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Abstract 
 

Permanent Magnet Brushless DC (PMBLDC) motor drives are increasingly 
popular in industrial applications due to rapid progress of technologies in 
power electronics and the growing demand for energy saving. The increasing 
demand of energy saving from society is the external force for the 
development of PMBLDC motor drives. It is however driven by a hard-
switching pulse width modulation (PWM) inverter, which has low switching 
frequency, high switching loss, high electro-magnetic interference (EMI), high 
acoustic noise and low efficiency, etc. To solve these problems of the           
hard-switching inverter, many soft-switching inverters have been designed in 
the past. Unfortunately, high device voltage stress, large dc link voltage 
ripples, complex control scheme and so on are noticed in the existing soft-
switching inverters. This paper presents the comparative analysis between 
conventional PI, fuzzy, hybrid fuzzy-PI,  GA-PI and adaptive neuro-fuzzy 
inference system (ANFIS) controller based soft switching inverter using 
transformer, which can generate dc link voltage notches during chopping 
which minimize the drawbacks of existing soft-switching. Hence all switches 
work in zero-voltage switching condition. The performance of the hybrid 
intelligent controllers is compared with conventional PI controller. The 
simulation results show that the ANFIS controller renders a better transient 
response than the one obtained using conventional PI controller with 
negligible overshoot, smaller settling time and rise time. Further the ANFIS 
controller provides low torque ripples and high starting torque. The simulation 
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results are presented to show the superiority of the proposed hybrid intelligent 
controllers based soft switching inverter. 
 
Keywords: Brushless DC Motor, PI Controller, Fuzzy Logic Controller, 
Hybrid Fuzzy-PI Controller, GA-PI Controller, ANFIS Controller, Zero-
Voltage Switching, Zero-Current Switching. 

 
 
1.  Introduction 
Brushless DC motor (BLDCM) has been broadly used in drive systems and servo 
control because of its fast response, high power density, high efficiency, low inertia, 
high reliability and maintenance free. The operating characteristics of brushless dc 
(BLDC) motor resemble that of a conventional commutated dc permanent magnet 
motor but without the mechanical commutators and brushes. Hence many problems 
associated with brushes such as radio-frequency interference and sparking which is 
the potential source of ignition inflammable atmosphere are eliminated. It is usually 
supplied by a hard switching pulse width modulation (PWM) inverter, which 
normally has relatively low efficiency since the power losses across the switching 
devices are high. The high dv/dt and di/dt will result in severe electromagnetic 
interference (EMI) and rigorous problems with the reverse recovery of the 
freewheeling diodes, especially in high switching frequency. As the switching 
frequency of the hard switching is not very high when the switching frequency is 
within audio spectrum, it may produce severe acoustic noise. In order to solve these 
problems, many soft switching inverters have been designed in the past but they have 
their own limitations [1]. 
 Proportional plus integral (PI) controller when connected to BLDC motor has 
superior performance as compared to the fuzzy controller under steady state 
conditions. However, design of PI controller requires mathematical model of the 
motor. Further, due to parameter variation of the motor when the motor is disturbed, 
the PI controller requires fine tuning of proportional gain (Kp) and integral time 
constant (Ti). Which is difficult to accomplish on-line especially under fast changing 
operating conditions. These problems are overcome by designing the fuzzy logic 
controllers [2], which do not require any mathematical model of the motor and are 
based on linguistic rules obtained from the experience of the system operator. But the 
performance of the fuzzy controller as compared to the PI controller is superior only 
under transient conditions. A simple gain scheduled PI speed controller has been 
proposed in [3], where the controller gains are varied with the input error signal. This 
controller suffers from the drawback of its proper performance, the limits of the 
controller gains and the rate at which they would change have to be appropriately 
chosen.  
 Fuzzy based gain scheduling of PI controller has been proposed in [4], but the 
limits of the gains have to be determined manually. The advantages of the fuzzy and 
PI controllers can be combined with a hybrid fuzzy-PI controller which can be 
implemented as a speed controller where the PI controller is active near and at steady 
state conditions and the fuzzy controller is active during transient conditions. Hybrid 
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fuzzy-PI speed controller has been in use for the control of the induction motor, where 
the fuzzy controller is active during speed overshoot or undershoot only [5]. In a 
permanent magnet brushless dc (PMBLDC) motor with hybrid fuzzy-PI speed 
controller, the fuzzy logic controller is only activated under the condition of overshoot 
and oscillations, else the output of the fuzzy logic controller is null and hence inactive 
[6]. However, the major drawback of fuzzy control is the lack of design technique [7], 
[8]. Most of the fuzzy rules are human knowledge oriented and hence rules will 
deviate from person to person inspite of the same performance of the system. The 
selection of suitable fuzzy rules, membership functions and their definitions along the 
universe of discourse always involve trial-and-error process [9]. 
 To assure an independent good performance, the controller must be able to adapt 
the changes of plant dynamic characteristics. For these reasons, it is highly desirable 
to increase the capabilities of PI controllers by adding new features. Many random 
search methods, such as genetic algorithm (GA) have recently received much interest 
for achieving high efficiency and searching global optimal solution in problem space 
[10], [11] such as the search of optimal PI controller parameters. But optimal PI 
controller parameters vary based on population size, generation number, selection 
method, crossover and mutation probabilities. Also, no solid theoretical basis is 
available and parameter turning is largely based on trial and error and there is no 
guarantee for finding optimal solutions within a finite amount of time. 
 Fuzzy based controllers develop a control signal which yields on the selection of 
the rule base, which is written on the previous experiences and these rules are selected 
which is random in nature. As a result, the outcome of the controller is also random 
and optimal results may not be obtained. Selection of the proper rule base depending 
upon the situation can be achieved by the use of an ANFIS controller, which becomes 
an integrated method of approach for the control purposes and yields excellent results 
[12]. In the designed ANFIS scheme, neural network techniques are used to select a 
proper rule base, which is achieved using the back propagation algorithm. 
 In this paper, the performance of the hybrid intelligent controllers is compared 
with conventional PI controller. The simulation results show that the ANFIS 
controller based soft switching inverter is designed for BLDC motor drive systems 
which is easy to implement in industries and it has the advantages of low switching 
power loss, low inductor power loss, low dc link voltage ripple, small device voltage 
stress, low switching noise and simple control scheme. Moreover the system provides 
low torque ripples, high starting torque, better transient response with negligible 
overshoot, smaller settling time and rise time. 
 
