
International Journal of Electronic and Electrical Engineering.
ISSN 0974-2174 Volume 7, Number 8 (2014), pp. 799-802
© International Research Publication House
http://www.irphouse.com

Comparison of Nature Inspired Metaheuristic Algorithms

Kanika Malik 1 and Akash Tayal 2

MTech Student ECE, IGDTUW, New Delhi
2ECE, IGDTUW, New Delhi

Abstract

Metaheuristics is basically a higher level procedure, which generates a simpler
procedure to solve an optimization problem. Optimization is the process of
adjusting the inputs to or characteristics of a device, mathematical process, or
experiment to find the minimum or maximum output or result. The input
consists of variables; the process or function is known as the cost function,
objective function, or fitness function; and the output is the cost or fitness.
Since cost is something to be minimized, optimization becomes minimization.

By searching over a large set of feasible solutions, metaheuristics can often
find good solutions with less computational effort than algorithms, iterative
methods, or simple heuristics. It is a refinement to the exhaustive search
includes first searching a coarse sampling of the fitness function, then
progressively narrowing the search to promising regions with a finer toothed
comb. It speeds convergence and increases the number of variables that can be
searched but also increases the odds of missing the global minimum.

Metaheuristic algorithms are approximate and non-deterministic and are
not problem specific. Metaheuristics are used for combinatorial optimization
in which an optimal solution is sought over a discrete search-space, like the
travelling salesman problem, where the search-space of candidate solutions
grows faster than exponentially as the size of the problem increases, which
makes an exhaustive search for the optimal solution infeasible.

Many metaheuristic algorithms have inspiration coming from Nature.
There are many such examples where the organisms (a population or a swarm)
have optimized and adapted themselves to survive in this world. Some such
algorithms are: Genetic Algorithm, Ant Colony Optimization, Particle Swarm
Optimization, Cuckoo Algorithms and many more.

In this paper, the above mentioned algorithms are applied on Travelling
Salesman Problem for comparison of their performance. The evaluation
criteria is kept as the ”Time Taken to find the Optimum Solution”as
benchmark

800 Kanika Malik and Akash Tayal

Keywords: Metaheuristics, Optimization, Genetic Algorithm, Particle Swarm
Optimization, Ant Colony Optimization, Cuckoo Algorithm, Travelling
Salesman Problem.

Introduction
Optimization is the process of adjusting the inputs to or characteristics of a device,
mathematical process, or experiment to find the minimum or maximum output or
result. It is basically method to find the best possible solution to a problem out of the
various available solutions, for there could be no single right way of doing a thing but
there could be multiple possible ways. Optimisation is the process to evaluate the
different solution sets on basis of criteria and rank the solutions and thus find the best
amongst them.
 One of the simplest problem of such kind is Travelling Salesman Problem, in
which a salesman has to cover number of cities spread over area and order of covering
is to determined for minimising the travelling time.

Algorithms
Genetic Algorithm
Genetic algorithms emulate the evolutionary behaviour of biological systems. They
generate a sequence of populations of candidate solutions to the underlying
optimization problem by using a set of genetically inspired stochastic solution
transition operators to transform each population of candidate solutions into a
descendent population. Survival of the fittest translates into discarding the
chromosomes with the highest cost.[1]
 Two chromosomes are selected from the mating pool of N chromosomes to
produce two new offspring. Random mutations alter a certain percentage of the bits in
the list of chromosomes. Mutation is the second way a GA explores a cost surface. It
can introduce traits not in the original population and keeps the GA from converging
too fast before sampling the entire cost surface. A single point mutation changes a 1 to
a 0, and visa versa. Mutation points are randomly selected. After the mutations take
place, the costs associated with the offspring and mutated chromosomes are
calculated, the bottom chromosomes are rejected. The number of generations that
evolve depends on whether an acceptable solution is reached or a set number of
iterations is exceeded. After a while all the chromosomes and associated costs would
become the same if it were not for mutations. At this point the algorithm should be
stopped.

Particle Swarm Optimization
The algorithm was inspired by the social behaviour of animals, such as bird flocking
or fish schooling. PSO is similar to the continuous GA in that it begins with a random
population matrix. Unlike the GA, PSO has no evolution operators such as crossover
and mutation. Each particle moves about the cost surface with a velocity. The
particles update their velocities and positions based on the local and global best

Comparison of Nature Inspired Metaheuristic Algorithms 801

solution. The PSO algorithm updates the velocity vector for each particle then adds
that velocity to the particle position or values. Velocity updates are influenced by both
the best global solution associated with the lowest cost ever found by a particle and
the best local solution associated with the lowest cost in the present population. If the
best local solution has a cost less than the cost of the current global solution, then the
best local solution replaces the best global solution.

