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Abstract 
 

The aim of this work is to predict numerically the turbulent flow through a 
straight square duct. The numerical simulations using Reynolds Averaged 
Navier-Stokes equations with a cubic eddy-viscosity turbulence model. This 
model has been devised by Craft, Launder and Suga (1996). The paper deals 
with a priori evaluation and improvement of the Explicit Algebraic Renolds 
Stress  model (EARSM)  in order to assess its predictive capabilities in the 
simulation of a fully turbulent flow through a straight square duct. In order to 
handle wall proximity effects, damping functions are introduced. The 
comparison of the numerical results with available DNS shows good 
agreements. 
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Introduction 
The turbulence flow inside a duct of square cross-section is of considerable 
engineering interest. This flow is characterized by the existence of secondary flows 
which can be classified into two types, namely, Prandtl’s flows of the first and second 
Kind. In general, numerical predictions of turbulent flows have become a valuable 
tool to obtain a detailed description of the turbulent flows which are difficult to obtain 
experimentally. Attempts to predict the turbulent characteristics have resulted in 
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several computational approaches. This work focuses on a numerical investigation of 
a low Reynolds number turbulent flow though a square duct with emphasis on 
Explicit Algebraic Renolds Stress  model (EARSM) which are based on the general 
constitutive equations and which has been derived by Craft et al. (1996) [1]. This 
EARSM model has been proposed to extend the applicability of many quadratic 
models [2]. Note that, this model [1] is a cubic relation between the strain and 
vorticity tensor and the stress tensor, and according these authors, it seems most 
appropriate to reflect the effects of curvature and swirling. Therefore, the present 
study aims at investigating the capability of this cubic viscosity turbulence model in 
the fully turbulence flow through a straight square duct. This square duct 
configuration has been frequently chosen by many authors [3, 4, 5] since it is a 
relatively simple geometry which provides a good case test to improve turbulence 
models.  
 The paper is organised as follows: The EARSM model herein employed is briefly 
supplied in section 2. The main results of this work are presented and discussed in 
section 3. This is followed by conclusions draw from the present predictions. 
 
 
Governing equations 
In the present work, RANS formulation is used to predict the turbulent flow. This 
approach is used applying the Reynolds decomposition, which consists in splitting 
velocity and pressure into an average and a fluctuating part. The equations governing 
the mean velocity iU  and mean pressure P  are obtained from the RANS equations for 
incompressible flow:  
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where   is the fluid density,   is the cinematic viscosity and ' '

i ju u is the Reynolds stress 
tensor. The indices  refer to the x, y, and z directions, respectively; x is the 
streamwise and y and z are the transverse directions.  
 To close the RANS equations (1) and (2), the cubic eddy-viscosity model of 
turbulence proposed by Craft et al. (1996) [1] is used. The most general such 
expression retaining terms up, to cubic level that satisfies the required symmetry and 
contraction properties, can be written as follows: 

, , 1, 2,3i j k 



Predictive Capabilities of Cubic Turbulence Model in the Square Duct 187 
 

 

 


 

 



1

2 3

2 2

4 52 2

2

6 2

2 ( 1/3 )
3

( ) ( 1/3 )

( ) ( 2/3 )

t
i j ij t ij ik jk kl kl ij

t t
ik jk jk ik ik jk kl kl ij

t t
ki lj kj li kj il lm mj il lm mj lm mn nl ij

t
ij

ku u k S c S S S S

k kc S S c

quadratic terms
k kc S S S c S S S

kc S

  


  
 

 


 




   

        

 

            




2

7 2
t

kl kl ij kl kl
kS S c S

cubic terms




  

 

 (3) 

where ( / 2)i ik u u  is the turbulent kinetic energy, 2( / )t C f k    is the turbulent viscosity, 
 1/ 2 2( 2 ( / ) )jk x       is the  “isotropic” dissipation rate,  is the Kronecker tensor, and  
and  are the mean rate of deformation and vorticity tensors. These they are defined 
by: 
  

  (4) 
 
with  
 1/ 2 21 exp[ (Re / 90) (Re / 400) ]t tf      (5) 
 
 2Re ( / )t k   is the turbulent Reynolds number,   is the dissipation rate of the 
turbulent kinetic energy. The model coefficients C1, C2, C3, C4, C5, C6 and C7 of 
equation (3), proposed by Craft et al. (1996) [1], are given in the Table 1. 
 

