
International Journal of Engineering Research and Technology.
ISSN 0974-3154 Volume 7, Number 1 (2014), pp. 69-77
© International Research Publication House
http://www.irphouse.com

Maximum Entropy based Natural Language Interface for
Relational Database

Deepthi S, Rejimoan R and Vinod Chandra S S

Dept. of Computer Science, SCT College of Engineering Thiruvananthapuram,
deethis@gmail.com

Dept. of Computer Science, SCT College of Engineering Thiruvananthapuram,
rejimoan@gmail.com

Computer Centre, University of Kerala Thiruvananthapuram,
vinodchandrass@gmail.com

Abstract

A Natural Language Interface for DataBase (NLIDB) is a system which
accepts the user request in natural language and converts to an SQL query.
The system consist of: Language Processor (LP) and Query Translator. LP is
used to extract information from user query. Main LP techniques used in our
system are Part-of-Speech (POS) Tagging and Chunking that are implemented
by Maximum Entropy Models. Query Translator (QT) is used to formulate
SQL queries. It has predefined query templates which are selected based on
constrains, connectors etc. specified in a user query. Finally the SQL Query is
obtained by completing the selected query template with the already identified
details like attributes, conditions etc.

Keywords- NLIDB, POS Tagging, Maximum Entropy, QT.

INTRODUCTION
Access of data stored in databases has always been a problem for regular users who
are commonly unaware of query languages. Researches have been going on in this
area from the late 1960’s. These researches were aimed at making a Natural Language
Interface for Database (NLIDB) so that users can query the database directly without
query language knowledge. NLIDB let users to query the database in formal English
language and it translates query into proper SQL queries.
 Early NLIDB systems had many roles in interface based query processing.
LUNAR was developed as an interface to the database that held information about
rocks collected during American moon expeditions [1] and LADDER is a semantic

70 Deepthi S, Rejimoan R and Vinod Chandra S S

grammar based database interface of the US Navy ships database [2]. CHAT-80
interfaced the world’s geography facts database [2]. All these systems are either
domain oriented or developed to serve a single database. Some new NLIDB systems
are Semantic Grammar based System [3], Synchronous Context Free Grammar
(SCFG) based System [4], PCFG based System [5], WordNet based System [6],
Conversation-based System [7] etc. All these systems accept natural language queries,
but required some pre-requisites or they might demand user support. For example,
semantic grammar based system requires a set of grammars to be defined, WordNet
based system requires an ontology and Conversation based System demands user to
communicate with the system till enough information for query formulation is
collected. All these systems fail to formulate query accurately and hence provide
incorrect results [8].
 In order to overcome this flaw, an NLIDB system is implemented using of a semi-
parser and Maximum Entropy machine learning model which makes predictions only
based on known facts. This method increases accuracy of queries formed and
eliminates formation of multiple trees or grammars for the same request.
 The NLIDB system described in this paper has two parts: Language Processor
(LP) and Query Translator (QT). Figure 1 shows the NLIDB architecture. Language
Processor is used to identify constraints, predicates etc. The main components of LP
are Tokenizer, POS Tagger, Name Identifier and Chunker. Query Translator holds
several query templates and is responsible for formulating the correct SQL query that
match the user request.

Figure. 1. NLIDB Architecture

Maximum Entropy based Natural Language Interface for Relational Database 71

LANGUAGE PROCESSOR
Language Processor (LP) is used to analyze user’s query, given in an English text.
This is first tokenized (sentences are identified and then each sentence is split to
words) then passed to POS Tagger. The tagger identifies linguistic category of all
words which helps to understand the request. The chunker ensures that no details of
given request are miss interpreted. The request and all gathered information are
passed to Query Translator for query formulation.

TOKENIZATION
We split a given text into sentences and end of the sentences is identified by presence
of a full stop, question mark or an exclamation mark. If the end of sentence is a
fullstop then the abbreviations need to be processed separately. Algorithm1 describes
abbreviation check on a text.