 
2.  Soft Switching Inverter Topology 
The schematic diagram of the proposed adaptive neuro-fuzzy inference system 
(ANFIS) controller based soft switching inverter for BLDC motor drive system is 
shown in Fig. 1. Each pole comprises a resonant inductor and a resonant capacitor at 
each phase leg. These capacitors are directly connected in parallel to the main inverter 
switches in order to achieve zero–voltage switching (ZVS) condition. In contrast to 
the resonant dc link inverter, the dc link voltage remains unaffected during the 
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resonant transitions. The resonant transitions occur separately at each resonant pole 
when the corresponding main inverter switch needs switching. Therefore the main 
switches in the inverter phase legs can switch independently from each other and 
choose the commutation period without restraint.  

 

 
 
Figure 1: Schematic diagram of the proposed ANFIS controller based soft switching 
inverter for BLDC motor 
 
 
 Moreover, there is no additional main conduction path switch needed. Thus, the 
normal operation of the soft switching inverter is entirely the same as that of 
conventional hard switching inverter. The rotor position is sensed by a Hall effect 
sensor or a slotted optical disk, which provides three square waves with phase shift of 
120º. These signals are decoded by a combinatorial logic [13] to provide the firing 
signals for 120º conduction on each of the three phases. The three upper switches 
work under commutation frequency (several hundred Hz) and the three lower 
switches work under PWM frequency (tens of kHz). So it is not important that the 
three upper switches work under soft switching condition.  
 The system contains a diode bridge rectifier, a resonant circuit, a conventional 3Ф 
inverter and control circuitry. The resonant circuit consists of three auxiliary switches 
(Sa, Sb, Sc), one transformer with turns ratio 1 : n, and two diodes Dfp, Dr. Diode Dfp 
connected in parallel to the primary winding of the transformer and diode Dr which is 
serially connected with secondary winding across the dc link. There is one snubber 
capacitor connected in parallel to each switch of phase leg. The snubber capacitor 
resonates with the primary winding of the transformer. The emitters of the three 
auxiliary switches are connected together. Thus, the gate drive of these auxiliary 
switches can use one common output dc power supply. The turns ratio (1 : n) of the 
transformer, equivalent inductance of the transformer, snubber capacitance and whole 
switching transition time is determined from [14]. Main switches S1 to S6 work under 
ZVS condition and therefore the voltage stress is equal to the dc link voltage Vs. The 
device current rate can be load current. 
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Figure 2: Gate signals GS4,6,2 and GSa,b,c  from G4,6,2 
 