Table 1: The proposed form for the coefficients of equation 3 
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 The nondimensional strain rate 

~
S  and vorticity 

~
  are denoted by: 
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 The cubic stress-strain relation (3) adopted here presents some advantages. 
Indeed, the quadratic terms and strain/vorticity-dependent coefficients are responsible 
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for the ability of non-linear models to capture anisotropy, and the cubic terms can 
reflect the effect of curvature. Also, theses cubic terms can capture the swirling effect 
[6].  
 The turbulence energy k and the “isotropic” dissipation rate  are obtained from 
the following transport equations: 
 t

k
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The near-wall extra term E employed by Suga [7] can be written as: 
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 The length-scale correction 

apY  proposed by Yap [8] can be expressed as follows: 
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 The various coefficients are given in table 2. 

 
Table 2: Coefficients in  and  equations 

 
    
    

 
 
Numerical results and discussion 
This section deals with a priori test evaluation and improvement of the EARSM 
model given by equation (3) in order to assess its predictive capabilities in the 
simulation of a fully turbulent flow through a straight square duct. To enable a correct 
behaviour in the regions close to the walls, damping functions of Van Driest types [9] 
have been used to bridge solution. These functions can be given by [10]: 
  (12) 

 
where ( / )z zu    and ( / )y yu    are the no dimensional coordinates scaled by the 
kinematic viscosity   and the mean frictional velocity ,  being the 
mean wall shear stress. The constants a and b are given in the table 3 [10]. 
Throughout this paper, the modified model ((3)-(11) and (12)) will be labelled Craftf 
et al . 
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Table 3: Values of constants  and  used in the damping function f . 
 

      
a -4.5 -5 0.91 1.01 -0.75 
b 0.038 0.015 0.05 0.04 0.045 

 
 
 From table 3, one can note that all the normalized Reynolds stresses 

2( / )i j i ju u u u u    have different damping functions. 
 The a priori technique consists in using mean field turbulent coming from DNS. 
The mean velocity components, the turbulent kinetic energy and its dissipation rate 
obtained through the DNS simulations are supplied in the turbulent model, providing 
predictions for Reynolds stresses. The predictions are then compared with these 
quantities obtained directly from the DNS. The figure 3 illustrates this a priori test.  

 

 
 

Figure 3: Schematic diagram showing the structure of a priori test. 
 
 
 In this paper, the comparisons are made with Gavrilakis’s DNS (1992) [3]. For 
this simulation, the flow variables are expanded into discrete Fourier series along the 
x-direction, whereas second-order centred-difference approximations are used along y 
and z-directions. The Adams-Bashforth scheme is used for the temporal integration. 
This DNS has been carried out for the Reynolds number Re 2 / 4800mU h    based on 
the duct height 2h and the mean flow velocity . The Reynolds number based on the 
friction velocity, Re 2 /u h   , is 320. The velocity ratio  for this configuration 
was 1.33,  being the mean centreline velocity. The maximum Kolmogorov scale is 
1.5 / u . 
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Figure 4: Flow geometry and axes system [left]; Quadrant of the square [right]. 
 
 
 To check if the Craft et al. model reproduces the anisotropic character of the flow, 
a detailed analysis of the flow anisotropy may be performed via the anisotropy-
invariants map proposed by Lumley and Newmann (1977) [11]. They have identified 
all turbulence sates in terms of second ( ) and third ( ) invariants of the Reynolds 
stress anisotropy tensor bij which is defined as: 
  2

3( ) / 2ij i j ijb u u k k   (13) 
 
 The second and third invariants are defined by: 
     (14) 
 
 It can be shown that all the turbulence sates which characterize the turbulence are 
limited inside the region bounded by the axisymmetric and two-dimensional states. 
 Figure 4 shows the variation of  against  for the Reynolds stress along the 
wall bisector. The tendency is towards an axisymmetric state. However, the flow 
behaviour is affected by the corner and the turbulence tends to a one-dimensional 
state. Near the duct center, the turbulence is close to isotropy.  

 
Figure 4: The trajectories in  anisotropy map along the wall bisector. 
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 To verify the realizability of the Craft et al. model, figures 5 and 6 present, 
respectively, the contours plots of the normal Reynolds stresses 2u   and 2w   
and,  the contours plots of the quantities 2 2 2( ) /( )uv u v      and 2 2 2( ) /( )uw u w     . 
Plotted are the DNS data by Gavrilakis (1992) [3] for comparison (see figure 5(a) and 
5(b)). The distributions of these quantities in the other quadrant can be obtained 
through a symmetric mirroring with respect to the corresponding axes or origin. By 
the examination of these figures, we remark that the turbulent normal stresses are 
positive and the Schwarz inequality is respected ( 2 2 2( ) /( ) 1i j i ju u u u      ). For all the 
Reynolds stresses, the comparison of the numerical results with available DNS shows 
good agreements. 
 In figures 7 (a, b and c), the normal profiles of the normalized turbulent stresses as 
a function  of the z-direction along the wall bisector are represented and compared 
with DNS data by Gavrilakis (1992) [3] and with the model results of Speziale (1987) 
[12] and, Gatski and Speziale (1993) [13]. As shown in figure 7(a), the component 

 is best predicted by the current EARSM model [1], although the peak is 
slightly underpredicted. The agreement here being satisfying, this suggest that the 
near wall turbulence generation mechanisms seem to be faithfully captured. One can 
observe that the  component dominates the other two components with a very 
marked peak close to the wall ( ). 