Algorithm 1:
Begin
Let the current End-of-Sentence condition (.) be p
Identify current token, nc and next token, nt.
If nc is an abbreviation.
 If nt, is an end-of-sentence condition, then
 nt indicates end of current sentence.
 Perform sentence split
 Else
 nt indicates next token of current sentence.
 Else
 if nc not an abbreviation
 if suffix is whitespace then
 nt indicates end of current sentence.
 Perform sentence split.
 Else if suffix is character, then
 p is part of the token
End;

 The sentences are tokenized one at a time. Generally tokens are identified by
white spaces between words. Special symbols like full stop, question mark,
exclamation mark, back slash, double quotes, single quotes, comma, opening and
closing braces are also considered as tokens. These tokens are grouped to fix a part-
of-speech (POS) tag for a word. For example,
 Consider the user query
 “List all details of students who joined on 12/3/2013”
 Equivalent tokens are
 List | all | details | of | students | who | joined | on | 12/3/2013

72 Deepthi S, Rejimoan R and Vinod Chandra S S

POS TAGGING
Part-of-Speech Tagging marks up a word into corresponding lexical category (verb,
noun, adjective, adverb etc.). The tagger makes use of PENN Treebank POS tag set
developed by the University of Pennsylvania for NLP related research work [9]. It is a
standard tag set accepted around the world. The tagger uses a maximum entropy
model trained over the PENN Tag set. Tagger uses WordNet as the underlying
dictionary [10].

Maximum entropy based learning is used for predicting tags of words [11]. The
feature selected is in the format (a, b) where ‘a’ is the possible tag, ‘b’ is the current
word and previous two tags. Tag prediction for each word is made by considering the
history ‘h’ (sequence of tags assigned to all previous words of the sentence). Each
pair (a, b) has a probability p(a, b) and a tag is selected for ‘a’ such that it maximizes
the entropy H(p) [11]. H(p) is computed using the Shannon’s Entropy equation [12].

 -------------- (1)

 A denote the set of all tags and B denote set of words and their previous words
tags. The current system makes use of twelve features to tag a word: the word, all
suffixes and prefixes of the word, special character if any, capitals, regular
expressions, previous two words and their tags and two words next to current word.
Using these features probability of occurrence of all possible tags are computed, and
the tag with maximum probability is fixed as the word’s tag.
 Tagging process is performed by Algorithm 2. We assume, for each word the
history is known to user.

Algorithm 2:
Let hij = the jth highest probability tag sequence up to word wi.
Begin
Generate all possible tags for wi
Find the top N tags
For i = 2 to n
Begin
For j = 1 to N
Begin
Generate tags for wi given h(i-1)j
Append each tag to h(i-1)j to create new sequence
End
Find the highest probability sequences generated
End
Repeat for every sentence.
End;

Maximum Entropy based Natural Language Interface for Relational Database 73

 After performing POS tagging by Algorithm 2, the user query in our example
becomes,
 List/NNP all/DT details/NN of/IN students/NNS who/WP joined/VBD on/IN
12/3/2013/CD

where NNP, DT, NN, IN,NNS,WP,VBD and CD denote the POS tags for Singular
Proper Noun, Determiner, Singular Noun, Preposition, Plural Noun, Wh-pronoun,
Verb past tense and Cardinal Number respectively.

CHUNKING
In SQL entities like name, place, date etc. always become part of a query. Since these
entities, name, date etc., are often distributed over a piece of text, analysing tokens
one by one will not always correctly identify them. This can be solved by performing
chunking and hence identifying the beginning and end of such sequences.
 Chunking or partial parsing assigns a practical syntactic structure to a sentence
and generates a flatter structure than full parsing. Chunks are non overlapping regions
of text and every chunk have a head followed by words and their respective tags.
Chunker looks through the sequence of POS tags of the tagged text and identifies
Noun Phrases (NP) and Verb Phrases (VP). In the context of query formulation NP’s
will have all possible constrains. For example, details of a particular employ needs to
be displayed, the name of employ specified in the request will be present in a NP. So
scanning of NP’s will ensure that all constraints are identified without fail.
 Our chunker is implemented using IOB tags [13]. Each token of a sentence is
classified as I (inside), O (outside) and B (begin) chunk tags. The token is tagged as
‘B’ if it is beginning of a chunk and subsequent tokens within the chunks are tagged
as ‘I’. Remaining tokens are tagged as ‘O’. Tokens are tagged as IOB using the POS
tagging algorithm. Here the tagger uses a maximum entropy based model, which is
trained over tag patterns. Tag patterns indicate rules based on which the NP, VP etc.
are defined. The IOB tags are assigned based on these tag patterns. The features used
by this model for performing chunking are: the word, the previous two words, the
next two words and their corresponding tags. The chunker works by considering a
window of five words at a time and chunk tags are assigned such that the probability
of tagged sequence is maximized. For example, the chunking result of our previous
sentence becomes,
 [NP List/NNP] [NP all/DT details/NN] [PP of/IN] [NP students/NNS] [NP
who/WP] [VP joined/VBD] [PP on/IN] [NP 12/3/2013/CD]

