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Abstract 
 

Field Oriented Control (FOC), also known as vector control of induction 
motor drives is very useful technique to obtain high performance speed 
response. Implementation of field oriented control requires the value of the 
instantaneous magnitude and position of the rotor flux. The magnitude and 
position of the rotor flux is approximated based on flux measurements in the 
direct FOC scheme and estimated in the indirect FOC scheme. In this paper a 
novel flux estimator, in the form of a two stage neural network flux estimator, 
is presented. The neural network is able to accurately estimate the rotor flux 
magnitude and position for line-start operation of an induction motor. Its 
ability to estimate flux response that lies outside of the neural network training 
data set is one of its strengths. Our preliminary work indicates that neural 
network flux estimation may be a feasible alternative to other flux estimation 
methods like programmable DSP kit. The comparative performance of both 
has been presented in this work. 
 
Keywords: FOC, Vector Control, Induction Drive, Neural Network, Back 
Propagation.  

 
 
Introduction 
In order to control an induction motor requiring high dynamic performance, an 
accurate knowledge of the magnitude and position of the rotor flux of the induction 
motor is necessary, irrespective of the operating point. Both direct Field Oriented 
Control (FOC), and indirect FOC, has been successfully established in theory and 
practice. In both control strategies the stator current components, responsible for the 
flux and torque production, are decoupled. This achieves independent control of 
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torque and flux. Since its introduction in the early 70's the direct FOC scheme has 
been regarded as less practical[1], because sensors are needed to obtain information 
about the machine variables. The sensors include the search coils, coil taps, or Hall 
effect sensors. Sensors often impose limitations on the machine's operating range 
(particularly at the low speed end) and also increase the overall cost of the machine. 
However, with the introduction of indirect FOC, the hardware requirements are much 
simpler, resulting in better overall performance. In order for such a scheme to work, 
the accurate estimation of rotor flux magnitude and position is vital. There are a few 
schemes available today [2-8]; most of which are based on adaptive control while 
others use digital signal processing (DSP) for the estimator implementation. In this 
paper an artificial neural network is described, as used for the estimation of the 
instantaneous magnitude or position of rotor flux during line-start operation of an 
induction motor. The design of a two hidden layer neural network is discussed. The 
learning requirements of the design are evaluated by developing the back-propagation 
learning technique for the flux estimator. 
 In balanced three-phase systems, the two axis (d-axis and q-axis) model is used 
for dynamic modeling of an induction motor [9-12]. The d-q model of an induction 
motor can be expressed in either a stationary or a rotating reference frame. In 
stationary reference frame [10], the reference d and q axes are fixed on the stator. In 
synchronously rotating reference frame, the d-q axes rotate at the synchronous speed. 
Fig. 1 shows the block diagram of a FOC Scheme in stationary reference frame for the 
estimation of feedback signals such as rotor flux Ψr, and unit vectors (Sinθ, Cosθ), 
using DSP as well as ANN. The feedback signals can be calculated using the machine 
voltages and currents by using the following equations. 
  Ψds = ⌠(vds – Rs ids)dt (1) 
  Ψqs = ⌠(vqs – Rs iqs)dt  (2) 
  Ψqm = Ψqs – Ls iqs   (3) 
  Ψdm = Ψds – Ls ids   (4) 
  Ψqr = (Lr / Lm)Ψqm – Lr iqs   (5) 
  Ψdr = (Lr / Lm)Ψdm – Lr iqs   (6) 
  Ψr = √[(Ψqr )2 + (Ψdr )2]   (7) 
  Cosθ = (Ψdr / Ψr )  (8) 
  Sinθ = (Ψqr / Ψr )   (9) 
 
 All signals indicate that they are in stationary reference frame. 
 The integrations in equation (1) & (2) can be merged with low corner frequency 
Low Pass Filter [1] as represented in Fig. 1. Both DSP and ANN receive voltage and 
current magnitude signals vds, vqs, ids and iqs and then estimate rotor flux using 
equations (1 to 9). The DSP based estimator output is used for comparison of the 
ANN based estimator performance.  