 
(a): the normal Reynolds stress 2u  [left: present study; right: data adapted from 
Gavrilakis (1992)] 

 
(b): the normal Reynolds stress 2w   [left: present study; right: data adapted from 
Gavrilakis (1992)] 
 

Figure 5: Contour plots of the normal Reynolds stresses 

2u 

2u 
/ 0.1z h 
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 For the y-component 2v   (see figure 7(b)), the Craftf et al. model, while over-
predicting the magnitude of this quantity compared with DNS from Gavrilakis (1992) 
[3], well duplicates the DNS far away from the wall for . Note that the 
peak is overpredicted by about 15% compared with the DNS and it is not reached at 
the same location as the DNS. Figure 7(b) clearly demonstrates that the spanwise 
turbulence component  is very sensitive to choice of the model, in particular for

. Also, it can be seen that its intensity increases rapidly in the near wall 
region, approximately corresponding to  and that the predicted profiles 
are larger than the profile from the DNS. All models overpredict the magnitude of

. The vertical turbulence component  (see figure 7(c)), in the current 
model agrees well with the DNS data by Gavrilakis (1992) [3] for . 
However, our predictions tend to slightly overestimate this intensity in the near wall 
region. The peak value from the present model is predicted almost at the same 
location as the DNS. Otherwise, some noticeable differences are found, by comparing 
our predictions with those of the Speziale (1987) [12] and, Gatski and Speziale (1993) 
[13] models. As pointed out by several authors, the main differences among the 
profiles of the cross-stream turbulence intensities and that of the channel flow occur 
in near the zones close to the walls. These discrepancies mainly affect the  
component. These may be attributed to the grid size, to the low Reynolds number 
used in this work and to the presence of the secondary flows in the cross-stream plane, 
that are absent in the case of a plane channel. Note that the Speziale model (1987) 
[12] is not strongly realizable. Indeed, the spanwise and the vertical turbulence 
intensities are negative for (see figure 7(b) and 7(c)). 

 

 
(a) : the contours plots of 2 2 2/( )uv u v      

/ 0.25z h 

2v 
/ 0.25z h 

2v  2w 
/ 0.30z h 

2v 

/ 0.20z h 
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(b): the contours plots of 2 2 2/( )uw u w     [left: present study; right: data adapted 
from Gavrilakis (1992)] 

 
Figure 6: Contour plots of the quantities 2 2 2/( )i j i ju u u u      

 

(a) (b) 

(c) 
 

Figure 7: Normal profiles versus z/h. Comparison of Gavrilakis’s DNS (1992) with 
the model estimates. 
 
 
 Figure 8 depicts the distribution of the Reynolds shear stress component uv    
and uw    along the z-direction at the wall bisector / 1.0y h  . The current model is 
seen to produce much better predictions in some respects a little closer to data than 
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Craft et al. original form. It can be seen that the shear stress component uw    
returned by the present model agrees well with the DNS for / 0.25z h  . This remarkable 
agreement obtained far from the walls is gratifying. The uw    peaks obtained by 
the two models (Craft et al. [1] and Craftf et al) are roughly the same and they are 
much higher than the corresponding peak returned by DNS data.  

 

(a) (b) 
 

Figure 8: Shear stress profiles versus z/h.  Comparison of Gavrilakis’s DNS (1992) 
with the model estimates. 
 
 
 The a priori evaluation and improvement of Craft et al. model [1] shows that it is 
able to predict turbulence flow through a straight square duct. Therefore, the 
extension to a posteriori evaluation of the turbulence flow should produce reliable 
predictions for other similar flows at a comparable Reynolds number.  
 The following sub-sections are devoted to a posteriori simulation by the improved 
Craftf et al. model for the case this work. 
 
 
Conclusion 
EARSM model is studied using a priori procedure based on data resulting from the 
direct numerical simulation of Gavrilakis (1992). We show that the Craft et al. model 
(1996) is strongly realizable, because the analysis of maps shows that the positivity of 
the normal Reynolds stresses and respect of the Schwartz inequalities between 
turbulent velocity correlations. The map of the second and third invariants for the 
Reynolds stress tensor indicates that within a quadrant the turbulence field comes 
close to one-, two-, and three-component states. To predict the significant viscous 
effects due to the presence of the wall and corner, damping functions are 
implemented. The comparison of the mean velocity field shows a good agreement. 
Overall, the Craftf et al. model considered in this work yields better predictions than 
those obtained by the original model.  
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