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Abstract 
 

Conventional GPS (Global Positioning System) is based on linear propagation 
of photons. In conventional Global Positioning Systems, signals are send from 
the satellite to Earth. These signals contain timing information. Using the 
timing information in the GPS signal and the time at which these signals are 
received, position of the receiver can be determined. In this paper, corrections 
to GPS for range and bearing on curved space-time produced by gravitational 
field are determined. The aim is to determine the range and bearing (rf, φf) of a 
target based on the co-ordinate time taken by a photon in propagating from a 
transmitter on the surface of the earth to the target, taking gravitational effects 
into account 
 
KEY TERMS: GPS, Null Geodesics, Schwarzchild metric, Euler Lagrangian, 
Metric perturbation 

 
 
INTRODUTION 
If gravitational effects on photon propagation are ignored, then the photon will 
propagate along a straight line and the range and bearing of the target relative to the 
earth’s center can be immediately determined by the time taken tf for the photon to 
propagate and the angle at which the photon pulse was sent. The space time is altered 
by presence of mass distributions. Presence of gravitational body causes photons to 
take a curved path. In the presence of gravitation, according to Einstein’s general 
theory of relativity, the photon propagation trejectory is described by a null geodesic 
associated with the metric corresponding to the gravitational field. This metric is the 
Schwarzchild metric. In this paper we determine the proper range and bearing and the 
proper time of the transmitted signals in curved space time is determined. The change 
in distance, bearing and time due to perturbations in the transmitted signals by 
gravitational bodies is determined. 
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PHOTON TRAJECTORY IN GRAVITATIONAL FIELD 
The Schwarzschild metric describes the space time surrounding a spherical non 
rotating mass. In spherical polar coordinates [(x0, x1, x2, x3)=(t, r, θ, φ)], the line 
element can be written as [7]  

ଶݏ݀  = −  ቀ 1 −  ଶெ
௥

 ቁ ଶݐ݀  +  ቀ1 −  ଶெ
௥

 ቁ
ିଵ

ଶݎ݀   + ଶߠ݀ ଶݎ  +  ଶ.  (1)߶݀ߠ ଶ݊݅ݏଶݎ 
 
 Where  
 τ = Proper time, measured by a clock moving along the test particle 
 c = speed of light 
 t = Time measured by stationary clock far from body 
 r

 
= radial coordinate measured as circumference divided by 2π of a sphere centred 

around the massive body 
 θ = Co latitude.(Angle from north) 
 φ = Longitude 
 r

s 
= 2GM/c

2 
Schwarzschild radius 

 
 Schwarchild metric is perturbed by the presence of other bodies like comets, 
planets and other gravitational objects. 
 Let there be two points r2 = (r2, θ2, φ2) and r1 = (r1, θ1, φ 1) A photon propagates 
from r1 to r2. The photon follows the null geodesic equation. 
  0 = ݀߬ଶ = – ଶݐ݀ (ݎ)ߙ  ଶ /ܿଶ - ௥ݎ݀ ଵି(ݎ)ߙ 

మௗఏమ

௖మ
 - ௥

మ௦௜௡మ(ఏ)ௗØమ

௖మ
  (2) 

 
 Where τ = proper time measured by a clock moving along the particle  
(ݎ)ߙ   =  ଵିଶ௠

௥
  

 ݉ =  ீெ
௖మ

 
 
 A curve in space time which has the property that the infinitesimal interval 
between any two neighboring points on the curve equals zero is called null geodesic. 
Let us assume for simplicity that dθ = 0 with specifically θ = ߨ 

2ൗ  i.e., the photon 
trajectory is in the xy plane. Then the null proper time condition is  
 0 = α(r) dt2 - α(r)-1 ௗ௥మ

௖మ
 - ௥

మ ୢథమ

௖మ
  (3)  

 
 Suppose we assume that dτ is non-zero but tends to zero. The Euler Lagrangian 
equations are 
 Ə ℒ

