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Abstract 
 

This paper presents a Comparative Study of NLMS (Normalized Least Mean 
Square) and ENSS (Error Normalized Step Size) LMS (Least Mean Square) 
algorithms. For this System Identification (An Adaptive Filter Application) is 
considered. Three performances Criterion are utilized in this study: Minimum 
Mean Square error (MSE), Convergence Speed, the Algorithm Execution 
Time. The Step Size Parameter (µ) in both algorithms is chosen to obtain the 
same exact value of Misadjustment (M) equal to 2.5%. Simulation Plots are 
obtained by ensemble averaging of 200 independent simulation runs.  
 
Keywords: MSE, Convergence Speed, Execution Time, System 
Identification, Misadjustment, Step Size, EMSE. 

 
 
Introduction 
An Adaptive filter is very generally defined as a filter whose characteristics can be 
modified to achieve some end or objective, and is usually assume to accomplish this 
modification (or “Adaptation”) automatically, without the need for substantial 
intervention by the user. Adaptive filter algorithms have been very popular since last 
few decades and still it is very useful in many fields of image, speech and signal 
processing and communication [1]. 
 The choice of one algorithm over other is determined by one or more factors like 
Convergence speed, Misadjustment, Robustness and Execution Time [1]. 
Convergence speed is Number of iterations required in response to stationary inputs, 
to converge “close enough” to the optimum Wiener solution in the Mean-Square error 
(Mean Square value of the difference between the desired response and actual output) 
sense. Misadjustment provides a quantitative measure of the amount by which the 
final values of mean square error, averaged over an ensemble of adaptive filters, 
deviates from the minimum mean square error produced by the Wiener filter. For an 
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Adaptive filter to be robust, small disturbances can only result in small estimation 
errors. Execution Time is total time required for the execution of the algorithm. 
 System Identification – The notion of a mathematical model is fundamental to 
science and engineering. In the class of application dealing with identification, an 
adaptive filter is used to provide a linear model that represents the best fit (in some 
sense) to an Unknown System. The Unknown System and adaptive filter are driven by 
the same input. The plant output supplies the desired response for the adaptive filter 
[2]. A block of system identification setup is shown in Fig.1. The aim is to estimate 
the impulse response, h, of the unknown system. The adaptive filter adjusts its 
weights, w, using one of the LMS-like algorithms, to produce an output y(n) that is as 
close as possible to the plant output d(n). When MSE is minimized, the adaptive filter 
coefficients, w, are approximately equal to the unknown system coefficients, h. x(n) is 
the input signal for both unknown  system and adaptive filter. The internal plant noise 
is represented as a additive noise n(n) [3].  

 

 
 

Figure 1: System Identification 
 
 
 The performance of an algorithm for system identification can be measured in the 
terms of its misadjustment M, which is a normalized mean square error defined as the 
ratio of the steady state excess mean-square error (EMSE) to the minimum MSE [5]. 
  M =    EMSEss 
  ----------------------------- (1) 
  MSEmin  

 
 The MSE at the nth iteration is given by:  
  EMSE(n) = MSE(n) – MSEmin , (2) 
 
 Where 
  MSE(n) = E[ |e(n) |2 ] 
 
 However, the MSE in (3) is approximately estimated by averaging |e(n) |2  over J 
independent trials of the experiment. Thus, (3) can be estimated as:  
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                                                    J           
  MSE(n) =  1  Σ   |e(n)|2                        (3) 
                                               J  n=1 
 
 From (2), we can write:  
  EMSEss = MSEss – MSEmin (4) 
 
 The value of MSEmin obtained when the coefficients of the unknown system and 
the filter match, is equal to irreducible noise variance σn

2 for zero mean noise n. 
 
 
Adaptive Algorithms 
The Adaptive NLMS Algorithm: 
The adaptive NLMS algorithm takes the following form: 
  w(n+1)=w(n)+(µ e(n)x(n)/ (ε + xT(n)x(n))) (5) 
  y(n)=wT(n)x(n) (6) 
  e(n)=d(n)-y(n) (7) 
 
where w(n)=[w0(n) w1(n)………wN(n)]T (N+1 being the filter length) is the weight 
vector, µ is the convergence parameter(sometimes referred to as step size),e(n) is the 
error, d(n) is the desired output, y(n) is the filter output, ε is a constant prevents 
division by a very small number of data norm, x(n)=[x(n) x(n-1)………..x(n-N+1)]T

 is 
input vector [6]. 
 
