
International Journal of Electrical Engineering. 
ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 395-403 
© International Research Publication House 
http://www.irphouse.com 
 
 

Fuzzy Logic Based Thresholding for Hyper Shrinkage 
 
 

S. Sri Saranya1 and Dr. S. Poornachandra2 

 
1Dept. of Electrical and Electronics Engineering,  
SNS College of Engineering, Coimbatore, India. 

E-mail: srisaranya6@gmail.com 
2Dept. of Electronics and Communication Engineering 

SNS College of Engineering, Coimbatore, India 
E-mail: pcmed8@yahoo.com 

 
 

Abstract 
 

Signal denoising is the process of reducing the unwanted noise in order to 
restore the original signal. Donoho and Johnstone’s denoising algorithm based 
on wavelet thresholding replace the small coefficients by zero and keep or 
shrink the coefficients with absolute value above the threshold. So the 
threshold selection becomes more important in signal denoising. In this paper 
the threshold selection based on Fuzzy Logic concepts for Hyper Shrinkage is 
developed. Fuzzy logic represents a good mathematical framework to deal 
with uncertainty of information. A fuzzy membership function (MF) is a curve 
that defines how each point in the input space is mapped to a membership 
value (or degree of membership) between 0 and 1. Wavelet Transform (WT) is 
useful for analyzing the non-stationary signal. The ElectroCardioGram (ECG) 
signal contains important information about the heart and here ECG signal is 
used to verify the proposed method. The Discrete Wavelet Transform (DWT) 
provides sufficient information both for analysis and synthesis of the original 
signal, with a significant reduction in the computation time. The Inverse 
Discrete Wavelet Transform (IDWT) provides the reconstruction of signals. 
The software used for the simulation is MATLAB.  
 
Keywords: denoising, thresholding, Hyper shrinkage, Fuzzy logic, 
Membership function. 

 
 
1. Introduction 
Denoising is the process of reducing the noise from the signal and it attempts to 
remove whatever noise is present and retains the signal present regardless of the 
frequency content of the signal but it is different from smoothing, whereas, smoothing 
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only removes high frequencies and retains low frequencies. Thresholding is a 
technique used for signal denoising. The discrete wavelet transform uses two types of 
filters: averaging filters and detail filters. When the signal is decomposed using the 
WT, a set of Wavelet coefficients that correlates to the high frequency subbands are 
obtained. These high frequency subbands consist of the details in the data set. If these 
details are small enough, they might be omitted without substantially affecting the 
main features of the data set. Additionally, these small details are often those 
associated with noise; therefore, by setting these coefficients to zero, noise is killed. 
This becomes the basic concept behind thresholding-set all frequency subbands 
coefficients that are less than a particular threshold to zero and use these coefficients in 
an inverse wavelet transformation to reconstruct the data set.  
Donoho and Johnstone (1994) proposed a new method of wavelet denoising by soft 
thresholding which has been applied to both signal and image. They proved an optimal 
recovery is possible when compared to non-Wavelet methods. [4] Soft Thresholding in 
the iterative Wavelet domain (2001), here it is carried out in an iterative Wavelet and 
hence, is advantageous as compared to the previous technique. It increases the 
computational efficiency and provides better signal to noise ratio as well as data 
compression. [6] Shrinking a Wavelet coefficient towards zero to remove noise is 
named as Principle of Waveshrink. Threshold acts as an oracle between a significant 
and insignificant coefficients. Donoho and Johnstone [8] give two ways to set this 
threshold: Minimax threshold [17] which minimizes a bound on the asymptotic risk and 
the Universal threshold ensures that, asymptotically, all detail coefficients are 
annihilated (1995) .[2] In order to overcome the disadvantage of Hard shrinkage 
(uniformly smaller risk and less sensitive to small perturbations in the data) and soft 
shrinkage (uniformly smaller risk and L2 risk) Bruce and H. Y. Gao introduced a 
Semisoft (1995), [24] and Firm shrinkage (1997) .[25] The main disadvantage of firm 
shrinkage is it requires a two threshold value. Usually a data dependent wavelet 
threshold mainly concentrated only on magnitude but Todd Ogden and Emanuel 
Parzen Silverman worked with both position and magnitude of the coefficient. [13] The 
non-Garrote shrinkage function (1998) which provides a good compromise between 
the Hard and Soft but it's less sensitive than Hard and less biased than Soft. [16] 
S. Poornachandra and N. Kumaravel (2005) introduced a new shrinkage function 
called Hyper trim shrinkage which has a continuous derivative and gives better mean 
square error. [10] They proposed a Hyper shrinkage (2007) which uses a Hyperbolic 
function, [9] shows an improvement in variance and bias estimation given by Andrew 
and Bruce (1996). [1] To recover a function of unknown smoothness from noisy 
sampled data David L. Donoho and Iain M. Johnstone (1994) introduces a SURE 
shrink which suppresses noise by thresholding an empirical wavelet coefficient and 
thresholding is done in an adaptive manner. [20] For eliminating noise from ECG signal 
α-trimmed thresholding is used in wavelet based adaptive filter model. In this, 
thresholding as well as adaption technique is carried out by S. Poornachandra and N. 
Kumaravel (2004). [22] The Subband dependent thresholding technique was proposed 
by S. Poornachandra and N. Kumaravel (2008) shows a better recovery of signal which 
was tested by a real time ECG signal. Application of this denoising method is used in 
biological and communication signals. [11] Wavelet gives better performance than other 
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filters like Hanning, Low pass and Elliptic filters. [3] But it has a high computational 
cost. Although a wavelet denoising has more advantage, it also exhibits some 
disadvantage that is, discontinuities and exhibits a pseudo-Gibbs phenomenon. [12] For 
low and moderate noise signal reconstruction, an improvement of wavelet shrinkage 
used named as a Bayesian Wavelet shrinkage, by Greame K. Ambler and B.W. 
Silverman (2004). It gives a good Average Mean-Square Error (AMSE) and Signal to 
Noise Ratio (SNR), but disappoints for high noise levels. [5] G. Chen and T. Buy 
(2003) used a multiwavelets thresholding using neighboring coefficients which gives a 
better result than the single wavelet for denoising. [18] 
Donoho has initially proposed the fixed thresholding based denoising of signals. Here, 
the value of the threshold is computed as: 

