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Abstract 
 

The effect of very minor variations and their analysis using frequency domain 
tool is presented in this paper. The disturbances in distributed system is 
processed in frequency domain to evaluate the variations in magnitude and 
frequency based and is processed with a advanced learning approach based 
radial neural network to improve the power quality performance in Distributed 
power system. For the evaluation of the proposed approach an analysis on 
IEEE-30 bus system is carried out. The performances were evaluated for the 
power quality measures to achieve better performance. 
 
Keywords: Power Flow controller, Adaptive learning scheme, Radial Neural 
network, spectral analysis, 30-Bus system. 

 
 
Introduction 
With the rapid increase in power demands and their compensation, various networks 
were upcoming in recent past. With the increase in the network layout and its load at 
the demand side the power flow in power system is getting affected. To compensate 
the power quality metric in distributed system FACTs devices are developed. Among 
all FACTs devices unified power flow controller (UPFC) is a dominantly used 
controller. The UPFC is capable of both supplying and absorbing real and reactive 
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power and consists of two AC/DC converters. One of the two converters is connected 
in series with the transmission line through a series transformer and the other in 
parallel with the line through a shunt transformer. The DC side of the two converters 
is connected through a common capacitor that provides DC voltage for the converter 
operation. The power balance between the series and shunt converters is a prerequisite 
to maintain a constant voltage across the DC capacitor. As the series branch of the 
UPFC injects a voltage of variable magnitude and phase angle it can exchange real 
power with the transmission line and thus improves the power flow capability of the 
line as well as its transient stability limit. The shunt converter exchanges a current of 
controllable magnitude and power factor angle with the power system. It is 
normally controlled to balance the real power absorbed from or injected to the power 
system by the series converter plus the losses by regulating the DC bus voltage at a 
desired value. Various control strategies to control the series voltage magnitude and 
angle and the shunt current magnitude have been presented in the references [1]–[4]. 
The series converter voltage phasor can be decomposed into in-phase and quadrature 
components with respect to the transmission line current. The in-phase and the 
quadrature-voltage components are more readily related to the reactive and real power 
flows in the transmission system. During short-circuit and transient conditions, the 
decrease in real power can be stopped by controlling the quadrature component of the 
series converter voltage and hence the improvement in transient stability. The series 
voltage in phase component is either controlled by the reactive power flow deviation 
or voltage deviation at the injected bus where the UPFC is located. The transmission 
line current could be decomposed into in phase and quadrature phase components by 
the decomposition of the line current using spectral decomposition architecture using 
filter bank units. The concept of subband decomposition using filter banks is been 
used in this work. The spectral representation coefficients could be used in as signal 
reference for estimation of variation and then can be passed to advance learning 
approaches to make appropriate decisions. The use of ANNs (Artificial Neural 
Networks) for plant identification and control is gaining interest [5], [6]. A potential 
advantage of the ANN is its ability to handle the nonlinear mapping of the input–
output space. The output of the proposed spectral-ANN controller is a neuron output, 
which may be either the quadrature or the real voltage component of the series 
inverter of the UPFC. The single neuron output will be either a function of the 
change in real power or change in the bus voltage or reactive power. This provides a 
nonlinear FACTS controller, which can significantly improve the transient 
performance of the power system. 
 
 
Power Flow Controlling 
The UPFC by means of series voltage injection is able to control the transmission line 
voltage, impedance, and the real and reactive power flow in the line. The series 
inverter provides the main function of the UPFC by injecting a voltage with 
magnitude, which is controllable and a phase angle in series with the line. This 
injected voltage acts essentially as a synchronous AC voltage source. The 
transmission line current flows through this voltage source resulting in a reactive and 
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voltage which is illustrated diagrammatically in figure3. 
 

 
 

Figure 3: Conventional series and shunt compensator placement 
 
 
 In case of disturbances the current signal may consists of high frequency and low 
frequency components. The evaluation of high frequency components is easy as 
compared to that of low frequency components for a given band of frequencies. But 
ignoring low frequency components results in saturation of power transformers 
leading to voltage sag or swell or harmonics. Thus it is necessary to consider various 
ranges of spectral components of the signal instead of single band of a signal for 
analysis. Hence signal processing tool with the characteristics of multi resolution 
analysis (MRA) is deemed necessary for appropriate compensation of power quality 
problem.  
 In this paper wavelet transform is proposed due to its ability of multi level 
decomposition of a signal (non-stationary). The proposed approach with wavelet 
transformation is shown in figure 4.  