 Ə௧మ
 = K 

 Ə ℒ
 ƏØభ

ߚ− =  ܿଶൗ  

 Where K, ߚ are constants and λ is a parameter along the geodesic  
ᇱߦ   =  ௗక

ௗఒ
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 Where ߦ the coordinate system and 

 ℒ ( r, r1, t1, φ’ ) = [α(r) t| 2 – (ݎ)ߙିଵ (௥
భ)మ

௖మ
 − ଶݎ   ߶

ᇱ ଶ

ܿଶൗ  ]
భ
మ. (4) 

 
 Thus we get  
 α(r) ௗ௧

ௗఛ
 = K, r2ௗథ

ௗఛ
 = β 

 
 Taking the ratio of these two equations we get  
  (r2 / α(r) dφ / dt = β / K = A  (5) 
 
 Where A is a constant 
 The other equation is the null proper time condition 

 α(r) – (α(r)-1 / c2 ) ቀௗ௥
ௗ௧
ቁ
ଶ
 - ௥

మ

௖మ
 ቀௗØ
ௗ௧
ቁ
ଶ
= 0  (6)  

 
 Thus we have two different equations for two functions of time r(t), φ(t) which 
describe the complete photon trajectory in the gravitational field of earth. 
 

TABLE 1: UNPERTURBED DISTANCE 
 

Φ π/2 π/3 π/4 π/6 
R 1.8830e+011 1.7911e+011 1.7074e+011 1.5534e+011 

 
TABLE 3: UNPERTURBED FINAL TIME 

 
Φ π/2 π/3 π/4 π/6 
tf 5.788 5.7833 5.7781 5.7864 

 
 
TRAJECTORY OF A PHOTON IN GPS WHEN PERTURBED 
Let the perturbation be represented by ϵ then we can write from equation (2),  
  dτ2 = [α(r) + ϵ h1 (r, φ’ ) dt2 - α(r)-1 + ϵ h2 (r, φ’ ) dr2 – r2 dϕ2  (7) 
 
 Now Lagrangian ℒ is represented as [2, 7] ℒ = (α(r) - α(r)-1̇ݎଶ −  ̇߬ = ଶ߶̇ଶ)1/2ݎ
 ௗ

ௗ௧
 Ə ℒ

 Ə஦
 = 0 → r2 ௗఝ

ௗఛ
 = β (a constant)  

 ℒሚ = ௗఛ
ௗఒ

ௗ௧ ݎ̇ = 
ௗఒ

 = ൤(ݎ)ߙ ௗ௧
ௗఒ

ଶ
−  α(r)ିଵ ቀௗ௥

ௗఒ
ቁ
ଶ
− ଶݎ   ቀௗఝ

ௗఒ
ቁ
ଶ

 ൨1/2  (8) 

 ௗ
ௗఒ

 Ə ℒ෩

 Əቀ೏೟೏ഊቁ
 = Ə ℒ෩

 ௗ௧
 = 0  (9) 

 α(r) ௗ௧
ௗఛ

=  (a constant) ܭ
 
 Solving the above equations we get the unperturbed trajectory in curved space 
time as 
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଴(߶଴ݎ   ଵି(ߚ, = ଵ
ఉ

 sin ቀ߶଴ + sinିଵ ఉ
ோ
ቁ + ଶ௠

ఉమ
 ∫థబ଴ exp ቀ∫ tan ቀݔ +  sinିଵ ఉ

ோ
ቁ థబݔ݀

థబ
| ቁ  tan ቀ߶଴ᇱ + sin ఉ

ோ
ቁ sinଶ ቀ߶଴ᇱ + sinିଵ ఉ

ோ
ቁ ݀߶଴ᇱ   (10) 

 
 The final time can be determined from  
௙ݐ   = ଵ

ఉ
 ∫ ൯݀߶଴ߚ,ଶ൫߶଴ݎ

థ೑
଴  (11) 