   )log(2 n    (1)  
 

Where 
6745.0

MAD
 , MAD is the median of wavelet coefficients and n is the total 

number of wavelet coefficients. Shrinkage function determines how the threshold is 
applied to the data. The Wavelet shrinkage functions proposed by Donoho and 
Johnstone’s are the Hard and Soft shrinkage function which is the basis for all 
shrinkage functions. 
 
 
2. Wavelet Transform 
Wavelet means a ‘small wave’. So wavelet analysis is about analyzing signal with 
short duration finite energy functions. They transform the signal under investigation 
into another representation which represents the signal in a more useful form. This 
transformation of the signal is called WT. [23] The WT provides a time-frequency 
representation of the signal. WT describes a signal by using the correlation with the 
translation and dilation of a function called mother wavelet. The translation operation 
allows signal features to be isolated in time, while the dilation operation allows 
features existing at different scales to be identified. In this way, the WT represents a 
signal as a sum of wavelets with different locations and scales. The most basic wavelet 
transform is the Haar developed by Alfred Haar in 1910 and it works well for signal 
that are approximately piecewise-smooth constant. [21] For more piecewise-smooth 
signals Daubechies WT are used and it compactly supports the orthonormal wavelet. 
[15] There is a wide range of application for WTs they are applied in different fields 
ranging from signal processing to biometrics, and the list is still growing. 
 

 
 

Figure 1: Wave and Wavelet. 
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3. Wavelet Shrinkage techniques 
In Hard shrinkage the Wavelet coefficients are compared with the threshold value, if 
the Wavelet coefficients below the threshold are made zero and coefficients above are 
not changed. The Hard shrinkage function is given in equation (2) as 
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Where λ ϵ [0, α] is the threshold. 
In Soft shrinkage the Wavelet coefficients are shrunk towards zero [4]. The Soft 
shrinkage function is not continuous. Due to the discontinuity of shrinkage function, 
Hard shrinkage estimates tend to have a bigger variance and can be unstable and 
sensitive to small changes in the data. The Soft shrinkage estimates bigger bias due to 
the shrinkage of large coefficients. The Soft shrinkage function is given in equation (3) 
as 
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Where λ ϵ [0, α] is the threshold. 
 

              
 

Figure 2: Hard shrinkage       Figure 3: Soft shrinkage      Figure 4: Hyper shrinkage. 
 
Another method which overcomes the disadvantages of the above is Hyper shrinkage 
which uses the hyperbolic functions, which is nonlinear model. Unlike a Hard 
shrinkage the Hyper shrinkage model is continuously differentiable. While comparing 
the point wise distribution of Hyper shrinkage with Soft shrinkage is almost the same 
and thus Hyper shrinkage retains the stability of the shrinkage model. [9] The Hyper 
shrinkage model is given in equation (4) as 
    05      ,))(*tanh()(     xxxhyp  (4)  
 
 Where, ρ is the boundary contraction parameter. The condition developed to make 
all coefficient fall within the curve is: 
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Where, ∆ is the exponent region. 
The three main steps of denoising using wavelet coefficient shrinkage technique are as 
follows: 
Step 1: Calculate the Wavelet coefficient matrix by applying a WT of the data. 
Step 2: Modify the detail coefficients (Wavelet coefficients) using the threshold 
technique.  
Step 3: Inverse transforms applied to the modified detail coefficients to obtain the 
denoised coefficients. 
 
