
International Journal of Electrical Engineering. 
ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 373-379 
© International Research Publication House 
http://www.irphouse.com 

 
A Fast Power Flow Solution of Radial Distribution Networks 

 
 

1S. Manikandan 2Dr. S. Sasitharan and 3Dr. J. Viswanatha Rao 
 

1Research Scholar, Satyabama University, Chennai. 
3Swarnandhra college of Engineering & Technology, Narsapur. 

 
 
1. Introduction 
In order to evaluate the performance of a power distribution system and to examine the 
effectiveness of proposed alterations to a system in the planning stage, it is essential 
that a load flow analysis of the system is to be carried out. One of the most 
fundamental and widely used analysis tools to study radial distribution system is load 
flow analysis.  

As the distribution network is known to be an ill-conditioned power system due to 
their radial structure and wide ranging resistance and reactance values, popularly used 
Newton – Raphson and Fast Decoupled load flow algorithms cannot be used to 
analyze the distribution system [1]. Many researchers [2,4] have suggested modified 
versions of the conventional load flow methods for solving ill-conditioned power 
networks. Recently some researchers [11,13] have paid much attention to obtaining 
solutions for distribution networks. Kersting [3] have presented a load flow technique 
based on ladder network theory. Shirmohammadi et al. [5] have presented a 
compensation based power flow method for weakly meshed distribution and 
transmission systems. Baran and Wu [6] and Chiang [9] have obtained the load flow 
solution in a distribution system by the iterative solution of the three fundamental 
equations representing real power, reactive power and voltage magnitude. They have 
computed system Jacobian matrix using chain rule in their method. In fact decoupled 
and fast-decoupled distribution load flow algorithms proposed by Chiang [9] are 
similar to that of Baran and Wu [6]. Renato [8] has proposed a method for obtaining 
the load flow solution of radial distribution networks.  

In this paper, a simple method of load flow technique for distribution systems is 
proposed. The proposed method involves only the evaluation of a simple algebraic 
expression of receiving end voltages. The mathematical formulation of the proposed 
load flow method is explained in the following section.  
 
 
2. Mathematical Formulation 
In any radial distribution system, the electrical equivalent of a branch 1, which is 
connected between nodes 1 and 2 having impedance Z1 is shown in Figure 1.  
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Figure 1: Electrical equivalent of a typical branch ‘1’. 
 
The voltage at source node is taken as 1.0 p.u. The voltage at node 2 is given by  

V2 = V1 – I1 Z1  
 
In general   Vn2 = V n1 – Ij Z j  (1) 
where ‘n1’ and ‘n2’ are sending and receiving ends of branch ‘j’ respectively. 
By using Eqn. (1), the voltage at any node (except node 1) can be calculated.  

 
In most of the test systems, the loads are taken as constant power loads, and at 

each bus, the real and reactive power loads are specified. The load current at node ‘i’ 
is calculated by 
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, for i = 2,3, ----, nn  (2)  

Where,  
PL i = Real power load at node i 
QL i = Reactive power load at node i  
nn= Number of nodes 
The real and reactive power losses of branch ‘j’ can be calculated as  

LP j = Ij
 2 r j  (3)  

LQ j = Ij
 2 x j for j=1, 2, ----, nb.  (4) 

where nb= Number of branches 
 
The current in each branch is calculated by applying KCL at node ‘2’ shown in 

figure 2 the branch current equation obtained is as follows 
I1= I2 +I5 +I7+IL2  (5) 

 
From the above, the current can be calculated in any branch. By following the 

above procedure i.e., branch current calculations in backward walk and the voltage at 
each node are calculated in the forward walk. 

 
Initially, a flat voltage profile is assumed at all nodes i.e., 1.0 p.u. Load currents are 

computed iteratively with the updated voltages at each node. In the proposed load flow 
method, current summation is done in the backward walk and voltages are calculated 
in the forward walk. The maximum difference of voltage magnitudes in successive 
iterations is taken as convergence criteria, and 0.0001 is taken as tolerance value.  
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3. Identification of Nodes Beyond all the Branches 
The following algorithm explains the methodology to identify nodes beyond all the 
branches. This will help in finding the branch currents of the system.  
 
3.1 Algorithm for Node Identification 

Step 1: Read the system data. 
Step 2: Initialize ‘memory location from’ vector(MF) and index to zero. 
Step 3: Initialize the node count and branch count to 1. 
Step 4: If node count is equal to sending end of branch (SE) go to Step 7 otherwise  
go to Step 6. 
Step 5: If node count is equal to receiving end of branch (RE) go to Step 8 

otherwise go to Step 9.  
Step 6: Increment index by 1 and store the branch number and RE in Adb and Adn 

vectors respectively. 
Step 7: Increment index by 1 and store the branch number and SE in Adb and Adn 

vectors respectively. 
Step 8: If branch count is less than or equal to number of branches increment branch 

number then go to Step 5 otherwise go to step10. 
Step 9: Store index value in ‘memory location to’ vector (MT) and then increment 

the value of MT and store in MF.  
Step10: If node count is less than or equal to number of nodes increment the node 

number then go to Step 4 otherwise go to Step11.  
Step11: Stop. 

 
3.2 Illustration 
Consider the single line diagram of 15-node radial distribution system which is shown 
in Figure 2. Table 1 and Table 2 can be formulated by using above algorithm.  
 

 
 

Figure 2: 15-node Radial Distribution Systems. 
 