Ant Colony Optimization
Ants can find the shortest path to food by laying a pheromone (chemical) trail as they
walk. Other ants follow the pheromone trail to food. Ants that happen to pick the
shorter path will create a strong trail of pheromone faster than the ones choosing a
longer path. Since stronger pheromone attracts ants better, more and more ants choose
the shorter path until eventually all ants have found the shortest path.
 The ACO is a natural for the traveling salesperson problem [1]. It begins with a
number of ants that follow a path around the different cities. Each ant deposits a
pheromone along the path. The algorithm begins by assigning each ant to a randomly
selected city. The next city is selected by a weighted probability that is a function of
the strength of the pheromone laid on the path and the distance of the city. Short paths
with high pheromone have the highest probability of selection. On the initial paths,
pheromone is laid on inefficient paths. Consequently some of this pheromone must
evaporate in time or the algorithm will converge on an inefficient path.

Cuckoo Algorithm
It was inspired by the peculiar behaviour of some cuckoo species of laying their eggs
in the nests of other host birds (of other species). I f a host bird discovers the eggs are
not their own, it will either throw these alien eggs away or simply abandon its nest.
Some cuckoo species have evolved in such a way that they specialize in the mimicry
in colours and pattern of the eggs of host species [1, 2, 4].
 Each egg in a nest represents a solution, and a cuckoo egg represents a new
solution. The aim is to use the new and potentially better solutions (cuckoos) to
replace a not-so-good solution in the nests. In the simplest form, each nest has one
egg. The algorithm can be extended to more complicated cases in which each nest has
multiple eggs representing a set of solutions.

Simulation Result
All the algorithms stated above were simulated in MATLAB for Travelling Salesman
Problem for Number of different no. of cities (Nmaximum)=30. The time taken to
complete the iterations is used to compare the results. The time is taken form the
MATLAB profile which can give execution time of the code. the results are as
follows:

802 Kanika Malik and Akash Tayal

Table 1: Simulation Time in seconds for different Algorithms for N no. of cities in
TSP

No of cities GA ACO Cuckoo PSO
N Total time Total time Total time Total time
5 1.001 1.252 3.038 0.466

10 0.669 3.898 2.076 0.413
20 0.538 16.537 2.833 0.77
30 0.526 38.8 3.983 1.422

Results
With the above results it could be seen that for smaller number of N (cities), the
simulation time for Genetic Algorithm and Particle Swarm Optimisation is less but
increases with increase in N. Whereas in ACO algorithm, the simulation time
explodes with increasing N. At the same time, Cuckoo Search algorithm though gives
larger simulation time for small values of N also, but the time remains almost constant
with increasing number of cities (N).
 Cuckoo search algorithm has lesser controlling parameters as compared to Genetic
Algorithm and Particle Swarm Optimisation, thus it could a preferred Algorithm for
problem with large iterations required and where the controlling parameters are
preferred minimum. For applications requiring less number of iterations and fine
control over the search, Genetic Algorithm or PSO is a better option.

References

[1] X. S. Yang, Nature-inspired metaheuristic algorithms, Luniver Press, 2008.
[2] X. S. Yang and S. Deb, Eagle strategy using Levy walk and firefly algorithms

for stochastic optimization, in Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), Studies in Computational Intelligence, Springer
Berlin, vol. 284, pp. 101-111, 2010.

[3] X.-S. Yang and S. Deb,”Engineering optimisation by cuckoo
search,”International Journal of Mathematical Modelling and Numerical
Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[4] X.-S. Yang,”Cuckoo search via l´evy flights,”in Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. World Congress on. IEEE, 2009, pp. 210–214.

[5] M. H. Horng and T. W. Jiang,”The codebook design of image vector
quantization based on the firefly algorithm,”Computational Collective
Intelligence, Technologies and Applications, LNCS, Vol. 6423, pp. 438-447,
2010.

[6] M. H. Horng,”vector quantization using the firefly algorithm for image
compression,”Expert Systems with Applications, Vol. 38, (article in press) 12
Aug. 2011

[7] http://www.math.tamu.edu/~mpilant/math614/chaos_vs_random.pdf