 

 
 

Figure 4: proposed wavelet based estimation approach 
 
 
 The proposed approach can further be improved by dynamic compensation which 
can be achieved by integrating the proposed system with a learning method such as 
neural network called neuro controllers. The system then gets modified as shown 
below. 
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Figure 5: Proposed Hybrid Series/Shunt compensator with Wavelet-Neuro controller 
 

 
Spectral-Neuro Model 
The fundamental idea behind spectral analysis is to analyze the recorded current 
signal at different scales or resolutions, which is called multi resolution analysis. For 
the analysis of current signal in multi spectral domain frequency domain 
transformation and analysis is carried out. For the decomposition of current signal 
pulse into individual resolution for analysis is carried out using advanced signal 
transformation technique called Wavelet transformation. Wavelets are a class of 
functions used to localize a given signal in both space and scaling domains. Compared 
to Windowed Fourier analysis, a wavelet is stretched or compressed to change the size 
of the diagnosis window. In this way, wavelets give an approximate better analysis of 
the signal, while smaller and smaller wavelets explore the details of the signal. 
Wavelets automatically adapt to both the high frequency and the low-frequency 
components of a signal by different sizes of windows. Any small change in the 
wavelet representation produces a correspondingly small change in the measured 
measured signal, which means a local mistake does not influence the entire transform. 
With these property wavelet transform is best suited for the analysis of non-stationary 
current signals, which are very brief signals and with interesting components at 
different scales.  
 For the analysis of the measured current signal a wavelet function is used. The 
wavelet function is generated from one single function ψ, called prime wavelet, by 
dilations and translations defined by,  

   (1) 
 
 Where ψ satisfy the property of ∫ ψ (x) dx = 0. 
 The transformation represent any arbitrary function ‘f’ as a decomposition of the 
wavelet basis or write ‘f’ as an integral over ‘a’ and ‘b’ of ψa,b. For a given continuous 

current pulse, if it is defined  with m, n € integers, and a0>1,b0>0 
fixed. Then the multi-band spectral decomposition is given by, 

     (2) 
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 The process of splitting the spectrum is graphically represented in figure 7. The 
advantage of this scheme is that it is necessary to design only two filters & the 
disadvantage is that the signal spectrum coverage is fixed. The wavelet transform is 
the same as that of a sub-band coding scheme using a constant-Q filter bank. The 
detail coefficients cD are consisting high-frequency content and the approximation 
coefficients cA contain the low frequency content of the signal. The actual lengths of 
the detail and approximation coefficient vectors are slightly more than half the length 
of the original signal. This has to do with the filtering process, which is implemented 
by convolving the signal with a filter. By observing the features obtained by discrete 
wavelet transform it is easy to detect, locate and classify the disturbance. A program 
was developed and implemented in MATLAB environment using the following steps.  
Step 1: Obtain the wavelet coefficients of the pure sinusoidal signal. 
Step 2: Calculate the square of the wavelet coefficients obtained in the above step. 
Step 3: Calculate the signal energy, in each wavelet coefficient level which is 

given by Parseval’s theorem.  
Step 4: Repeat the above procedure for distorted signal. 
Step 5: Compare the total distorted signal energy to that of pure signal energy 

value.  
 
 The evaluated wavelet coefficients after the execution of the suggested algorithm 
as outlined above results are the processed by a neuro controller for the controlling of 
power flow for quality improvement in power system.  
 
Neuro controlling  
The ability to identify the interactions between cause and effect of a system made the 
neural networks more suitable for modeling and designing intelligent controllers for 
power systems [4], [5]. A radial basis function (RBF) neural network controller for 
UPFC, based on the direct adaptive control scheme has been reported to improve the 
transient stability performance of a power system [6]. It is known that indirect 
adaptive control is able to control a nonlinear system with dynamics. The main 
advantage of the neuro controllers over the conventional controllers is that they can 
adapt to the changes in system operating conditions automatically.  
 The block diagram of the conventional PI controllers for shunt branch and series 
branch of the UPFC are shown in Figure. 9 The control of series inverter can be 
achieved using PQ-decoupled control. Neglecting the inverter losses, the injected 
active power Pinj, reactive power Qinj, output active power Pout, and reactive power 
Qout are given by the following expressions. 
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 It can be seen from equation (3) that Pout is mainly affected by Eq whereas 
equation (4) shows that Qout is affected by both Eq and Ed. In incremental form, the 
line active and reactive power can be expressed in terms of ΔEq and ΔEd as follows. 

  out q

V
P E

X
Δ = Δ  (9) 

  
1 ( cos sin )out d q d do q qoQ E V E V E E E E
X

δ δΔ = Δ +Δ +Δ +Δ
 

(10) 

 
 However, it can be assumed in practice that cosδ is close to unity and sinδ is close 
to zero since the phase angle between the two buses (receiving and sending ends) on a 
transmission line is less than 30. 
 Control of the shunt active and reactive current is achieved by varying the shunt 
inverter voltage active component Epd and reactive component Epq, respectively. 
Figure 9 shows a typical block diagram of the conventional PI controllers for the 
UPFC shunt branch control [8], [9]. The outputs of this control system are the 
modulation index k and phase shift α. The PI controllers are replaced by the neuro 
controllers.  