 

 Auxiliary switches Sa, Sb and Sc work under the ZVS (or) ZCS condition, while 
the voltage stress is also equal to the dc link voltage VS. The peak current flowing 
through them is limited to double the maximum load current. As the auxiliary 
switches Sa, Sb and Sc carry the peak current only during switching transition, they 
can be rated with a lower continuous current rating. The additional cost will not be 
much. The gate signals of three lower main inverter switches and auxiliary switches 
can be deduced from the output G4,6,2 as shown in Fig. 2. The trailing edge of the gate 
signals for three lower main switches GS4,6,2 is same as that of G4,6,2, the leading edge 
of GS4,6,2 lags behind G4,6,2 for a short time ΔT1. The gate signals for auxiliary switches 
GSa,b,c have a fixed pulse width (ΔT2) with the leading edge, the same as that of G4,6,2. 
 
 
3.  Controller Design 
The transient response or dynamic behavior of any system depends on the controller 
being employed. In general, a conventional PI controller is used for most drive 
applications. But the conventional PI controller is slow in response and its tuning is a 
very serious problem if the system is complex to model mathematically. This leads to 
the search for other suitable hybrid intelligent controllers.  
 
3.1. Proportional Integral Controller  
The model of PI speed controller is given by,  

 s
K

K)s(G i
p                                                                          (1) 

 
where G(s) is the controller transfer function which is torque to error ratio in s-domin, 
Kp is the proportional gain and Ki is the integral gain. The tuning of these parameters 
is done using Ziegler Nichols method [15]. The specifications of the drive application 
are usually available in terms of percentage overshoot and settling time. The PI 
parameters are chosen so as to place the poles at appropriate locations to get the 
desired response. These parameters are obtained using Ziegler Nichols method which 
ensures stability. From the dynamic response obtained by simulation, the percentage 
overshoot (Mp), settling time (ts)  and rise time (tr) which are the measures of transient 
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behaviour are obtained. The closed loop transfer function with PI controller is given 
by  
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where T(s) is the closed loop transfer function and Kp, Ki are the PI controller 
parameters, J is the moment of inertia and B is the coefficient of friction of the BLDC 
motor. Comparing the characteristic equation of (2) with that of a standard 2nd order 
system characteristic equation we get 

 BJ2K np                                                                          (3) 

 
2

ni JK                                                                                   (4) 
 
Fuzzy Logic Controller  
Fuzzy logic controller is a rule-based controller. Fuzzy logic enables the designer to 
describe the general behavior of the system in a linguistic manner by forming IF-
THEN rules which are in the form of statements. The general fuzzy logic controller 
[16]-[18] consists of four parts as shown in Fig. 3. They are fuzzification, fuzzy rule-
base, fuzzy inference engine and defuzzification. The design steps are as follows, i) 
Define inputs, output and universe of discourse ii) Define fuzzy membership 
functions and rules. 

 

 
 

Figure 3: Structure of fuzzy logic controller 
 
 

 In order to define fuzzy membership function, the designer can choose any 
different shapes based on their preference and experience. The popular shapes are 
triangular and trapezoidal because these shapes are easy to represent designer’s ideas 
and requires less computation time. In order to fine tune the controller for improving 
the performance, the adjacent fuzzy subsets are overlapped by about 50%. The 
performance of the controller can be improved by adjusting the membership function 
and rules. Fuzzy associative memories (FAM) are transformations which map fuzzy 
sets to fuzzy sets. A FAM matrix maps antecedents to consequents and it is a 
collection of IF-THEN rules. Each composition involves seven fuzzy variables and 
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each fuzzy variable is further quantized into seven. This has resulted in fourty nine 
possible two input and single output FAM rules as illustrated in Table 1. 
 Finally the fuzzy output is converted into real value output i.e. crisp output by the 
process called defuzzification. Even though many defuzzification methods are 
available, the most preferred one is centroid method because it can be easily 
implemented in digital control systems using microcontrollers and requires less 
computation time. The formula for this method is given by, 

