
International Journal of Electronic and Electrical Engineering.
ISSN 0974-2174 Volume 8, Number 1 (2015), pp. 27-32
© International Research Publication House
http://www.irphouse.com

Development of an FPGA based high speed single
precision floating point multiplier

Sneha S.jumle and M. V. Vyawhare

RTMNU, India
snehajumle99@gmail.com

Abstract

Floating point arithmetic is widely used in many areas.Multipliers play an
important role in today’s digital signal processing and various other
applications. A system’s performance is generally determined by the
performance of the multiplier, because the multiplier is generally the slowest
element in the system. The way floating point operations are executed
depends on the data format of the operands. IEEE standards specify a set of
floating point formats single precision and double precision. This paper
presents an efficient FPGA implementation of Single precision floating point
multiplier using VHDL. The aim of project is design and simulation of a
floating point multiplier that supports the IEEE 754-2008 binary interchange
format, the proposed multiplier doesn’t implement rounding and presents the
significant multiplication result as is (48 bits).

Keywords – Significant multiplier, VHDL simulation.

I. INTRODUCTION
Floating point numbers are one possible way of representing real numbers in binary
format, the IEEE 754[1] standard presents two different floating point formats, Binary
interchange format and Decimal interchange format.
 Multiplying floating point numbers is a critical requirement for DSP
applications involving large dynamic range.
 My project focuses only on single precision normalized binary interchange
format. It consists of a one bit sign (S), an eight bit exponent (E), and twenty three bit
fraction (M or Mantissa). An extra bit is added to the fraction to form what is called
the significand.
 The aim of project is design and simulation of a floating point multiplier that
supports the IEEE 754-2008 binary interchange format, the proposed multiplier

28 Sneha S.jumle and M. V. Vyawhare

doesn’t implement rounding and presents the significant multiplication result as is (48
bits).
 Multiplying two numbers in floating point format is done by adding the
exponent of the two numbers then subtracting the bias from their result, and
multiplying the significant of the two numbers, and calculating the sign by XORing
the sign of the two numbers.The way floating point operations are executed depends
onthe data format of the operands. IEEE standards specify aset of floating point data
formats, single precision and double precision. The Single precision consists of 32
bits and the Double precision consists of 64 bits.

Figure 1

I. shows the IEEE single and double precision data formats

Floating point multiplication algorithm
1. Add exponents
2. Multiply fractions
3. If product is 0, adjust for proper 0
4. Normalize product fraction
5. Check for exponent overflow or underflow
6. Round product fraction

• Exponents 00000000 and 11111111 reserved
• Smallest value
– Exponent: 00000001
 Þ actual exponent = 1 – 127 = –126
– Fraction: 000…00 Þ significand = 1.0
– ±1.0 × 2–126 ≈ ±1.2 × 10–38
• Largest value

Development of an FPGA 29

– exponent: 11111110
 Þ actual exponent = 254 – 127 = +127
– Fraction: 111…11 Þ significand ≈ 2.0
 ±2.0 × 2+127 ≈ ±3.4 × 10+38

II. PROPOSED METHODOLOGY

30 Sneha S.jumle and M. V. Vyawhare

III. ROUNDING

IV. OVERFLOW/UNDERFLOWDETECTION.
Overflow/underflow means that the result‟s exponent is too large/small to be
represented in the exponent field. The exponent of the result must be 8 bits in size,
and must be between 1 and 254 otherwise the value is not a normalized one .An
overflow may occur while adding the two exponents or during normalization.
Overflow due to exponent addition maybe compensated during subtraction of the
bias; resulting in a normal output value (normal operation). An underflow may occur
while subtracting the bias to form the intermediate exponent. If the intermediate
exponent < 0 then it�s an underflow that can never be compensated; if the
intermediate exponent = 0 then it�s an underflow that may be compensated during
normalization by adding 1 to it .When an overflow occurs an overflow flag signal
goes high and the result turns to ±Infinity (sign determined according to the sign of
the floating point multiplier inputs). When an underflow occurs an underflow flag
signal goes high and the result turns to ±Zero (sign determined according to the sign
of the floating point multiplier inputs). Denormalized numbers are signaled to zero
with the appropriate sign calculated from the inputs and an underflow flag is raised.

V. Simulation results of proposed floating point multiplier

Figure 9: Simulation result of Proposed floating point multiplier Figure 10: RTL
Schematic of proposed Xilinx floating point multiplier

e = -1 e = 0 e = 1
1.00 X 2 (̂-1) = 1/2 1.00 X 2 0̂ = 1 1.00 X 2^1 = 2
1.01 X 2 (̂-1) = 5/8 1.01 X 2 0̂ = 5/4 1.01 X 2 1̂ = 5/2
1.10 X 2 (̂-1) = 3/4 1.10 X 2 0̂ = 3/2 1.10 X 2^1= 3
1.11 X 2 (̂-1) = 7/8 1.11 X 2 0̂ = 7/4 1.11 X 2 1̂ = 7/2

Development of an FPGA 31

VI. CONCLUSION
THIS PAPER PRESENTS DESIGN AND SIMULATION OF A FLOATING POINT
MULTIPLIER THAT SUPPORTS THE IEEE 754-2008 BINARY INTERCHANGE
FORMAT, THE PROPOSED MULTIPLIER DOESN�T IMPLEMENT
ROUNDING AND PRESENTS THE SIGNIFICAND MULTIPLICATION RESULT
AS IS (48 BITS), THIS GIVES BETTER PRECISION IF THE WHOLE 48 BITS
ARE UTILIZED IN ANOTHER UNIT; I.E.WITH A FLOATING POINT ADDER
TO FORM A MAC UNIT. BUT THE FLOATING POINT FMULTIPLIER CORE
GENERATED BY XILINX CORE GENERATOR DOES NOT INDICATES THE
ENTIRE 48 BITS OF MANTISSA DUE TO ROUNDING AND IS NOT
BENEFICIAL IN CASE OF DSP APPLICATION OF LARGE DYNAMIC RANGE
ESPECIALLY WHEN USING IT IN ANOTHER HIGH PRECISION FLOATING
POINT UNITS LIKE MULTIPLY AND ACCUMULATE (MAC) UNIT.

VII. REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.
[2] B. Fagin and C. Renard, “Field Programmable Gate Arrays and FloatingPoint

Arithmetic,” IEEE Transactions on VLSI, vol. 2, no. 3, pp. 365–367, 1994.
[3] N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis ofFloating Point

Arithmetic on FPGA Based Custom Computing Machines,” Proceedings of the
IEEE Symposium on FPGAs for CustomComputing Machines (FCCM’95),
pp.155–162, 1995.

[4] L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEESingle
Precision Floating Point Addition and Multiplication on FPGAs,”Proceedings of
83 the IEEE Symposium on FPGAs for CustomComputing Machines
(FCCM’96), pp. 107–116, 1996.

[5] A. Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs",

32 Sneha S.jumle and M. V. Vyawhare

Proc. of IEEE ICASSP, 2001, vol. 2, pp.897-900.
[6] B. Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA,”

Conference Record of the Thirty-Sixth Asilomar Conference onSignals, Systems,
and Computers, 2002

[7] Mohamed Al-Ashrafy, Ashraf Salem and Wagdy Anis” An Efficient
Implementation of Floating PointMultiplier” Electronics, Communications and
Photonics Conference (SIECPC), 2011 Saudi International