 
Table 1 gives the information regarding adjacent branches and adjacent nodes of 

each node. Table 2 gives the information regarding the memory locations for each 
node.  
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Consider node ‘4’ from Figure 2, starting from branch 1 to nb, check either sending 
or receiving end of considered branch is same as ‘4’, if condition is satisfied store that 
branch number as adjacent branch, receiving and sending ends as adjacent nodes. For 
node ‘4’ adjacent nodes are 3, 5, 14, 15 and adjacent branches are 3, 4, 13, 14. This 
information can be obtained from the memory tags for node ‘4’. The node tags are 9 
and 12, referring to 9-12 rows of Table 1 gives the required information. 

 
Table 1: Adjacent nodes and branches of 
each node shown in Figure 2. 

 Table 2: Memory tags for the 
system shown in Figure 2. 

S. 
No 

Adjacent 
Nodes (Adn) 

Adjacent 
Branches 

(Adb) 

Node 
No 

Node 
no 

Memory tag 
from (MF) 

Memory tag 
to (MT) 

1 2 1 1 1 1 1 
2 1 1 

2 

2 2 5 
3 3 2 3 6 8 
4 6 7 4 9 12 
5 9 5 5 13 13 
6 2 2 

3 
6 14 16 

7 4 3 7 17 17 
8 11 10 8 18 18 
9 3 3 

4 

9 19 20 
10 5 4 10 21 21 
11 14 13 11 22 23 
12 15 14 12 24 25 
13 4 4 5 13 26 26 
14 2 7 

6 
14 27 27 

15 7 8 15 28 28 
16 8 9    
17 6 8 7    
18 6 9 8     
19 2 5 9    
20 10 6    
21 9 6 10    
22 3 10 11    
23 12 11    
24 11 11 12    
25 13 12    
26 12 12 13    
27 4 13 14    
28 4 14 15    

 
where  
Adn[2 * nb] is used to store the adjacent nodes. 
Adb[2 * nb] is used to store the connected branches. 
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MF[i]=Memory location from  
MT[i]= Memory location to for a particular node i (i=1 to nb) 

 
 
4. Load Flow Solution  
4.1 Algorithm for load flow solution of radial distribution system 

Step 1: Read line and load data of radial distribution system. 
Assume initial node voltages 1 p.u, set ε = 0.0001. 
Step 2: Start iteration count, c =1. 
Step 3: Calculate load currents at each node by using Eqn. (2) 
Step 4: Initialize real power loss and reactive power loss vectors to zero. 
Step 5: Using the node currents calculated in Step 3, calculate branch currents. 
Step 6: Calculate node voltages, real and reactive power loss of each branch using 

Eqns. (1), (3) and (4) respectively. 
Step 7: Check for convergence i.e., maxV ≤ε in successive iterations. If it is 

converged go to next step otherwise increment iteration number and go to 
Step 3. 

Step 8: Calculate total real power and reactive power losses for all branches. 
Step 9: Print voltages at each node, real and reactive power losses and number of 

iterations. 
Step 10: Stop. 
The method is illustrated with example in the following section. 

 
4.2 Example  
The 33-node, 12.66 kV radial distribution system [7] is shown in Figure 3. The load 
flow results of a 33-node radial distribution system are given in Table 3. The total real 
and reactive power losses of this system are 202.66 kW and 135.13 kVAR 
respectively. These are 5.45% and 5.87% of their total loads.  

 

 
 

Figure 3: 33-node Radial Distribution Systems. 
 

The minimum voltage of the system is 0.9131 p.u. at node18. The maximum 
voltage regulation of system is 8.69%. The number of iterations taken to compute this 
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system is 3. The method given in [10] takes 4 iterations to converge but this method 
took 3 iterations to converge. The CPU time also considerably reduced from 0.16sec to 
0.09sec (core 2 Duo). The voltages of the proposed method are compared with existing 
method [14] and results are found to be in good agreement. 

 
Table 3: Load flow results of 33-node radial distribution system. 

 
Node 
 No. 

Voltage (p.u) Voltage (p.u) Node 
 No. 

Voltage (p.u) Voltage (p.u) 
Existing  
method [14] 

Proposed Method Existing  
method [14] 

Proposed Method 

1 1.0000 1.0000 18 0.9130 0.9131 
2 0.9970 0.9970 19 0.9965 0.9965 
3 0.9829 0.9830 20 0.9929 0.9929 
4 0.9754 0.9755 21 0.9922 0.9922 
5 0.9680 0.9681 22 0.9915 0.9916 
6 0.9596 0.9597 23 0.9793 0.9794 
7 0.9461 0.9462 24 0.9726 0.9727 
8 0.9413 0.9414 25 0.9693 0.9694 
9 0.9350 0.9351 26 0.9477 0.9478 
10 0.9292 0.9293 27 0.9452 0.9452 
11 0.9182 0.9182 28 0.9337 0.9337 
12 0.9268 0.9269 29 0.9254 0.9254 
13 0.9208 0.9208 30 0.9219 0.9220 
14 0.9185 0.9185 31 0.9178 0.9178 
15 0.9171 0.9171 32 0.9169 0.9169 
16 0.9157 0.9157 33 0.9166 0.9166 
17 0.9137 0.9137    

 
Conclusion 
A simple load flow technique has been proposed for solving radial distribution 
systems. It completely exploits the radial feature of the distribution system. The 
proposed method always guarantees convergence for any type of radial distribution 
system. The effectiveness of the proposed method has been tested on 33 node radial 
distribution system.It has been found from the case with which the method was tested 
that the method has good and fast convergence characteristics compared with existing 
method. However, the proposed method can easily include composite load modeling, if 
the compositions of the loads are known.  
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