 
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
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n

1x

n
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)x(

x)x(
Z

                                                                               (5) 

 
where z is the defuzzified value, and μ(x) is the membership value of member x. This 
crisp value which is either positive or negative is added to the previous output to 
control the duty cycle of the switching devices in the power inverter so as to control 
the applied voltage across the armature winding and hence the speed of the motor [1]. 

 
Table 1: 7x7 FAM Matrix 

 
CE 
E 

NB NM NS Z PS PM PB 

NB NB NB NB NM NS NS Z 
NM NB NM NM NM NS Z PS 
NS NB NM NS NS Z PS PM 
Z NB NM NS Z PS PM PB 

PS NM NS Z PS PS PM PB 
PM NS Z PS PM PM PM PB 
PB Z PS PS PM PM PB PB 

 
 
Hybrid Fuzzy-PI Controller  
The tuning of hybrid fuzzy-PI controller parameters are done by internal model 
control (IMC) [19] and its configuration is shown in Fig. 4.   

 

 
 

Figure 4: Internal model control configuration of hybrid fuzzy-PI controller 
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where P is the plant, P~ is a nominal model of the plant, CIMC is an arbitrary controller, 
r is the set-point, d is the disturbance, y and y~ are the outputs of the plant and its 
nominal model respectively. The IMC structure is equivalent to the classical feedback 
controller,
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sP is the minimum phase part of the plant model )(~)(~)(~
sPsPsP  , and f(s) is 

a low-pass filter with a steady-state gain of one, which typically has the form  

n
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 In analogy with the direct synthesis (DS) method, tc is the desired closed-loop 
time constant. Parameter n is a positive integer. Set uPI(s) = CIMC(s) because the 
nonlinear compensation is treated as the disturbance. The IMC-based self-tuning for 
fuzzy PI controller can be simplified as follows, 

)s(P~)s(C1
)s(C)s(u PI


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Genetic-Based PI Controller  
The genetic algorithm (GA) was inspired by the mechanism of natural selection, a 
biological process in which stronger individual is likely to be the winners in a 
challenging environment. GA uses a direct analogy of such natural evolution to do 
global optimization in order to solve highly complex problems [20]. In the beginning, 
an initial chromosome population is randomly generated. The chromosomes are 
candidate solutions to the problem. Then, the fitness values of all chromosomes are 
evaluated by calculating the objective function in a decoded form. So, based on the 
fitness of each individual, a group of the best chromosomes is selected through the 
selection process. In each generation, the genetic operators are applied to selected 
individuals from the current population in order to create a new population. Generally, 
the three main genetic operators namely reproduction, crossover and mutation are 
employed. By using different probabilities for applying these operators, the speed of 
convergence can be controlled. Crossover and mutation operators must be carefully 
designed, since their choice highly contributes to the performance of the whole 
genetic algorithm. 
 
Reproduction: A part of the new population can be created by simply copying 
without any change in the selected individuals from the present population. Also new 
population has the possibility of selection by already developed solutions. There are a 
number of other selection methods available and it is up to the user to select the 
appropriate one for each process. All selection methods are based on the same 
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principle i.e. giving fitter chromosomes a larger probability of selection. Here 
Roulette Wheel selection method is used. 
 
Crossover: New individuals are generally created as offspring of two parents (i.e., 
crossover being a binary operator). One or more so called crossover points are 
selected (usually at random) within the chromosome of each parent, at the same place 
in each. The parts enclosed by the crossover points are then interchanged between the 
parents. The individuals resulting in this way are the offspring. 
 
Mutation: A new individual is created by making modifications to one selected 
individual. The modifications can consist of changing one or more values in the 
representation or adding/deleting parts of the representation.  
 
Objective Function: The most essential step in applying GA is to choose the 
objective functions that are used to evaluate fitness of each chromosome. The 
objective function is Integral of the Squared Error (ISE) [21],[22]. 