 
 

 
 

 
 

Figure 9: Shunt & series inverter control with PI controllers. 
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 Two neuro predictor (NI), one for the series inverter and the other for the shunt 
inverter are used to identify the hybrid dynamics of the UPFC and the power system. 
These networks dynamically identify the controlling parameters of UPFC ΔEpd, 
ΔEpq,ΔEp, ΔEq which are the outputs of the controllers. The NPs are developed using 
the series-parallel Nonlinear Auto-Regressive Moving Average (NARMA) model [4]. 
The two neuropredictor are continually online trained simultaneously to provide 
dynamic models at all times. The training of NPs takes place in two phases, namely, a 
pre-control phase and a post control phase [5]. 
 The series branch neuro identifier is a three-layer feed forward neural network 
with 13 inputs, a single hidden layer with 15 sigmoid neurons, and two outputs. There 
are two different types of training that are carried out for NP, namely, the forced 
training and the natural training. During forced training, the dynamics of the system 
are tracked by applying perturbations which are fed to the system. During natural 
training the inputs to the system at are the controller outputs, where the controller can 
be a conventional PI controller or a Neuro controller (NC). The neural controllers 
design used is same as explained in [4]. 
 
The algorithm used for the modeling of the WNC is as outlined below, 
STEP 1: The system output signals are sampled and time delayed by one, two and 

three sample periods. 
STEP 2:  The sampled signals from step 1 are input to the NC which then calculates 

the signals ∆Ed and ∆Eq which are used to train the NP as well as to 
control the system.  

STEP 3:  These control signals are time delayed by one, two and three sample 
periods and together with the signals from step 1 are inputs to the NP. 

STEP 4:  The outputs (Perr(t) and Qerr(t)) and the outputs of NP Perr(t+1) and 
Qerr(t+1) are subtracted to produce error signals which are back 
propagated to update weights of NP. 

STEP 5:  In the post-control training of NC, the output of the NP Perr (t+1) and Qerr 
(t+1), and the desired response predictor (Perr (t+1) and Qerr (t+1)) are 
subtracted to produce a second error signal. The error signal is back 
propagated through the NP and the derivatives are obtained with changing 
the weights of the neuroidentifier. 

STEP 6:  The back-propagated signal is subtracted from the output signal of the NC 
to produce an error signal. 

STEP 7:  This error signal is then used to update the weights in the NC, using the 
back propagation algorithm. This causes the NC to change its output in a 
way, which drives all the error signals to zero. 

STEP 8 :  New control signals are calculated ∆Ed and ∆Eq, using the updated 
weights in step 7 and are then applied at time (t +1). 

STEP 9:  These steps (1 to 8) are repeated for subsequent time periods. 
 
 
Result Observations 
For the evaluation of the developed controlling system a 13-Bus IEEE bus structures 
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is used with the variation in line parameters. To evaluate the process of power flow 
controlling carried out the process is as outlined below, 
 
IEEE-13 Bus system: 
Line diagram 

 
 

Figure 10: IEEE-13 Bus system line diagram 
 
 
 Figure illustrates the line diagram for a 13 Bus distributed network considered for 
simulation perspective. 
 
Line Data parameter 
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 A load flow analysis is carried out using Newton raphson method on the 13 Bus 
systems and the Reactive power loss on the transmission line is computed. The 
analysis is carried out with the placement of controlling device on bus 1-2, 1-5 and 2-
3 lines. The reactive power loss is observed to be reduced in case of WNC-UPFC as 
compared to conventional approach.  
 
 
Load flow analysis 

 

 
 

The measured 3-phase line currents are derived from the network as shown figure 
below, 3-phase Line current:  

 

 
 

Figure 11: Original disturbance free 3-phase current 
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Spectrum analysis 
 

 
 

Figure 16: Spectral coefficient of first four bands for a non effected current pulse 
 
 
 The spectral analysis for a single phase non effected current pulse is as shown in 
figure above. It is clearly observed that the current pulse have very dominant 
coefficient density at lower frequency region as compared to higher frequency band. 
The coefficient domination at the particular frequency band helps in extracting the 
required coefficient suppressing the other frequency content than the fundamental 
frequency.  

