
International Journal of Engineering Research and Technology.
ISSN 0974-3154 Volume 8, Number 1 (2015), pp. 1-6
© International Research Publication House
http://www.irphouse.com

Software Quality Metrics for Aspect-Oriented

Programming

Lovely Balani and Alok Singh

Asst.Professors, MCA
Thakur Institute of Management Studies, Career Development & Research

(TIMSCDR) Mumbai, India-400101
lovely.lakhmani@gmail.com, Singh.alok@thakureducation.org

Abstract:

Aspect Orientation is one of the upcoming methodologies to enhance S/W
design and reuse. Aspects are properties of a software system which tends to
cut across its main functionality. Some of the examples of aspects are
synchronization, resource sharing and distribution. Aspects are intertwined
within core components of the S/W. this causes “Code-tangling” problem.
Aspect Oriented approach addresses “Code-tangling “problem by
modularizing these cross cutting concerns and encapsulate them in modules.
Major objectives of Aspect Oriented Approach are to enhance Software
Design and reuse. To ensure that Aspect Oriented approach really accomplish
its objectives sound S/W quality metrics are needed.
As with other approaches of SE aspect Oriented System can also be poorly
designed. Sometimes it may be possible that a well-designed OO system
might be made worse with introduction of aspects. Aspects may increase the
system complexity and reduce its understandability.
There is a great need to develop Quality models and metrics to assess quality
of software developed using Aspect Oriented methodologies. Some
researchers attempted to build quality models and metrics for aspect-oriented
Software, however all these works are still at an early stage. In this paper we
are going to discuss introduction of SQA metrics for the evaluation of Aspect
Oriented Programs.

Keywords: AOP, AORE, Aspect, AOSQA, AOM, code –tangling, quality
metrics.

Introduction:
Aspect Orientation is one of the upcoming methodologies to enhance S/W design and

2 Lovely Balani and Alok Singh

reuse. Aspects are properties of a software system which tends to cut across its main
functionality. Some of the examples of aspects are synchronization, resource sharing
and distribution. Aspects are intertwined within core components of the S/W. this
causes “Code-tangling” problem. Aspect Oriented approach addresses “Code-
tangling “problem by modularizing these cross cutting concerns and encapsulate them
in modules.

Major objectives of Aspect Oriented Approach are to enhance Software Design
and reuse. To ensure that Aspect Oriented approach really accomplish its objectives
sound S/W quality metrics are needed.

As with other approaches of SE aspect Oriented System can also be poorly
designed. Sometimes it may be possible that a well-designed OO system might be
made worse with introduction of aspects. Aspects may increase the system complexity
and reduce its understandability.

Increasing complexity of software worked as motivation to develop new
software development methodologies to handle these complexities efficiently and
effectively. One of the most popular software development paradigms is object
oriented programming. Object-oriented paradigm specifies concepts, or concerns, as
objects and such an approach allow programmers to decompose high level
requirements into a set of functional modules. To overcome these limitations of
object-oriented programming (OOP) a new paradigm known as the Aspect-oriented
programming (AOP) has been developed. Aspect-oriented programming is an
approach designed to overcome limitations of object-oriented programming. A new
paradigm requires software engineers to define new metrics and quality models to
measure the quality of programs in this paradigm. Any new development paradigm
and associated design practices need to be evaluated in term of quality. Currently it is
quite difficult to determine good design and implementation decisions for aspect-
oriented programs.

There is a great need to develop Quality models and metrics to assess quality
of software developed using Aspect Oriented methodologies. Some researchers
attempted to build quality models and metrics for aspect-oriented Software, however
all these works are still at an early stage.

Here in this paper we propose a rigorous approach to develop Aspect-oriented
programming metrics on the basis of object-oriented metrics. Since AOP has close
similarity with OOP paradigm and object oriented languages and henceforth on the
metrics dedicated to these languages our proposed model and quality metrics will be
developed on the foundation of OOPs Quality metrics and models.

Aspect Oriented Framework:
Aspect Oriented Software Engineering (AOSE) framework contains all the phases of
Software Development Life Cycle (SDLC). AOSE has all the phases of SDLC
Namely:
1. Aspect Oriented Requirement Engineering (AORE).
2. Aspect Oriented Modeling (AOM).
3. Aspect Oriented Programming (AOP).
4. Aspect Oriented Software Quality Assurance (AOSQA).

Software Quality Metrics for Aspect-Oriented Programming 3

Figure 1: Aspect Oriented Software Engineering Frame Work

1. Aspect Oriented Requirement Engineering (AORE):
Aspect-oriented requirement Engineering (AORE) is the first phase in Aspect
Oriented Software Development Model (AOSDM). AORE consist of
 Identification of cross cutting concern.
 Specification of cross cutting concern.
 Representation of cross cutting concern.

at the requirement level. Cross cutting concern include security, mobility, availability
and real-time constraints. Crosscutting concerns are requirements, use cases or
features that have a broad effect on other requirements or architecture components.
AORE is a collection of techniques that recognize the importance of addressing both
functional and non-functional crosscutting concerns in addition to non-crosscutting
ones. Therefore, these approaches focus on systematically and modularly treating,
reasoning about, composing and subsequently tracing crosscutting functional and non-
functional concerns via suitable abstraction, representation and composition
mechanisms tailored to the requirements engineering domain.

Aspect Oriented Requirements Analysis deals with:
a) Aspect-oriented requirements process.
b) Aspect-oriented requirements notations.
c) Aspect-oriented requirements tool support,
d) Adoption and integration of aspect-oriented requirements engineering, and
e) Assessment of aspect-oriented requirements.