The Error Normalized Step Size LMS (ENSS-LMS) Algorithm: 
The ENSS-LMS algorithm takes the following form: 
  w(n+1)=w(n)+ µx(n)e(n)/(1+||eL(n) || 2) (8) 
  y(n)=wT(n)x(n) (9) 
 e(n)=d(n)-y(n) (10) 
                   L-1 
 Where  ||eL(n) ||2 = Σ  |e(n-i)|2    
                 i=0 
 
 The parameters µ and L in the algorithm are appropriately chosen to achieve the 
best trade off between convergence speed and low final MSE [4]. 
 
 
Simulation Results 
In this simulation the input signal x (n) for all algorithms is a zero mean white 
Gaussian random signal of unit variance. The length of the unknown System impulse 
response is assumed to be N=4 and the Impulse Response (h) of this Unknown 
System is assumed to be [1, 0.7, 0.5, -0.2]. The internal unknown system noise n(n) is 
assumed to be white Gaussian with mean equals zero and variance equals 0.09. The 
Step Size Parameter (µ) in all Algorithms is chosen to obtain the same exact value of 
Misadjustment (M) equals 2.5%. The value of M is estimated by averaging excess 
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MSE over iteration number (n) after the algorithm has reached steady state. 
Simulation plots are obtained by ensemble averaging of 200 independent simulations 
runs. 
 Simulation plots of MSE for different values of step size parameter (µ) for NLMS 
and ENSS-LMS algorithms are shown in fig. 2 and fig. 3 respectively. The 
comparison of plots shows that variation of MSE curves with respect to step size 
parameter (µ) near the steady state region is less in ENSS-LMS algorithm as that of 
NLMS algorithm.  

 

 
 

Figure 2: MSE curves for different values of step size parameter for NLMS algorithm 
 

 
 

Figure 3: MSE curves for different values of step size parameter for ENSS-LMS 
algorithm 
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 The simulation plots of Misadjustment for different values of step size parameter 
(µ) for both algorithms are shown in fig. 4 and fig. 5. These curves are used to find 
the step size (µ) for which Misadjustment is 2.5%.The value of step size parameter 
(µ) for NLMS and ENSS-LMS obtained are 0.0201 and 0.8 respectively. 

 

 
 

Figure 4: Misadjustment curves for different values of step size parameter for NLMS 
algorithm 

 

 
 

Figure 5: Misadjustment curves for different values of step size parameter for ENSS-
LMS algorithm. 
 
 
 The individual MSE curves for NLMS and ENSS-LMS algorithm for the case 
when Misdjustment is 2.5% are shown in fig. 6 and fig. 7 and combined MSE curves 
of both algorithms is shown in fig. 8. From the fig. 8 it is found that convergence 
speed of ENSS-LMS is faster than NLMS algorithm. 
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Figure 6: MSE curve for NLMS algorithm 
 

 
 

Figure 7: MSE curve for ENSS-LMS algorithm 
 

 
 

Figure 8: Combined MSE curves for NLMS and ENSS-LMS algorithms. 
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 Fig. 9 shows the Execution Time for NLMS and ENSS-LMS algorithms. The 
Execution Time for LMS algorithm is 33.6406s and that of ENSS-LMS algorithm is 
32.6406s. 

 
 

 
 

Figure 9: Execution Time for NLMS and ENSS-LMS algorithms. 
 
 
Conclusion 
In this paper a comprehensive comparative study between NLMS and ENSS-LMS 
algorithms is presented. The study is based on utilizing three performances criterion:  
Minimum Mean Square Error (MSE), Convergence Speed and algorithm Execution 
Time. Simulation results showed that MSE performance of ENSS-LMS algorithm is 
better than NLMS algorithm The Execution Time of ENSS-LMS algorithm is less 
than that of NLMS algorithm. The comparison also shows that variation of MSE 
curves with respect to step size parameter (µ) near the steady state region is less in 
ENSS-LMS algorithm as that of NLMS algorithm. 
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