Voltage interruption (a) Input signal (b) STFT (c) Gabor 
spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
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 The adaptive spectrogram gives the better time and frequency resolution, as 
shown in Fig.12(d). The CWD gives the better frequency resolution but both WVD 
and CWD includes crossterms. The STFT (Fig.12(b)) and Gabor (Fig.12(c)) gives 
poor frequency resolution. 

 

 

 
 

Figure 13: ACF analysis of Voltage interruption (a) Input signal (b) Estimated 
Amplitude (c) Estimated Frequency 
 
 
 The decrease in amplitude at 0.1s and approaches towards zero indicates 
interruption occurs as shown in Fig.13(b) and Fig.13(c) 
 
Frequency Variation at 0.1s 50-60Hz 
Voltage signal with multi frequencies, whose frequency changes from 50 to 60Hz at 
0.1s is analyzed as shown in Fig.14(a). The frequency variation is accurately tracked 
as shown in Fig.14 (c) 
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Figure 14: TF analysis  of  frequency variations  (a) Input signal (b) STFT (c) Gabor 
spectrogram (d) Adaptive Spectrogram (e) WVD (f) CWD 
 
 
 The WVD (Fig.14(e)) and CWD (Fig.14(f)) gives better variation with both time 
and frequency resolution. STFT (Fig.14(b)) and Gabor shows poor frequency 
resolution. 

 

 
 

Figure 15: ACF analysis of frequency variations (a) Input signal (b) Estimated 
Amplitude (c) Estimated Frequency 
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 The change in frequency can be seen in Fig.15(c). The Table.1 discusses the 
difference in the detection of power quality disturbances using time-frequency 
analysis and adaptive comb-peak filters, which conclude that the change in frequency 
and amplitude is detected using Adaptive comb filter accurately. 

 
 

Table 1: Performance analysis using TFA and ACF for different power system events 
 

Events STFT Gabor Adaptive 
Spectrogram

WVD CWD ACF 

Swell Poor 
frequency 
resolution 

Poor 
frequency 
resolution

Poor time 
resolution 

Better Better Detects

Sag Poor 
frequency 
Resolution 

Poor 
frequency 
resolution

Poor time 
resolution 

Better Better Detects

Harmonics/ 
Interharmonics 

Poor 
frequency 
resolution 

Poor 
frequency
Resolution

Better Includes 
crossterms

Includes 
Crossterms 

Detects

Transients Detects Detects Poor 
detection 

Poor 
detection 

Poor 
detection 

Detects

Flicker Poor 
frequency 
Resolution 

Poor 
frequency
Resolution

Better Poor 
frequency
Resolution

Poor 
frequency 
Resolution 

Detects

Interruption Poor 
frequency 
Resolution 

Poor 
frequency
Resolution

Better Includes 
crossterms

Includes 
crossterms 

Detects

System 
frequency 
variation 

Poor 
frequency 
Resolution 

Poor 
frequency
Resolution

Better Better Better Detects

 
 
Conclusion  
The Time-Frequency domain based methods of monitoring the power system 
disturbances are not giving the accurate values of the signal amplitude and frequency. 
It is difficult to choose the single method to analyze all power system disturbances. 
The adaptive comb filter method gives accurate values and also easy in 
implementation. The analysis shows that the adaptive comb filter gives best 
performances in all power system disturbances compared to Time-Frequency analysis. 
One limitation is the selection of the number of sub filters for analysis. These Sub 
filters provide a single component value at a time, which requires the knowledge 
about the frequency content of the signal.  
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