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Abstract 
 

LMS algorithm is simple and is well suited for continuous transmission 
systems since it is a continuously adaptive algorithm. However, it is not 
known for its convergence speed in the presence of Gaussian, spatially white, 
of null mean and  ߪே 

ଶ  variance which has prompted people to use other 
complicated algorithms. In the above scenario LMS has maximum mean 
square error and minimum error stability. Hence, there is a need for an 
algorithm, which is simple to implement yet has a fast convergence rate and is 
not computationally intensive in the presence of noise. Thus, the algorithm 
featured in this paper is an attempt in achieving this and it will be referred to 
as the Fast Converging Layered-LMS algorithm. In the FCL-LMS algorithm 
the process of finding the optimum weights have been divided into two layers 
where both the layers have different convergence factors, the convergence 
factor of the upper layer is always greater than the lower layer, hence the 
larger value of the convergence factor helps in approaching the optimum 
weights and the smaller value of the convergence factor minimizes the 
misadjustments thus reducing the excess mean square error, this results in least 
mean square error, better error stability and faster convergence. 

 
Keywords: Fast convergence, Least Mean Square (LMS), Eigen value, Mean 
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Introduction 
Digital Beam forming is a mature technology drawing its roots from the use in Radar 
systems. Literature survey reveals the extent of its use in radar systems for airborne, 
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space borne, and ground based for both commercial and military purpose [4] [5] [6] 
[9] [10] [11]. Although the term beam forming has been primarily used for spatial 
filtering, its combination with temporal filtering is widely used for eliminating ground 
based clutter for airborne surveillance radars [4] [5] [9]. Studies are being carried out 
for providing wide area radiation coverage using digital beam forming on proposed 
High Altitude Platforms (HAPS) [12][13]. Digital Beam forming technology has 
reached a sufficient level of maturity that it can be applied to communications for 
improving system performance [3]. One of the main reasons for using digital beam 
forming algorithm is the capability of forming a main beam in the direction of desired 
signal while at the same time placing nulls in the direction of the jammer signals. 
Knowing the signal characteristics and/or direction of the desired signal these smart 
antennas update a set of calculated weights adaptively to the signal environment, 
which when applied to the individual system level antenna elements result in the 
reception of desired signal and elimination of jammer signals. Literature survey 
reveals that considerable work has been done on improving the convergence speeds 
and radiation patterns for Least Mean Squares (LMS). Godara [16] [17] provides a 
comprehensive review of various digital beam forming algorithms and on 
performance improvement, feasibility and system consideration of a smart antenna 
system.  
 This paper presents a comprehensive analysis of FCL-LMS adaptive beam 
forming algorithm arising from the Least Mean Square (LMS) algorithm. Simulation 
study for the algorithm will be tested for a uniformly spaced linear array and the 
adaptability of the algorithm for various interferences angle, Gaussian noise and SNR 
will be studied. The reminder of the paper is organized as follows: Section II provides 
a background of smart antennas. Section III reviews the uniform linear space array 
signal model used and a discussion on the Least Mean Square, and FCL-LMS 
adaptive beam forming algorithm used in smart antenna array synthesis. The FCL-
LMS adaptive beam forming algorithm is also derived and discussed. In Section IV, 
an overview of the parametric estimation tools used for our analysis will be briefed. 
Section V deals with the simulation scenario developed using MATLAB® 
environment for analyzing the algorithms. In Section VI, the result of simulation 
analysis will be presented and inference on algorithmic performance for different 
number of elements and misadjustment values for various iterations is tabulated. 
 
 
Background 
Smart antennas have been widely investigated for nearly two decades and are thus a 
mature technology. The combination of more than one array with the associated 
system level algorithm has the capability of providing a better directivity than their 
single antenna counterparts. Also a better control over placement of nulls and thus 
jammer rejection can be attained than the single antenna counterparts. Digital beam 
forming algorithms can be classified into non adaptive and adaptive algorithms. 
Although adaptive algorithms have shown to be more robust in adapting than their 
non adaptive counterparts, however, LMS algorithm fails to do so with higher 
efficiency in the presence of Gaussian noise. 
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Adaptive Antenna System 
Signal Model 
Consider a uniformly spaced linear array of N elements in a signal environment 
consisting of M far field discrete sinusoidal sources each of frequency fo. Let these N 
isotropic elements be arranged in a linear pattern with the inter-elemental spacing‘d’. 
Let us consider angle è with respect to the normal at which the plane wave impinges 
upon the array. The signal wave arrives at any antenna element sooner than it’s 
preceding element. 