An ANN based Rotor Flux Estimator 429 
 

 

 
 

Figure 1: Block diagram of a direct FOC scheme 
 
 
Artificial Neural Networks in Vector Controlled Drive 
Most control techniques of squirrel cage Induction Motor (IM) require speed feedback 
signal from the shaft encoder and these devices have various disadvantage and are 
undesirable in many applications. In order to control an IM requiring high dynamic 
performance, an accurate knowledge of the magnitude and position of rotor flux is 
necessary. Vector controlled induction motor drive operates like a separately excited 
dc motor using the d-q axis dynamic equations of the induction motor [11-12]. Rotor 
flux magnitude and position are estimated using stator current and voltage 
measurement in various operating conditions of the induction motor. Various methods 
in control system theory have been applied to improve the robustness of a motor 
control system. In order to make an intelligent motion control system, we require soft 
computational methods such as fuzzy logic and ANN (artificial neural network). 
 This paper presents an application of ANN to estimate rotor flux and position. The 
ANN is an interconnection of many nonlinear computational neurons capable of high 
speed nonlinear computation due to its parallel structure [13-15]. The input of each 
individual neuron sums N weighted inputs and passes the result through an activation 
function, to give an output. Three common types of activation functions are hard 
limit, threshold and sigmoid. The input weights of each neuron are adjusted during 
training to improve performance. Hence, ANN uses a self learning process. The ANN 
computing differs from traditional computing; as neural nets generate their own rules 
by learning from examples. While traditional computing systems are rendered useless 
by even a small amount of damage to memory, neural nets are fault tolerant.  
 
 
Proposed ANN Structure 
Back propagation (BP) neural network structure is used for estimation of vector 
controlled induction motor parameter such as torque, speed and flux magnitude and 
position, because in BP network each unit receives inputs from preceding layer. The 
significance of this is that the information going into the hidden layer units reorder 
into an internal representation and outputs are generated by internal representation 
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Results and Discussions 
In this paper, application of ANN for the estimation of rotor flux and rotor position is 
suggested for vector control of an induction motor drive. Various layers of BP ANN 
structure have been trained with help of Neural Network Toolbox for Matlab-
Simulink program. The real system data in the form of three-phase voltage and 
current were obtained for a 1 hp, 50 Hz, 3-phase squirrel cage induction motor drive 
and processed with the help of the programmable DSP kit (TMSLF 2407). The 
preliminary measured parameters were Vd, Vq, id and iq; the DSP kit is capable of 
converting the three phase voltage and current data obtained from the practical drive 
system into corresponding d-q components by using Park’s Transformation [9]. These 
d-q data for voltages and currents are in turn used to estimate the other parameters 
with the help of the programming features of the kit with the help of equations (1) to 
(9). The values obtained thus for a known set of inputs (Vd, Vq, id and iq) give the 
known output values for flux, which serve as target values in training the Neural 
Network of Fig. 2. A comparative study was then conducted between the DSP 
estimator and the proposed ANN estimator. 
 Fig. 4 shows, estimated value of stator d-axis flux at 3-N-m load torque. The ANN 
based d-axis flux and DSP based d-axis flux reach peak value of 2.4 Wb at the same 
time of 0.01sec. In the case of ANN based estimator, the peak value of flux is 
maintained constant throughout the operation, and its value is slightly higher as 
compared to DSP based peak flux of 2.38 Wb. As load torque is increased from 3-Nm 
to 5-Nm, ANN estimated d-axis flux as well as DSP estimated d-axis flux match more 
closely as shown in Fig. 5. In ANN based estimator, the peak value of flux is 2.4 Wb 
and has a constant peak while in DSP based estimator the peak value of flux has some 
harmonics. 

 

 
 

 

Figure 4: Stator d‐ axis  flux at  torque 3‐
Nm 

Figure 5: Stator d‐ axis  flux at  torque 5‐
Nm 
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 Fig. 6 shows the stator q-axis flux at load torque of 3-Nm. ANN based estimation 
of stator q-axis flux and DSP based estimation of flux reach the peak value of 2.8 Wb 
after 0.02 sec. Both the estimated values have close resemblance but ANN based peak 
flux is slightly higher than DSP based peak flux. As the load torque is increased from 
3-Nm to 5-Nm, ANN based stator q-axis flux as well as DSP based q-axis flux 
responses track very closely as shown in Fig. 7. Both ANN and DSP based stator d-
axis flux have the peak value as 2.8 Wb and remains constant for complete operation.  
 Rotor d-axis and q-axis flux and position are estimated using above estimated d-
axis and q-axis stator flux. Fig. 8 shows rotor d-axis flux at load torque of 3-Nm as 
estimated by both ANN and DSP; which produce nearly same results. In the case of 
ANN based estimator, rotor d-axis peak flux (2.4 Wb) is reached after 0.05 sec and 
remains constant. On the other hand, for the DSP based rotor d-axis flux, the peak 
flux is slightly lower (2.35 Wb) in the beginning. After 0.17 sec. its value is same as 
ANN based estimator. As load torque is increased from 3-Nm to 5-Nm, both ANN 
and DSP based rotor d-axis flux match quite closely, as shown in Fig. 9. In case of 
ANN based estimator at load torque 5-Nm, rotor d-axis flux reaches its steady state 
value (with peak of 2.4 Wb) after 0.05 sec. In case of DSP based estimator, rotor d-
axis flux is slightly lower (with peak as 2.33 Wb) in magnitude in the beginning. 
After 0.17 sec its value is same as ANN based estimator (2.4 Wb).  

