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Abstract 
 

Over the past three decades, Model Predictive Control (MPC) has 
emerged as one of the most powerful and widely used control 
algorithm. Model predictive control uses the explicit process model to 
predict the future behaviour of a plant. This algorithm also takes into 
consideration the various constraints in input and output while 
designing the controller. This paper explores the capability of model 
predictive control algorithm in controlling the temperature parameter 
of a non linear cascaded Continuous Stirred Tank Reactor (CSTR) 
process model. The model predictive control algorithm is implemented 
in LabVIEW using the control and simulation toolkit and the reference 
tracking capability of the system is verified. The simulated 
performance of the system widens the option of using LabVIEW 
platform in designing MPC for a non-linear multi input- multi output 
(MIMO) process. 
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1. Introduction 
The change in control action in case of traditional feedback controllers like PID takes 
place in response to the change in output set point of a system. Contrary to that, model 
predictive control is a technique that tries to create controllers which can change its 
control action even before there is an actual change in the output set point. This is 
made possible by the long range predictive ability of model predictive control which 
distinguishes it from other control algorithms. The predictive ability of MPC is usually 
used in addition with the traditional feedback operation so that the control action is 
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smoother and the output tracks the set point easily. The five major parts of MPC are 
the process model, the cost function, process constrains, prediction and control 
horizons. 

Model- For MPC algorithm it is important to have a model of the process which is 
under control. The linearized discrete state space model, as in (1), is used in this work 
for prediction purpose.  
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(1)  

 
Prediction horizon-It is defined as the number of samples in future for which the 

MPC controller predicts the plant output. 
Control horizon-It is defined as the number of samples within prediction horizon 

during which the MPC controller affects the control action 
Cost function- The main objective of MPC controller is to calculate a set of control 

action values such that the cost function is minimized as much as possible. The cost 
could depend on the reference tracking error, deviation of the controller output and the 
unbounded movement of the controller output 

Constraints- There could be many physical parameters that may affect the input or 
output operation which are known as constraints. Model predictive control tries to 
prevent the violations of these constraints in accordance with whether they are hard or 
soft constraints. A hard constraint should not be violated under any circumstances 
whereas the soft constraint could be violated when some other constraint has a higher 
priority. 

The designed MPC was validated on a cascaded continuous stirred tank reactor 
process, which are commonly used in many food and chemical industries. For 
achieving qualitative product it is important to maintain the component balance of 
chemicals. This could be achieved by controlling the temperature of the process 
medium. In this work a cascaded CSTR process was reckoned and temperature of both 
reactors’ medium was chosen as parameter to be controlled. The cooling water flow 
rates in both reactors were selected as manipulated variables, which will be computed 
by the MPC scheme. 
 
 
2. Cascaded CSTR process 
To implement the MPC algorithm, a two CSTR process is chosen where an 
irreversible, exothermic, first order reaction converts a reactant A to product B. An 
intermediate mixer is used to introduce a second feed in the system. As the reaction is 
exothermic in nature, a jacket with a cooling water flow in it is used to maintain the 
temperature inside the CSTRs. The objective is to control both tank temperatures by 
changing manipulated variables which are cooling water flow rate of two tanks in this 
case.  
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Figure 1: Cascaded CSTR process. 

 
The above mentioned non-linear process was modelled with the help of Ordinary 

Differential Equation (ODE) model. This ODE model, as in (2), was simulated in 
LabVIEW platform to validate the MPC impact. 
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(2) 

 
The six state variables here are,  

x1: Outlet concentration of 1st CSTR (Co1) 
x2: Outlet temperature of 1st CSTR (To1) 
x3: Outlet cooling water temperature of 1st CSTR (TCWO1) 
x4: Outlet concentration of 2nd CSTR (Co2) 
x5: Outlet temperature of 2nd CSTR (To2) 
x6: Outlet cooling water temperature of 2nd CSTR (TCWO2) 
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3. Implementation 
This section discusses the preparation of MPC components and implementing them in 
a LabVIEW platform in detail.  

Linearized Model: It can be seen that the process equations (2) are nonlinear in 
nature. This ODE model was linearized around the operating points mentioned in 
Table.1. The physical and process constants mentioned in Table. 2. The linearization 
results in following matrices of discrete state space model. This linearized model, as in 
(3) was used for prediction purpose. 
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Table 1: Operating points. 

 
Variable Value 

Outlet concentration of 1st CSTR (Co1) 0.084 mol/m3 
Outlet temperature of 1st CSTR (To1) 364.995° K or 

91.845° C 
Outlet cooling water temperature of 1st CSTR 

(TCWO1) 
327.560° K 

Outlet concentration of 2nd CSTR (Co2) 0.053 mol/m3 
Outlet temperature of 2nd CSTR (To2) 364.995° K or 

91.845° C 
Outlet cooling water temperature of 2nd CSTR 

(TCWO2) 
335.447° K 

Feed flow rate in 1st CSTR (QI1) 0.339 m3/s 
Inlet temperature of ith CSTR (TIi) 

Cooling water temperature of ith CSTR (TCWi) 
300° K 
300° K 

Inlet flow rate in 2nd CSTR (QI2) 0.261 m3/s 
Inlet concentration of ith CSTR (CIi) 20 mol/m3 

Cooling water flow rate in 1st CSTR (QCW1) 0.45 m3/s 
Cooling water flow rate in 2nd CSTR (QCW2) 0.272 m3/s 

Reaction rate in 1st CSTR (K1) K0exp(-E/R To1) 
Reaction rate in 2nd CSTR (K2) K0exp(-E/R To2) 

 
 



Implementation of Model Predictive Control for Cascaded CSTR Model  221 
Table 2: Physical and process constants. 