 

 
 

Figure 1: Smart Antenna System for a Uniform Linear Array. 
 
 
 Let us consider the phase received at the first element as the reference phase. Thus 
the phase lead with which the signal at any element arrives than at its preceding 
element is given by, 

  2π ( ࢊ
ࣅ
 ሻsin θ  (1) 

 
 We know that k = 2π/λ, which is also called the wave number. Thus phase delay is 
now given by, 
  kd sin θ  (2) 
 
Adaptive Beam forming Algorithms 
The main objective of beam forming is to form multiple beams towards desired users 
while nulling to the interferers at the same time by adjusting the beam former’s 
weight vectors. The received signal x(n) from multiple antenna elements are 
multiplied with the weight coefficients which are a set of amplitude and phase 
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coefficients so as to adjust the phase and amplitude of the incoming signal 
accordingly. 
 The weighted signal from individual channels is summed up to obtain the beam 
former output y(n). Thus this beam former output y(n) is a linear combination of the 
data at the k sensors and can thus be expressed as, 
  y(n) = wH x(n)  (3) 
 
where, 
  w = [w1, w2, w3.....wK]  (4) 
 
and, 
  x(n)=[x1(n),x2(n),x3(n)…,xk(n)]  (5) 
 
 For the given output y(n), the objective for a beam forming algorithms thus 
becomes minimizing the error e(n) between the desired signal d(n) and the array 
output y(n). 
 
LMS algorithm 
The Least Mean Square (LMS) algorithm is an adaptive algorithm, which uses a 
gradient-based method of steepest decent. LMS algorithm uses the estimates of the 
gradient vector from the available data. LMS incorporates an iterative procedure that 
makes successive corrections to the weight vector in the direction of the negative of 
the gradient vector which eventually leads to the minimum mean square error. 
Compared to other algorithms LMS algorithm is relatively simple.  
 The LMS algorithm can be summarized in following equations, 
  y(n)= wh x(n)  (6) 
  e(n) = d*(n) – y(n)   (7) 
  w(n+1) = w(n) + µx(n)e*(n)  (8) 
 
 In the above equations, equation (6) represents the output, equation (7) represents 
error and equation (8) represents weight update. Here, µ is the convergence factor. 
 Optimum weights are found after much iteration and they are not stable, they keep 
endlessly wandering around the “bottom of the bowl” (quadratic performance error 
surface), in the vicinity of the minimum of ξ, producing a noisy weight vector solution 
and an average misadjustment and also LMS does not produce efficient results in 
presence of Guassian noise at the input. Hence, there is a need for an algorithm, which 
is simple to implement yet has a fast convergence rate and is not computationally 
intensive. 
 
FCL-LMS Algorithm 
Experimentation with the LMS algorithm indicates that its speed of convergence 
decays rapidly for small values of MSE or misadjustment. This proposed algorithm 
FCL-LMS (Fast Converging Layered Least Mean Square Algorithm), converges at a 
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very fast rate with minimum misadjustment values. The figure 2 represents the system 
under test, 

 
 

 
 

Figure 2: System identification setup (The FCL-LMS algorithm uses the above 
system). 
 
 
 From above, 
ሺ݇ሻݔ   ൌ ܣ כ ܵ ൅ ݊ሺ݇ሻ (9) 
 
 Where A is the array factor, S is the signal from the transmitting end and n(k) is 
the matrix representing the received noise vector which can be considered here as 
Gaussian, spatially white, of null mean and σ୒ 

ଶ  variance. 
 In FCL-LMS, the samples are processed in two different blocks, i.e., the total 
iterations for which the algorithm runs are divided into two blocks, as shown below: 
 

Iterations Block–1 (n1) Block–2 (n2)
 ≥1000  1 -100  101 - itrn 
 <1000  1 – 50  51 - itrn 

 
 
 The input correlation matrix is calculated as follows: 
  ER = X*XT (9) 
 
 The largest Eigen value of the input correlation matrix (R) is represented as λmax.  
 In Block-1, the value for the constant adaptation µ1 is given by: 