 

 
 

Figure 17: the processed detail coefficient for compression and disturbance removal 
approach using spectral analysis 
 
 
 Figure above illustrates the coefficients extracted after compression and 
decomposition of the current pulse. The coefficients are observed to be effectively 
reducing the coefficient counts and improve the current pulse quality by removing 
additional coefficients.  
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Spectral coefficient Density for 3-phase 
Complex Morlet wave transformation 

 
phase |D1|2 |D2|2 |D3|2 

R 48.3 47.4 48.5 
Y 48.5 48.3 47.97
B 46.7 46.33 46.12

 
 
Frequency B-Spline wave transformation 
 

phase |D1|2 |D2|2 |D3|2 
R 49.11 49.44 49.76
Y 48.7 48.74 48.97
B 47.8 47.43 47.52

 
 
 The density of magnitude for the three phase current and its detail coefficients are 
as presented in above table. These figures are taken as reference for the extraction of 
actual current pulse from the measured one. For the evaluation of the suggested 
approach the measured current pulse is applied with a fault effect and is processed for 
its effect removal. For the evaluation of the suggested approach, a three-phase line 
distortion due to line effects of a 100 ms duration is created at the middle of the 
transmission line connecting bus-1 and bus-2. 

 
 

 
 

Figure 18: measured effective current pulse after the fault effect 
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Figure 19: coefficient density plot for the three phase spectral coefficients 
 
 
 Figure illustrates the effective coefficient density observed after fault effect. it 
could be clearly observed that the coefficients under fault condition is dominantly 
increased to about 80 units in faulty condition as compared to a healthy condition.  

 
 

 
 

Figure 20: spectral coefficient analysis for the measured fault current 
 
 
 Figure illustrates the spectral coefficient analysis under fault condition. the 
analysis clearly illustrates the density of variation in detail coefficient magnitudes due 
to variation in the current magnitude.  
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Figure 21: decomposed and extracted noise signal from the processed signal 
 
 
 The signal after removal of additional disturbances could be observed in above 
figure. The process clearly illustrates that the spectral analysis of the current pulse 
remove the undesired coefficient as well reduces the coefficient counts for processing. 
This improves the efficiency of neuro controller to make the decision faster and 
accurately. 
 
Neuro controlling operation  

 

 
 

Figure 22: Learning error for the designed neuro controller 
 
 

1. The performance of the conventional PI controller, MLNN controller and 
single neuron RBFNN controller in damping the local mode of oscillations of 
the generators are presented in figure below. In this case the control of series 
voltage source is taken. The performance of proposed WNC-UPFC is quite 
promising in comparison to the PI, MLNN controller and single neuron-RBF 
controller. 
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Figure 23: transient response of local mode of oscillation 
 
 

2. The operating condition of the network is then changed to p=0.433,Q=0.136, 
and the fault of case-1 is created to test the robustness of the proposed WNC 
controller compared to single neuron RBFNN controller with change in 
operating condition. the made observation clearly depicts its robustness for 
operating condition changes. 

 

 
 

Figure 24 : transient response of local mode of oscillation 
 
 

3. To test the robustness of the WNC controller to fault location a three-phase 
fault of 100 ms duration is created at the middle of one of the transmission line 
with the loading of generators same as case-1. The performances of the 
controller for damping modal oscillations are presented in Figs.below. The 
superiority of WNC controller for such a system is compared with the single 
neuron RBFNN controller. 
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Figure 25: transient response of local mode of oscillation 
 
 

Table: system convergence time under different conditions of UPFC model 
 

Neuro Model Hidden Nodes Wave-function converging Time 
BP-FF 6 symlet 12 sec 

BP-FF 15 symlet 19 sec 

BP-FF 30 Symlet 21 sec 

RBF 6 Biorthogonal-2.2 11 sec 

RBF 15 Biorthogonal-2.2 17 sec 

RBF 30 Biorthogonal-2.2 19 sec 
 
 

 The observation developed for various neuro models’ using both spectral 
transformations is carried out. The numbers of intermediate neurons are varied with 
transformation approach. The convergence time taken to make a decision for such a 
system is outlined in the table given. 
 
 
Conclusion 
In this paper, the design of two continually on-line trained neuro-controllers with 
wavelet feature is presented. This method provides adaptive nonlinear indirect control 
of the series and shunt inverters of UPFC. It has been shown here that the two 
separate wavelet based neuro controllers are able to identify successfully the hybrid 
dynamics of UPFC and power system. The results prove that wavelet trained neuro-
controller can effectively damp out the oscillations and increases the voltage stability 
margin than the conventional controller. 
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