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Abstract 

New generalized parametric M- measures of information are defined and 
studied some   of their properties. Application of these measures is 
provided to the discipline of  coding theory. 

Keyword: Entropy, directed divergence, mean codeword length, uniquely 
decipherable code.  

 

INTRODUCTION 

Shannon led to the discovery of information theory. As there is similarity between 
Shannon’s uncertainty measure and entropy function, this subject is closely related to 
thermodynamics and Physics. It then realization that entropy is a property of any 
stochastic system and this concept is widely used now. The system disorders over 
time which can be described by the second law of thermodynamics, which states that 
the entropy of the system cannot decrease spontaneously. In the present day, 
information theory is chiefly concerned with communication system but it has 
application in statistics, information processing and computing. 

Shannon (1948)[13] entropy, also known as measure of uncertainty for a probability 
distribution   npppP ,...,, 21  is given by 
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 with the convention that .00log0  It is to be noted that the base of logarithm is 
assumed to be 2, unless until specified. 

Besides entropy, directed divergence is another basic and fundamental concept 
usually applied in information theory. The most important and desirable measure of 
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directed divergence associated with the probability distributions  npppP ,...,, 21  
and  nqqqQ ,...,, 21  is due to Kullback and Leibler(1951) [9] and is given by 
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The above information measures can be used in various field like genetics, finance, 
economics, political science, biology, analysis of contingency of tables, statistics, 
signal processing and pattern recognition. It should be noted that the above non-
parametric measures are insufficient while use in a number of disciplines. For 
example, Shannon’s measure of entropy always leads to exponential families of 

distributions but in practice, many families and distributions are not exponential in 
nature. Therefore restriction of Shannon’s entropy means restriction of only ex-
ponential family thus the system is leaved to be least flexible. The use of generalized 
parametric measures of information can be an alternative. Here the word ‘generalized’ 

means to be more flexible and not superior or more useful. 

Csiszar(1977)[2] investigated Shannon’s measure and also made a summary of 

importance of this measure and it generalization with their scope in the coding theory. 
Renyi(1961)[12], Havrda and Charvat(1967)[5] etc. investigate and studied some 
other parametric generalization of Shannon’s entropy. Garrido(2011)[4] studies a 
variety of information measure and their mutual relationships. Dahl and 
Osteras(2010)[3] used Shannon’s entropy as a measure of information content in 
survey data and information efficiency was also defined by them as the empirical 
entropy divided by the maximum entropy that can be attained. Generalized entropies 
were introduced by Mathai and Haubold(2007)[10]. They studied their properties and 
examined those situations where generalized entropy of order and type   can be 
used in variety of mathematical models. 

Present paper objective is introduction of new measures of information and to extend 
their use in coding theory. The organization of this paper is as follows: In section 2, 
new measures of entropy have been described along with necessary and desirable 
property. Section 3 deals with the use of proposed measures in the discipline of 
coding theory. 

 

2. NEW GENERALIZED PARAMETRIC MEASURE OF ENTROPY 

In this section, we propose a new generalized measure of entropy to be called 
parametric M-entropy for a probability distribution 
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This new generalized measure of entropy is given by the following mathematical 
expression: 
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with the convention 100  . 

We observe that for 1  , measure (3) reduce to Shannon’s (1948) [13] entropy as 
shown below: 
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Hence, the measure (3) is generalization of Shannon’s measure. 

 

Essential properties of measure: 

1.  PM  is non-negative, that is,   0PM . 

Proof: Case-I: When 10   
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Case-II: When 1  
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that is, iff           0log
1
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i
ii pp   which is true. 

2.   PM  is permutationally symmetric as it does not change if nppp ,...,, 21  are re-
ordered among themselves. 

3.   PM  is a continuous function of ip  for all ip ’s. 

4.  Concavity:  PM  is a concave function of ip  for all ip ’s. 

To prove concavity property, we proceed as follows: We have 
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Now, we know that for all ni ,...,2,1 , we have ,10  ip  
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So  PM  is a concave function of ip . Similarly, it can be proved that  PM  is a 
concave function of all ip ’s. Hence, under the above condition  PM is a correct 
measure of entropy. 

 

Desirable Properties of measure: 

1.  Expansibility:  

       We have     nn pppMpppM ,...,,0,,...,, 2121    . That is, the entropy does 
 not change by the inclusion of an impossible event.  

2.  For n  degenerate distribution, we have   0PM . This indicates that for 
 certain outcomes, the uncertainty should be zero. 

3.  Maximization of entropy:  Maximize the entropy function  PM  subject to 

 the natural constraint 1
1




n

i
ip , by using Lagrange’s method, we have 
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 Differentiating equation (6) with respect to nppp ,...,, 21  and equating the 

 derivatives to zero, we get nppp  ...21   . This further gives i
n

pi 
1 . 

 Thus we observe that the maximum value of  PM  arises for the uniform 
 distribution. 

4.  Maximum value: Maximum value of the entropy is given by    
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 again a desirable result as the maximum value of entropy should always 
 increase. 

5.   Non-additive: 

 The entropy of the joint probability distribution denoted by 
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Also, we have 

       




















  
 



























 


n

i

n

j

q
j

p
i

ji qpQMPMQMPM
1 1

11

1
11
















   (8) 

From equation (7) and (8), we have 
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Thus, we claim that the new measure of entropy  PM  introduced in (3) 
 satisfies all the essential and as well as desirable properties of being entropy 
 measure, it is a valid measure of entropy. 
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3. NEW GENERALIZED MEASURE OF DIRECTED DIVERGENCE 

We propose a new generalized parametric measure of directed divergence of 
probability distribution  npppP ,....,, 21 from another probability distribution

 nqqqQ ,...,, 21 , given by 
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It is observe that for 1 in (9), we get Kullback - Leibler’s(1956)[9] measure of 
directed divergence. 

Thus, we claim that the measure (9) is a correct measure of directed divergence as it 
satisfies all the requisite properties. 

 

4. SOME NEW SOURCE CODING THEOREM 

4.1 Source coding theorem with generalized measure of entropy 

        Let nxxx ,......., 21 be n inputs which have to be encoded in terms of an alphabet of 
size  2DD . If nlll .......,, 21  be the n  codeword lengths and nppp ,....,, 21  be the 
probabilities, then the arithmetic mean L  of the codeword length is   
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Shannon [13] minimize (10) subject to Kraft’s [8] inequality 
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for uniquely decipherable codes and proved that the minimum value of L lies between 
)(PH  and 1)( PH , where the logarithm in the definition of Shannon entropy is 

taken in base D . This result indicates that the Shannon entropy )(PH is the 
fundamental limit on the minimum average length of any code constructed for the 
source. The lengths of the individual code words, are given by                              
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Also, we have the following relation between the Shannon’s entropy and the 
generalized entropy (3)   
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Now, we consider the following cases: 

Case-I When 10  , we have 
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Case-II When 1 , we have 
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The corresponding Lagrangian is given by 
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4.2 Source coding theorem via new measure of directed divergence 
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  1PH .  Hence, we obtain the following result     1 PHLPH  which is the 
Shannon’s source coding theorem for uniquely decipherable codes. 
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