  µ1=ቀ ଵ଴଴
ଶఒ೘ೌೣ

ቁ ൅  (10)  ܭ
 
 In Block-2, the value for the constant of adaptation  µ2 is given by: 

  µ2=ቀ ଵ଴଴
ଶఒ೘ೌೣ

ቁ ൅ ௄
ଵ଴

 (11) 
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 Where, K = 0.04. 
 At any instant of time µ1 > µ2, this has been carefully chosen to achieve rapid 
convergence during the processing of Block–1 due to  µ1 and the misadjustments have 
been minimized due to  µ2. 
 The weight update equation in FCL-LMS is given by: 
  w(k+1)=w(k) + µ1e(k)x(k) (12) 
 
 Equation (12) is applicable for iterations n1 and  
  w(k+1)=w(k) + µ2e(k)x(k)  (13) 
 
 Equation (13) is applicable for iterations n2. 
 The weights are largely influenced by the convergence factor which in turn is 
influenced by the number of iterations and the largest eigen value of the R matrix as 
shown in equations (14) & (15), thus these weight update equations eliminate the 
guassian noise and compute the optimum weights required to obtain the transmitted 
signal by automatically locating the appropriate convergence factor required for 
adaptation. µ1 decreases as iterations increase and so does µ2 as seen in figure 3 this is 
because, 
  λmax  iterations (14) 
 
they exhibit a linear behaviour as seen in figure 4.But, 

   µ ן ቀ ଵ
ఒ೘ೌೣ

ቁ  (15) 
 
 Thus, from equation (15), as iterations increase, µ decreases, where µ refers to 
either µ1 or µ2. 

 

 
 

Figure 3: Variation of µ1(upper bound) and µ2(lower bound) with increasing 
iterations. 
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Figure 4: Variation of λmax with increasing iterations. 
 
 
Performance Metrics 
Mean square error 
The objective of mean square error consists of adjusting the parameters of a model 
function to best fit a data set. A simple data set consists of n points (data 
pairs)ሺݔ௜,  ௜ is a dependentݕ ௜ is an independent variable andݔ ௜ሻ,i=1, 2….n, whereݕ
variable whose value is found by observation. The model function has the 
form ݂ሺݔ,  ሻ, where the m adjustable parameters are held in the vector β. The goal isߚ
to find the parameter values for the model which “best” fits the data. The least squares 
method finds its optimum when the sum, S, of squared residuals, 
ݏ    ൌ ∑ ௜ݎ

ଶ௡
௜ୀଵ   (16) 

 
is a minimum. A residual is defined as the difference between the value predicted by 
the model and the actual value of the dependent variable, 
௜ݎ     ൌ ௜ݕ െ ݂ሺݔ௜,  ሻ (17)ߚ
   
 The mean square error plays a vital role in DBF, and this is a performance metric 
in FCL-LMS study.  
 
Misadjustments 
The performance of a system is measured in terms of its misadjustment M, which is a 
normalized mean square error, is defined as the ratio of the steady state excess mean 
square error (EMSE) to the minimum mean-square error, 

ܯ   ൌ ாெௌாሺ∞ሻ
ெௌா೘೔೙

  (18) 
 
 The EMSE at the kth iteration is given by,  
ሺ݇ሻܧܵܯܧ   ൌ ሺ݇ሻܧܵܯ െ  ௠௜௡  (19)ܧܵܯ
 Thus, 
ሺ∞ሻܧܵܯܧ    ൌ ሺ∞ሻܧܵܯ െ  ௠௜௡  (20)ܧܵܯ
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 The value of MSE୫୧୬ , obtained when the coefficients of the unknown system and 
the filter match, is equal to an irreducible noise variance σ୒ 

ଶ , for a zero mean noise N. 
 
 
Simulation Scenario 
Simulation environment 
The FCL-LMS algorithm was tested in a simulation scenario developed using 
MATLAB platform. Results were obtained for the convergence plot, weight 
convergence and radiation pattern for both the LMS and the FCL-LMS algorithm as 
shown in figure (5) (6) (7) (8) (9) (10) (11) (12) & (13).In LMS algorithm two cases 
have been considered one with a higher value of µ and the other with a lower value of 
µ. An environment is simulated consisting of a single desired signal arriving at an 
angle of 900 and the interferences are at 400, 600, 1200 and 1400. The Signal to Noise 
ratio is kept constant at 20dB. Each realization is run for 1000 Monte Carlo trials. The 
variation of the performance metrics was obtained and tabulated in Table 1 and Table 
2 below. 
 