 
4. Fuzzy logic 
Fuzzy logic has been applied to many fields, from control theory to intelligent. Fuzzy 
logic is a form of many valued logics or probalistics logic; it deals with reasoning that 
is approximate rather than fixed and exact. A fuzzy MF is a curve that defines how 
each point in the input space is mapped to a membership value (or degree of 
membership) between 0 and 1. [14] In this paper the MFs are used to choose the optimal 
threshold value for signal denoising. Five MFs are used Triangle, Trapezoid, 
Sigmoidal, Gaussian, and Bell. 
When the DWT is applied to the ECG signal, we get the coefficients (approximate and 
detail) of the signal. The DWT provides sufficient information both for analysis and 
synthesis of the original signal, with a significant reduction in the computation time. 
The DWT is considerably easier to implement when compared to the continuous 
wavelet transform. The Daubechies wavelets are widely used in solving a broad range 
of problems, eg. self similarity properties of a signal or fractal problems, signal 
discontinuities, etc., and in this paper Daubechies wavelets are used for transforming. 
Then the threshold values are estimated and applied to a shrinkage function. Tuning of 
the threshold value with a fuzzy MF is done. This threshold value acts as an oracle, 
which distinguishes between the significant and insignificant coefficients. The IDWT 
is used to reconstruct the signal. 
 

 
 

Figure 5: Block Diagram Of Proposed Denoised Model. 
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The quality of a signal is often expressed quantitatively as the signal to noise ratio of 
the true signal amplitude (average amplitude) to the standard deviation of the noise. 
For evaluating the compression, percentage root mean square difference we use the 
expression. 
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Where V (n) is the original signal and VR (n) is reconstructed signal. Mean square 
error measures the average of the square of the "error," with the error being the 
amount by which the estimator differs from the quantity to be estimated.  
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Where f̂ is estimated value and f is actual value. 
 
 
5. Results and Discussion 
In this proposed work new method for tuning the threshold value is a fuzzy MF. A 
fuzzy MF provides a measure of the degree of similarity of an element to a fuzzy set. 
In this project an ECG signal is tested with different MF. A normalized ECG signal is 
added with a normalized additive white Gaussian noise. The noise added to the input 
ECG signal is incremented at a level that is 0 to 100% at the interval 10. 
DWT is applied to the noise signal. Donoho’s universal threshold is used for 
calculating the threshold value and this value is used in Hyper shrinkage for shrinking 
the detail coefficients. Fuzzification process is carried out here by applying the 
membership function. The threshold values are mapped in the membership function. 
Here, the threshold limits are assumed, within the limit, every point of the threshold 
value is applied and simultaneously its SNR value is calculated. 
The performance of different Fuzzy MFs is plotted as a bar graph. The estimated 
parameters in this work are SNR, PRD and MSE.  
Figure 6a shows a different MFs for SNR at different noise levels, in which there is no 
variation up to 60% and over 60% the MFs are varied due to increase in noise than the 
original signal so the original signal is buried inside the noise. At 70% all the MFs are 
equal. At 80% and above Triangular, Gaussian and Trapezoidal MFs are increased, but 
Sigmoid and the Bell are decreased. In general, the higher the SNR value,the lower 
noise level. 
Figure 6b shows the different MFs for Mean Square Error (MSE) at different noise 
levels, in which the sigmoid and bell MFs show the best results after 40% and above. 
Considering the MSE, lower value shows a better recovery of the signal. 
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Figure 6c shows the different MFs for Percentage Root mean square Difference (PRD) 
at different noise levels in which the Sigmoid and Bell MFs shows a better result over 
60% of noise level. Generally PRD lower value is a better recovery of the signal. 
The objective is to find optimal threshold value and it is determined based on highest 
SNR value. By this method, different MFs (Triangular, Gaussian, Sigmoidal, Bell and 
Trapezoidal) are determined. Simulation result of different MFs is shown in the Figure 
6 individually for SNR, MSE and PRD. The SNR value of the Triangle, Gaussian and 
Trapezoidal MFs show a better result, but considering PRD, MSE Sigmoidal and Bell 
MFs show a better result. 
 

 
 

(a) MF comparison-SNR                  (b) MF comparison-MSE 
 
 

 
(c) MF comparison-PRD 

 
Figure 6 

 
Conclusion 
In this paper a threshold selection scheme based on fuzzy membership function which 
chooses the optimal threshold value is used. Simulation of this project is done using 
the ECG signal, with this additive white Gaussian noise is added. At the different noise 
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level the simulation was carried out. The membership function chooses the threshold 
value based on the maximum SNR, since higher value of SNR indicates low noise. 
Among these membership functions, observed that Triangle, Gaussian and 
Trapezoidal, SNR values are better than other membership function. But while 
comparing other estimation parameter PRD and MSE of Sigmoidal and Bell shows a 
better result. Visual results obtained from MATLAB simulation, the Triangular 
membership function shows better denoising of signal. MATLAB is a high-level 
language and interactive environment for computation, visualization, and 
programming. [7] 
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