 
τ

0

e(t)dtISE                                                                                 (10)  

 
Fitness Values: The PI controller is used to minimize the error signal, or define more 
rigorously, in term of error criteria: to minimize the value of performance indices 
mentioned below. Since smaller the value of performance indices of the 
corresponding chromosomes the fitter the chromosomes will be, and vice versa. The 
fitness value of the chromosomes is expressed as [22],[23]. 
 

Index ePerformanc
1 valueFitness                                                              (11) 

 
 From above introduction, it is evident that GA is a search algorithm that 
continuously repeats these steps: Reproduction, Crossover, and mutation, then make 
the new generation fitter than the old generation, until the requirements are 
completed. So in this paper GAS are used to optimize PI parameters Kp and Ki. First, 
Kp and Ki  are encoded to 16 bits string [24] as 
 Kp: 1010110011101011 
 Ki : 1011101011001000 
 
 The length of total chromosome is 32 bits. It is supposed that Kp and Ki are 
bounded in the closed intervals [0  Kpm] and [0  Kim] respectively. The decimal values 
of their corresponding binary strings are linearly related to their range boundaries Kpm 
and Kim. Secondly, according to GAS operation: evaluation, crossover, mutation, Kp 
and Ki are optimized. After a prescribed number of generations, Kp and Ki are suitable 
enough to make system have good steady-state and dynamic performance. 
 
3.5    ANFIS  Controller  
ANFIS is a fuzzy inference system based on Takagi-Sugeno model and this system 
uses given input and output data set to build fuzzy inference system. To start the 
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ANFIS learning; first, a training data set that contains the desired input/output data 
pairs of target systems to be modeled is required. The design parameters required for 
any ANFIS controller are number of data pairs, training data sets, checking data sets, 
fuzzy inference systems for training, number of epochs to be chosen to start the 
training, learning results to be verified after mentioning the step size [12]. 

 

 
 

Figure 5: Logic of ANFIS controller 
 

 
 Logic of ANFIS controller is shown in Fig. 5. The designed ANFIS has two inputs 
namely, the actual motor speed and reference speed while the output is the torque, 
which is used to generate current. Here bell shaped membership function  is used. 

 

 
 

Figure 6: Structure of ANFIS speed controller 
 
 
Structure of ANFIS speed controller is shown in Fig. 6. It is a five-layer feedforward 
fuzzy neural networt. Every layer has its definite meaning. 
Layer 1 : (Input Layer) Input layer represents input variables of controller, they are 
speed error  and its variance ratio referred as x1, x2 respectively. This layer just 
supplies the input values xi to the next layer, where i= 1 to n. 
 
Layer 2 : (Fuzzification Layer) This layer (membership layer) checks for the weights 
of each membership functions (MFs). It receives the input values from the 1st layer 
and act as MFs to represent the fuzzy sets of the respective input variables. Further, it 
computes the membership values which specify the degree to which the input value xi 
belongs to the fuzzy set, which acts as the inputs to the next layer. 
 
Layer 3 : (Rule layer) Each node (each neuron) in this layer performs the pre-
condition matching of the fuzzy rules, i.e., they compute the activation level of each 
rule, the number of layers being equal to the number of fuzzy rules. Each node of 
these layers calculates the weights which are normalized. 

 

ANFIS Controller Te 
ωref 

ωact 
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Layer 4 : (Defuzzification Layer) It provides the output values “y” resulting from the 
inference of rules. Connections between the layers l3 &  l4 are weighted by the fuzzy 
singletons that represent another set of parameters for the neuro fuzzy network. 
 
Layer 5 : (Output Layer) It sums up all the inputs coming from the layer 4 and 
transforms the fuzzy classification results into a crisp values. 
 
 The ANFIS structure is tuned automatically by least-square-estimation and back 
propagation algorithm. The above mentioned optimization procedures are repeated by 
using sample data until proper error index or the maximum number of training is 
achieved. After learning and training, the test data can be used to check the controller 
to ensure effectiveness of the controller.  
 