LMS Results 
Case (1): µ=0.05  

 

 
 

Figure 6: Radiation pattern for LMS algorithm. 
 

 
 

Figure 7: Convergence of weights for LMS algorithm. 
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Figure 8: Mean square error for LMS algorithm. 
 
 
Case (2): µ=0.005  

 

 
 

Figure 9: Radiation pattern for LMS algorithm. 
 

 
 

Figure 10: Convergence of weights for LMS algorithm. 
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Figure 12: Mean square error for LMS algorithm. 
 
 

FCL-LMS Results 
 

 
 

Figure 13: Radiation pattern for FCL-LMS algorithm. 
 

 
 

Figure 14: Convergence of weights for FCL-LMS algorithm. 
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Figure 15: Mean square error for LMS algorithm. 
 
 
Table 1: Performance of FCL-LMS algorithm for variation in number of elements at 
θd=900, θi= [40 60 120 140]. 
 
Sl. 
No. 

No. of 
elements 

Half power beam 
width(degrees) 

Null depth at 
interferences(dB) 

MSE 
(dB) 

400 600 1200 1400 

1 6 22 -60 -57.7 -60 -60 0.004725
2 8 12.8 -60 -46.62 -51.19 -58.37 0.006592
3 10 10.6 -60 -60 -60 -60 0.006417
4 12 8.6 -60 -60 -60 -60 0.001814
 

Table 2: Misadjustment values (M) for various iterations using FCL-LMS. 
 

ITERATIONS MISADJUSTMENT
5000 3.13583 
4000 5.52 
3000 5.51269 
2000 4.523 
1000 2.146 

 
 
Results and Discussions 
Processing algorithms for narrowband beam forming is tested. Highly efficient 
adaptive beam forming technique to adapt the weights of the antenna array using 
FCL-LMS algorithm is discussed and implemented. LMS has been conventionally 
used for larger iterations of the order 1000 but FCL-LMS algorithm can be used even 
for 100 iterations and here weights converge at a faster rate. 
 The radiation pattern for the LMS algorithm showed a main beam in the desired 
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angular direction of 900 and nulls in the interfering direction of 400, 600, 1200 and 
1400. As is evident from figure (6) & (9), the nulls are obtained at the desired 
direction of interferences. The performance of LMS algorithm indicated that more 
time was required for convergence as shown in figure (8) & (9). Less than 1% error 
was reported only after the number of iterations crossed 350 and the weights 
converged after much iteration in case 2 and optimum weights were not found in case 
1 which can be observed in figure (7) & (10). The radiation pattern for the FCL-LMS 
algorithm also showed a main beam directed at 900 and interferences at 400, 600, 1200 
and 1400, and how at every null depth in the interfering direction was deeper at about 
-60dB as shown in figure (13). Also the solution converged from 50 iterations itself 
for all values of n ≥ 6 and the weights also converged as shown in figure (14). Thus 
the superior performance of the FCL-LMS algorithm over the LMS algorithm is 
evident. This characteristic of the FCL-LMS algorithm can be employed easily in 
radar applications where the target environment changes rapidly and has to be tracked 
with greater speeds and accuracy. Thus, the FCL-LMS algorithm will perform better 
than the LMS when employed in radar systems for rejecting intentional wide 
jammers. 
 The performance of the algorithm was critically observed for uniformly spaced 
linear array by varying the number of elements in an array and varying the number of 
iterations. Table 1 indicates the performance of the FCL-LMS algorithm for variation 
in number of elements. Observe that with the increase in number of elements, the half 
power beam width decreases thereby making more and more directive. Also, the null 
depth increases thereby improving the performance of the beam forming system in 
rejecting the interference. Thus, the Mean Square error decreases as we increase the 
number of elements. Thus in order to provide a better gain and the least error for the 
FCL-LMS algorithm, maximum possible number of elements must be used. As seen 
in table 2, the misadjustment was reduced by incorporating FCL-LMS.  
 FCL-LMS can be used in adaptive linear array systems for digital beam forming, 
enhancing the performance of smart antennas, can be hence used in cellular 
communication systems and in military applications.  
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