NAME IDENTIFIER
Name Identifier (NI) is used to identify names, locations and dates specified in user
query by the use of regular expressions. NI extracts information from POS tagger and
Chunker. It use only NP’s identified by chunker as names, locations and dates will
always be present in NP’s alone. In NP’s, POS tags of tokens are analysed and nouns
that match the defined regular expressions will be either names or locations. In order

74 Deepthi S, Rejimoan R and Vinod Chandra S S

to identify dates, words with tag CD (cardinal number) are selected and matched with
defined regular expressions. In our example, the NI results in,
 List all details of students who joined on <date>12-03-2013</date>

QUERY TRANSLATOR
Query Translator (QT) converts a given text into SQL query. QT analyzes only the
NP’s identified by Chunker because details about column names, constraint values
etc. are often found in NP. Two pre-requisites used in our work are query templates
and column name synonyms. That is, a set of commonly used query formats are pre-
defined and they are selected depending on the number of constraints, connectors
used etc.
 Column name synonyms are natural language alternatives for column names
belong to the database under use. A Hidden Markov Model (HMM) is used to identify
the column name synonyms in a given text [14]. A large corpus of mappings of all
possible column name synonyms and their corresponding database column names are
generated. Word probabilities of all possible sequences of every column name
synonym is computed. State transition probabilities are calculated by taking the single
word probability, double word probability, triple word probability etc. of each column
name synonym. For example, consider a column name synonym ‘name of employ’
whose column name in database would be e_name. Now word probabilities are
computed for sequences ‘name, of, employ, name of, of employ and name of employ’.
Their values are 1/3, 1/3, 1/3, 1/2, 1/2 and 1 respectively. Figure 2. shows a sample
architecture. These sequences and database column names form the states of the
HMM. This model is trained using the corpus and its corresponding computed
probabilities.
 The algorithm used by the QT proceeds by searching for these column name
synonyms in every NP. The HMM returns column name of the sequence in NP whose
probability evaluate to 1. Algorithm 3 gives the procedure for QT. It is assumed that
all column names and table names of current database are known.

Figure 2. HMM for the example ‘name of employ e_name’

Maximum Entropy based Natural Language Interface for Relational Database 75

Algorithm 3:
Begin
For every NP
Begin
If NP contain column name synonym
If a value succeed it
A constraint is identified.
Else
A column to be retrieved is identified.
Else if NP contain names
A name column synonym will precede it.
A constraint is identified.
If POS tag JJR/JJS exist
‘<’/’>’ relations exist.
If POS tag CC exist
Predicates AND/OR exist.
Identify column names and then table names
If no of tables >=2
Add condition joining the tables.
Select appropriate SQL query template
Execute query and display result
End
End;

RESULTS AND DISCUSSION
Our system accepts query in raw English text and do not require conversion to any
format for further processing. The main operations of our system are POS Tagging
and Chunking. For semantic grammar based system, a set of grammars need to be
defined, CFG based system demand input to be represented as in Codd’s Tuple
calculus expressions, Wordnet based system requires input to be converted to an
intermediary format and Conversation based system demand communication till
query is derived. The Maximum Entropy based NLIDB do not have any pre-requisites
when compared to the systems mentioned in Table1 [8].This system does not require
any kind of human intervention to reach the SQL query like the Conversation based
system. The SQL query is formulated by bringing together the information collected
at the various parts of the system. Other systems perform query formulation by
conversion from an intermediate form. For example, the SCFG based system convert
the λ-SCFG rules to SQL query, PCFG system function by generating SQL from the
grammar tree, the Wordnet based system converts the intermediate representation to
SQL and Conversation based system generates SQL query from the leaf node of the
tree. It can be observed that the Maximum Entropy based NLIDB is more accurate
when compared to the other systems. Once the system is trained it does not need any
manual help.