 
Simulation Results 
The BLDC motor parameters are shown in Table 2 and its performance is obtained by 
simulation using MATLAB/ SIMULINK 7.5. The simulation was run for 1 seconds 
(simulation time). The dc link voltage VS is chosen as 30 V and the maximum load 
current as 10 A. The transformer turns ratio is chosen as 1 : 4 and the leakage 
inductance of the primary and secondary windings are 0.7 μH and 2.8 μH 
respectively. With the equivalent transformer inductance         Lr = 1.5 μH, the 
resonant capacitance Cr is 0.1 μF.  Δt1 +Δt2 + Δt3 is determined for various load 
current Io. Considering the turn off time of switch lagging ∆T1and pulse width ∆T2 
they are set to 2.1μs and 5μs respectively. The frequency of the PWM is 20 kHz.  

 
Table 2: The Parameters of BLDC Motor 

 
Parameters  Value 
Rated Input Voltage 
Rated Armature Current 
Rated Speed 
Armature Resistance 
Armature Inductance 
Magnetic Flux Linkage 
No. of Poles 
Moment of Inertia 
Friction Factor  

Vin 
Ia 
N 
Ra 
La 
Ф 
P 
J 
F 

24 V 
10.4 A 

1500 rpm 
0.3  Ω 

1.15  mH 
wb 
4 

0.002 kg.m2 
0.0001  Nm.s 

 
 
 Substituting the values of the motor parameters and using Ziegler Nichols method, 
the tuning parameters of PI controller are determined as Kp=3.3 and Ki=300. The 
electromagnetic torque and speed response curves obtained for PI controller is shown 
in Fig. 7. Fig. 7(a) shows electromagnetic torque for the reference speed of 1500 rpm 
and load torque is applied at 0.4 seconds. From Fig. 7(a), it is observed that the 
starting torque is 1.7 Nm and torque ripple has the amplitude variation of ± 0.2 Nm. 
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From speed response curve of Fig. 7(b), it is observed that the rise time is         0.19 
seconds, overshoot is 0.266% and settling time is 0.27 seconds with PI controller.  
 From Fig. 8(a), it is observed that the starting torque is 6 Nm and torque ripple has 
the amplitude variation of         ± 0.1 Nm. From the speed response curve of Fig. 8(b) 
it is observed that the rise time of the motor with fuzzy controller is about 0.114 
seconds, overshoot is almost eliminated and settling time is 0.18 seconds.  
 From Fig. 9(a), it is observed that the starting torque is 6.8 Nm and torque ripple 
has the amplitude variation of      ± 0.15 Nm. From speed response curve of Fig. 9(b), 
it is observed that the rise time is 0.112 seconds, overshoot is almost eliminated and 
settling time is 0.16 seconds with hybrid fuzzy-PI controller [25].  
 Similarly by substituting the values of the motor parameters and using genetic 
algorithms, the tuning parameters of genetic based PI controller are determined as 
Kp= 4.0639 and Ki= 0.7411. The Parameters of genetic algorithm are shown in Table 
3. The electromagnetic torque response and speed response curves obtained with 
genetic based PI controller is shown in Fig. 10. Fig. 10(a) shows electromagnetic 
torque for the reference speed of 1500 rpm and load torque is applied at 0.4 seconds. 
From Fig. 10(a), it is observed that the starting torque is 6.9 Nm and torque ripple has 
the amplitude variation of ± 0.1 Nm. From speed response curve of Fig. 10(b), it is 
observed that the rise time is     0.091 seconds, overshoot is almost eliminated and 
settling time is 0.12 seconds with genetic based PI controller. 
 The time response curves of the BLDC motor with ANFIS based controller is 
shown in Fig. 11. From Fig. 11(a), it is observed that the starting torque is 7 Nm and 
torque ripple is with the amplitude variation of ± 0.1 Nm. From speed response curve 
of Fig. 11(b), it is observed that the rise time is 0.072 seconds, overshoot is almost 
eliminated and settling time is 0.1 seconds. Waveforms of PWM, main switch 
S6,auxiliary switch Sb gate signal, switch S6 voltage drop Us6, and transformer primary 
winding current iLr under low load current (Io = 3A) and high load current (Io = 10A) 
are shown in Fig. 12. 