 

 
 

 
 

Figure 6: Stator q‐ axis  flux at  torque 3‐
Nm. 

Figure 7: Stator q‐ axis  flux at  torque 5‐
Nm 
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Figure 8: Rotor d‐  axis  flux  at  torque 3‐
Nm 

Figure 9: Rotor d‐  axis  flux  at  torque 5‐
Nm 

 
Figure 10: Rotor q‐ axis flux at torque 3‐
Nm 

Figure 11: Rotor q‐ axis flux at torque 5‐
Nm 

 
Figure 12: Rotor flux at torque 3‐Nm  Figure 13: Rotor flux at torque 5‐Nm 
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Figure 14: Rotor position at torque 3‐Nm  Figure 15: Rotor position at torque 5‐Nm 
 
 
 Rotor q-axis flux at load torque 3-Nm as estimated by both ANN based and DSP 
based schemes produce nearly same results shown in Fig.10. In ANN based 
estimation of rotor q-axis flux, the peak value of flux (2.4 Wb) is reached after 0.05 
sec and remains constant thought the operation. In the case of DSP based estimation 
on the other hand, the peak value of flux is slightly lower initially and becomes same 
as ANN based estimation subsequently. As the load torque is increased from 3-Nm to 
5-Nm, ANN based rotor q-axis flux as well as DSP based rotor q-axis flux track very 
closely as shown in Fig.11, with the peak value of flux as 2.4Wb. The steady state 
flux is established after 0.05 sec for both DSP and ANN based estimation. 
 Now, the rotor flux magnitude is estimated; the target values for the known inputs 
were obtained using equation 7. In case of ANN based estimation of rotor flux 
magnitude at load torque 3-Nm, the peak value of rotor flux 2.4 Wb is reached after 
time 0.03 sec while in DSP based estimation, the peak value of rotor flux magnitude 
is reached after time 0.2 sec. as shown in Fig.12. As a load torque increased from 3-
Nm to 5-Nm, the estimation of rotor flux magnitude using ANN and DSP based 
estimators, are shown in Fig.13. 
 The rotor position is estimated using equations (8) and (9) and its results at load 
torques 3-Nm and 5-Nm are shown in Figs. 14 and 15 respectively. The ANN based 
estimator outputs are compared with the corresponding outputs of DSP based 
estimator; which show good accuracy, fast response and ANN based estimator also 
shows harmonic-immune performance. 
 
 
Concluding Remarks  
This paper describes a vector-controlled induction motor drive that incorporates a 
feedforward-neural-network for estimation of rotor flux and position. Simulations for 
ANN estimation have been carried out using MATLAB, to verify the effectiveness of 
the proposed method. Flux reference is set to its rated value of 2.4 Wb; speed 
reference is set as 150 rad/s, and the load torque is varied between 3- Nm to 5-Nm. 
The real system data for a 1 hp, 3-phase squirrel cage induction motor drive were 
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obtained and processed with the help of the DSP kit (TMSLF 2407) and a 
comparative study was conducted with the proposed ANN estimator. The results 
obtained demonstrate the successful application of ANN in the estimation of rotor 
flux and position for a vector controlled induction motor drive system. A four-layer 
feedforward neural network has been trained for estimation of stator d-axis and q- 
axis flux, which are supplied as inputs to another neural network of similar structure 
(with different number of neurons) in order to estimate the rotor d-q axis flux. This 
two stage ANN structure is found to give very efficient and accurate results with 
comparatively less computation burden in training of neurons. The performance of the 
proposed neural net estimator is found to be very good as compared to programmable 
DSP based estimator.  
 
 
Appendix 

 
Table 1: Parameters of the Practical Induction Drive 
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