 
 We can now treat the stochastic metric perturbation case along the same lines  
 τ| = ௗఛ

ௗఒ
 = [(α(r) + ϵ h1 (r, φ))t|2- (α(r)-1 + ϵ h2 (r, φ))r|2 – r2 φ|2 ]1/2 

 
the equations are Ə ℒ

 Ə௧భ
= because Ə ℒ ; ܭ

 Ə୲
 = 0  

 ௗ
ௗఒ

 Ə ℒ
 Əథభ

=  Ə ℒ
 Əம

, ߬|ଶ = 0  (12) 
 
 The last condition is to be incorporated at the end. Thus  

 (α(r) + ϵ h1 ௗ௧
ௗఛ

= ௗ - ܭ
ௗఒ

(r2 ௗథ
ௗఛ
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ఢ(௛భ,ഝ௧|మି௛మ,ഝ௥|మ
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ௗఛ
ቀݎଶ ௗథ

ௗఛ
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ଶ
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ௗఛ
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 Solution to the above expression is  
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ቆி(థబ,ఉ)ି ೝబ

య
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೏ഝభ
೏ഝబ
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 Where,  
(ߚ,଴߶)ܨ  =  
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 We can write the above equation of the form 
  ௗథభ

ௗథబ
{(ߚ,଴߶)ܩ} =   (ߚ,଴߶)ܪ

 
 Therefore 

  ௗథభ
ௗథబ
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TABLE 2: PERTURBED DISTANCE 
 

Φ DISTANCE 1.0e+011 * 
π/2 1.8830 1.8834 1.8839 1.8841 1.8843 1.8840 1.8835 1.8834 1.8835 1.8839 
π/3 1.7911 1.7907 1.7932 1.7927 1.7943 1.7951 1.7947 1.7946 1.7944 1.7948 
π/4 1.7074 1.7050 1.7079 1.7091 1.7083 1.7081 1.7085 1.7089 1.7107 1.7122 
π/2 1.5534 1.5530 1.5552 1.5555 1.5588 1.5568 1.5582 1.5590 1.5630 1.5591 

 
 

TABLE 4: PERTURBED FINAL TIME 
 

Φ I II III IV 
π/2 5.7833 5.7781 5.7829 5.7864 
π/3 3.8683 3.8692 3.8635 3.8692 
π/4 2.8978 2.8998 2.9018 2.9097 
π/6 1.9477 1.9488 1.9465 1.944 

 
 

TABLE 5: PERTURBED VALUES OF φ 
 

Φ PERTURBED VALUE 
1.0470 0.3130 
0.7854 0.2371 
0.5236 0.1645 

 
 

TABLE 6: RMSD AND NORMALISED RMSD UNDER NOISY CONDITION 
 

Φ DISTANCE RMSD NRMSD 
π/3 1.7911*1013 2.4944*108 0.1699 
π/4 1.7074*1013 4.2809*108 0.1586 
π/6 1.5534*1013 5.3588*108 0.1853 

 
 
 Photon pulse is repeatedly send to target.Angle φ is varied until the target receiver 
registers a click. The receiver then conveys to the transmitter the time tf at which the 
click was registered. The transmitter then computes the target receivers range and 
bearing based on above equations. 
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Fig 1: r vs φ curve. As φ is varied distance increases 
 
 
CONCLUSIONS: 
We can determine the position of target more accurately if we take gravitation due to 
massive objects into account. There is difference in distance and time when we take 
the gravitational forces into account. Distance and time varies upto one hundredth of 
their values when random perturbations are taken into account. For short distances 
this change is very less but for larger distances the errors due to perturbations are also 
very large and they must be taken into account for accurate position 
determination.(Table 3 and 4)As the bearing is perturbed, there will be change in the 
distance and consequently there will be change in time (Fig 1).These factors must be 
taken into account while determining the position of the target. 
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