 

 
(a)                                               (b) 

Figure 7: (a) Electromagnetic torque and (b) speed response at 1500 rpm with PI 
controller 
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(a)                                                         (b) 

 
Figure 8: (a) Electromagnetic torque and (b) speed response at 1500 rpm with fuzzy 
controller 

 

 
(a)                                                ( b) 

 
Figure 9: (a) Electromagnetic torque and (b) speed response at 1500 rpm with hybrid 
fuzzy-PI controller 

 

 
(a)                                                             (b) 

 
Figure 10: (a) Electromagnetic torque and (b) speed response at 1500 rpm with GA-
based PI controller 
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(a)                                                           (b) 

Figure 11: (a) Electromagnetic torque and (b) speed response at 1500 rpm with 
ANFIS controller 

 
Table 3: The Parameters of Genetic Algorithm 

 
Parameters Value 
Population Size 
Generation Number 
Selection Method 
Crossover probability 
Mutation Probability 

30 
250 

Roulette Wheel 
85 % 
0.2 % 

 

  
(a)                                                             (b) 

Figure 12: Simulation waveforms of PWM, S6,Sb gate signal, Us6, and iLr under 
various load current (a) low load current  (Io = 3A) and (b) high load current (Io = 
10A)                             
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Figure  13:  Speed response curves for PMBLDC motor obtained using PI, fuzzy, 
hybrid fuzzy-PI, GA-PI and ANFIS controllers 
 
 
 The Speed response curves of PI, fuzzy, hybrid fuzzy-PI, GA-PI and ANFIS 
controller are redrawn for comparison as shown in Fig. 13. The rise time, settling 
time, percentage overshoot, starting torque and torque ripples are considered for 
performance evaluation of these controllers and are shown in Table 4. From Table 4 it 
is evident that, the performance specifications obtained using ANFIS controller is 
better than those obtained using other controllers. From the results obtained, it can be 
seen that the soft switching inverter performs well under various load currents. Due to 
soft switching condition, the switching power losses are low. The efficiency Vs torque 
curves of hard switching and soft switching under rated speed are shown in Fig. 14, 
and it is observed that efficiency is improved with the soft switching inverter.               
This validates the soft switching inverter topology used in this paper.   
  
Table 4: Performance Analysis of PI, Fuzzy, Hybrid Fuzzy-PI, GA-PI and ANFIS 
Controller 
Controller Delay 

Time 
(Sec) 

Rise 
Time 
(Sec) 

Peak 
Time 
(Sec) 

Percentage 
Overshoot 

(%) 

Settling 
Time 
(Sec) 

Starting 
Torque 
(Nm) 

Torque 
Ripples 
(Nm) 

PI 0.096 0.19 0.24 0.266 0.27 1.7 ± 0.2 
Fuzzy 0.036 0.114 0.18 0 0.18 6 ± 0.1 
Hybrid 
Fuzzy-PI 

0.034 0.112 0.16 0 0.16 6.8 ± 0.15 

GA-Based 
PI 

0.062 0.091 0.12 0 0.12 6.9 ± 0.1 

ANFIS 0.041 0.072 0.1 0 0.1 7 ± 0.1 
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Figure  14: Efficiency Vs torque curves of hard switching and soft switching under 
rated speed 
 
 
5.   Conclusion 
The dynamic behavior of the BLDC drive system with conventional PI, fuzzy, hybrid 
fuzzy-PI, GA-PI and ANFIS controllers are presented and compared for torque and 
speed operation. It is observed that the ANFIS controller gives much better dynamic 
response for the system. From the results of proposed inverter topology, it is observed 
that all the switches work under soft switching condition and freewheeling diodes are 
turned off under zero current condition which greatly reduces the reverse recovery 
problem of the diodes. Further, voltage stress on all the switches is very low and it is 
not greater than the dc supply voltage. The switching acoustic noise is very much 
reduced as the switching frequency is as high as 20 kHz and moreover dv/dt and di/dt 
are reduced significantly and as a result EMI is reduced. Furthermore, in the proposed 
method very simple auxiliary switches control scheme is needed and the normal 
operation of the inverter is essentially the same as that of the hard switching inverter. 
The performance characteristics of conventional PI and hybrid intelligent controllers 
are compared interms of delay time, rise time, peak time, percentage overshoot, 
settling time, starting torque and torque ripples. It is validated by simulation results 
that ANFIS controller performs better than other controllers proposed in this paper. 
Therefore, ANFIS controller based soft switching inverter can be implemented as 
future work. 
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