 
Variable Value 

Outlet valve constant of 1st CSTR (KV1) 0.16 m3/2 / s 
Outlet valve constant of 2nd CSTR (KV2) 0.256 m3/2 / s 

Heat transfer coefficient multiplied by the heat 
transfer area of ith CSTR (Uai) 

0.35 m 3/s 

Activation energy (E/R) 6000° K 
Reaction heat coefficient (ΔH) 5 m 3K/mol 

Arrhenius constant (K0) 2.7 X 108 s-1 
Cooling jacket volume of both reactors(VI1,VI2) 1 m3 

 
3.1 Prediction and Control horizon 
The MPC was designed to predict NP number of samples from the ܰ௪௧௛ sample. Based 
on this prediction horizon the MPC will generate a control horizon of NC number of 
samples. 
 
3.2 Cost Function 
The cost function used in this work is given in (4) 
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Where 
Q is the output error weight matrix 
R is the rate of change in control action weight matrix 
݇)ොݕ + ݅|݇) - predicted plant output at k+i, given all measurements upto and 

including those at k 
݇)ݎ + ݅| ݇) - output set point profile at k+i, given all measurements upto and 

including those at k 
݇)ݑ∆ + ݅| ݇) - predicted rate of change in control action at k+i, given all 

measurements upto and including those at k 
3.3 Constraints 
In this the constraints (5) are imposed on the controller outputs, which are cooling 
water flow rate in both CSTRs.  
 

 
3 30.05 / 0.8 /cm swQ is m 

 
(5) 

 
The MPC algorithm is implemented in LabVIEW using the control and simulation 

toolkit which has inbuilt MPC blocks for creating and implementing MPC controller. 
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The CD create MPC controller is used to create the MPC controller by giving inputs 
such as MPC controller parameters like prediction horizon and control horizon. Apart 
from that, a state space model of the process, MPC cost weights and constraints are 
also provided to CD create MPC controller block. 

The CD step forward MPC window VI is used to calculate the appropriate portion, 
or window, of the set point and disturbance profile. This VI also moves the control and 
prediction horizon forward. 

The CD implement MPC controller is used to calculate the control action to be 
applied to the plant which in this case is a discrete state space model of the plant. 

The complete MPC implementation in LabVIEW is shown in figure.2. This VI can 
be viewed as two stages. The first stage prepares the system for MPC by collecting all 
MPC parameters from the user. The second stage enforces the control action, 
generated by the MPC scheme, on the non linear ODE model of the plant. 

 

 
 

Figure 2: Block diagram. 
 
 
4. Result 
The front panel was created using LabVIEW where all the MPC parameters are to be 
entered as per design. Linearized state space model given by (3) is inserted to the 
Virtual Instrument (VI) as shown in figure.3. This MPC was designed to have a 
prediction horizon of 25 samples and a control horizon of 3 samples. Entry of 
controller output constraints and cost function parameters are shown in figure.4. For 
the cost function the output error weight matrix (Q) and the rate of change in control 
action weight matrix (R) are chosen as identity matrices.  
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Figure 3: Front panel of VI for collection process model. 
 

  
 

(a)      (b) 
 

Figure 4: Numeric inputs from user for giving  
(a) Constraints and (b) Cost function parameters. 

 
The MPC action on the cascaded CSTR’s ODE model was simulated for 150 

seconds duration. During this period the reference signal for process output, which is 
inside temperature of both reactors in this case, was generated and given to MPC 
scheme as in figure.5. To test the robustness of the MPC scheme, both positive and 
negative step changes are incorporated. 

 

 
 

Figure 5: Set point profile to be tracked by the plant. 
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Figure 6: Prediction and control horizon. 
 

Running the MPC implementation, shown in figure.2 for a 150 sec simulation 
period with a sampling interval of 0.2 sec produces the response as shown in figure.7. 
The plot shows both reference signal and process output, which are temperatures in 
both reactors. 

 

 
 

Figure 7: Closed loop response of MPC scheme. 
 
It can be clearly seen from the response graph that the response starts to change 

before there is an actual change in the set point profile which is due to the long range 
predictive ability of the MPC controller. 
 
 
Conclusion 
This paper investigated the impact of model predictive control algorithm on the 
temperature parameter of a cascaded CSTR process. The response showed that the 
output changed even before there was an actual change in the set point profile, which is 
the distinguishing feature of model predictive control algorithm. This work can be 
continued by adding known disturbance in it during the MPC controller creation. 
Further, this implementation on LabVIEW platform eases the problem of handling real 
time control problems. 
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