76 Deepthi S, Rejimoan R and Vinod Chandra S S

TABLE I Comparison of NLIDB Systems

NLIDB Systems Requirement Main parts of system Important

operation
Conversion

to query
Semantic

Grammar based
System

A set of grammar
should be defined

Parser Parsing Query
generator

Synchronous
CFG based

System

Expressions in
Codd’s Tuple

Calculus

Noun Phrase analysis Lambda calculus
expression

λ-SCFG
rules

PCFG based
System

Natural language POS Tagging and
PCFG Parser

Finding grammar
tree with
maximum
probability

Tree to SQL

WordNet based
System

Ontology Language and database
processing module

DRS DRS to SQL

Conversation
based System

Conversation Conversation agent,
knowledge tree and

conversation manager

Knowledge tree
traversal

Leaf node to
query

Maximum
Entropy based

NLIDB

Natural Language Language Processor
and Query Translator

POS Tagging and
Chunking

Query
Translator

CONCLUSION
Our system accepts user request in natural language and converts it to SQL query. In
order to do this the request is processed by the LP module. POS Tagger will tag each
word in English request based on its lexical category. It will lead to a chunker which
extracts the noun phrases present in the request. Next, NI identifies constraints
specified in the query with the help of regular expressions. It is done by performing a
search in NP’s identified by the chunker.
 The information gathered by LP is given to the query translator. It will identify the
column names of specified constraints, column names of requested data etc. Table
names of these required columns are extracted and all these data are mapped to an
appropriate query template (pre-defined). Query templates are chosen depending on
the identified number of tables, number of constraints, connectors etc. An advantage
of this system is that it could be made to work with any database.

REFERENCES

[1] Huangi; Guiang Zangi; Phillip C-y Sheu, “A Natural Language database
interface based on probabilistic context free grammar", IEEE international
workshop on Semantic Computing and Systems, 2008, pp 155-162.

Maximum Entropy based Natural Language Interface for Relational Database 77

[2] I. Androutsopoulos; G Ritchie; P Thanisch. “Natural language interfaces to
databases-an introduction”, Journal of Language Engineering, Vol. 1, 1995,
pp. 29-81.

[3] Gauri Rao; Chanchal Agarwal; Snehal Chaudhry; Nikita Kulkarni; Dr. S H
Patil, “Natural Language Query Processing using Semantic Grammar”,
International Journal on Computer Science and Engineering, Vol. 2, 2010, pp.
219-223.

[4] Zhao; Tie-jun Jun; Xu Chong, “A Head-Annotated Synchronous Context-Free
Grammar for Hierarchical Phrase-Based Translation”, IEEE International
Conference on Natural Language Processing and Knowledge Engineering,
2011, pp. 51-55.

[5] Bei-Bei Huang; Guigang Zhang; Phillip C-Y Sheu, “A Natural Language
Database Interface Based on a Probabilistic Context Free Grammar”, IEEE
International Workshop on Semantic Computing and Systems, 2008, pp. 568-
573.

[6] Hu Li; Yong Shi, “A WordNet-Based Natural Language Interface to Relational
Databases”, IEEE Conference on Computer and Automation Engineering,
2010, pp. 514-518.

[7] Majdi Owda; Zuhair Bandar; Keeley Crockett, “Conversation-Based Natural
Language Interface to Relational Databases”, IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, 2007, pp.
363-367.

[8] Deepthi.S; Rejimaon R; Vinod Chandra S S, “A Review on Natural Language
Interface for Database”, International Journal for Applied Engineering
Research, Vol.8 No.4, 2013, pp. 399-412.

[9] Mitchell P Marcus; Beatrice Santorini; Mary Ann Marcinkiewicz, “Building a
Large Annotated Corpus of English: The Penn Treebank”, Association of
Computational Linguistics, Vol. 19, No. 2, 1993, pp. 313-330.

[10] George A Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM, Vol.38, No. 11, 1995, pp. 39-41.

[11] Adam Berger; Stephen A. Della Pietra; Vincet J. Della Pieta, “A Maximum
Entropy Approach to Natural Language Processing”, Computational
Linguistics, Vol. 22, 1966, pp. 39-71, 1966.

[12] Edwin C May; S James; P Spottiswoode; Christine L. James, “Shannon
Entropy: A Possible Intrinsic Target Property”, The Journal of
Parapsychology, Vol.58, 1994, pp. 384-401.

[13] Hans van Halteren, “Chunking with WPDV Models”, Proceedings of CoNLL-
2000 and LLL-2000, pp. 154-156.

[14] Rabiner L; Murray Hill, “A tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition”, Preceedings of the IEEE, Vol.77, 2002,
pp. 257-286.

78 Deepthi S, Rejimoan R and Vinod Chandra S S