AORE

AOM

AOP

AOSQA

4 Lovely Balani and Alok Singh

2. Aspect-Oriented Modeling and Design(AOMD):
AOMD involves identifying, analyzing, managing, and representing crosscutting
concerns. AOM targets a simplified, abstract description of an aspect-oriented design.
An aspect-oriented modeling method requires three types of constructs for modeling:
base elements, crosscutting elements, and crosscutting relationships. Objective of
Aspect-oriented design is to characterize and specify the behavior and structure of the
software system. AOAD contributes in software design through modularizing
concerns that are necessarily scattered and tangled in more traditional approaches.
Generally, such an approach includes both a process and a language. The process
takes requirements as input and produces a design model that represents separate
concerns and their relationships. The programming language provides constructs to
support concern modularization and the specification of concern composition.

AOAD deals in following areas:
a) Aspect-oriented design process itself.
b) Aspect-oriented design notations.
c) Aspect-oriented design tool support.
d) Adoption and integration of aspect-oriented design.
e) Assessment/evaluation of aspect-oriented design.

3. Aspect-Oriented Programming(AOP)
A software system is as a set of structured modules, representing a concern
(functionality or a requirement). Object-oriented paradigm (classes, objects, methods,
and attributes) offers abstractions which are not sufficient to represent all the concerns
of a software system.

Concerns such as logging, tracing, or persistence tend to be scattered and
tangled all across the objects of the system. These concerns are known as crosscutting
concerns because they cut across other functionality of the program. Aspect oriented
paradigm address the problem of crosscutting concerns through separation of
concerns and ensure a good modularization. In AOP aspect is used to encapsulate a
crosscutting concern and AOP also facilitates composition of aspect and components
such as class, methods and attributes. AOP provides mechanism which allows the
aspect to crosscut object-oriented abstractions. AOP paradigm must be implemented
for all object oriented languages such as C++, JAVA etc. Although AOP is a relatively
new Software Development Paradigm, some research addressing metrics and quality
has already been conducted.

Metrics for AOP:
After extensive survey of existing literature on Aspect Oriented Software Quality
Metrics we found some of the key contributions made by contemporary software
Engineering researchers. Following are the accounts of some of these key contributors
work, these noted work will form the basis of our approach for Aspect Oriented
Software Quality Assurance, metrics and measurements:

Software Quality Metrics for Aspect-Oriented Programming 5

Metric suite based on a Dependence model for aspect- oriented software:
This model consists of a group of dependence graphs representing various

dependence relationships at different levels of aspect-oriented programs.
Coupling measure for aspect-oriented programs:
This metric is considered as the degree of interdependence between aspects

and classes.
Aspect cohesion based on dependence analysis:
Cohesion for an aspect is tells how tightly the attributes and modules (methods

and advices) of aspects cohere.
Since studying AOP and its implementations is necessary engineers must

define metrics and models to assess the quality of aspect-oriented system. On the
other hand, the impact of AOP over object-oriented languages, such as Java must also
be assessed and understood.

Methodology:
We intend on extending the work of all the researchers discussed above.

We want to fully evaluate effect of all the abstractions introduced by AOP, on
object-oriented languages. We believe that a mechanism such as inter-type declaration
has an important incidence on object- oriented metrics. For example, adding members
or declaring that types extend on the Impact of Aspect-Oriented Programming. New
types through inter-type declaration affect metrics like coupling, cohesion, or depth of
inheritance.

During our review of the literature, we also noticed the lack of a common
agreed-upon example of AOP program and aspect. We believe that using a unique
example among all the papers published on the subject could help both the authors
and the readers. So we plan to develop and to use an example complete enough to
satisfy as many needs as possible among the researchers working on AOP and
quality.

Conclusion and Future Work
Assessing the quality of software is an integral process of software engineering. The
problem of separation of concerns fueled the growth of the aspect-oriented paradigm.
This new paradigm raises questions about quality, due to its close relations with
object-oriented programming.

Our work of developing AOP metrics on object-oriented metrics and the
implementation of a measurement framework shall enable us to build quality models
to assess the quality of aspect-oriented programs.

The proposed work shall be validated through empirical studies. In fact, our
framework shall enable us to appraise the quality of an AOP program.

6 Lovely Balani and Alok Singh

References :

1. Meyer, B.: Object-Oriented Software Construction (Book/CD-ROM) (2nd

Edition). Prentice Hall PTR (2000)
2. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,

J.M., Irwin, J. In: Aspect-Oriented Programming. Volume 1241. Springer-
Verlag, Berlin, Heidelberg, and New York (1997) 220–242

3. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. Lecture Notes in Computer Science 2072 (2001)
327–355

4. Gradecki, J.D., Lesiecki, N.: Mastering AspectJ: Aspect-Oriented
Programming in Java. Wiley (2003)

5. Zhao, J.: Towards a metrics suite for aspect-oriented software. Technical
Report SE-136-25, Information Processing Society of Japan (IPSJ) (2002)

6. Zhao, J.: Measuring coupling in aspect-oriented systems. Technical report,
Information Processing Society of Japan (IPSJ) (2004)

7. Zhao, J., Xu, B.: Measuring aspect cohesion. In: Proceeding International
Conference on Fundamental Approaches to Software Engineering. Volume
2984., Springer Verlag (2004) 54–68

8. G ́linas, J.F., Badri, L., Badri, M.: Aspect cohesion measurement based on
depenedence analysis. In: Proceedings of the Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE). (2004)
121–125

9. Dufour, B., Goard, C., Hendren, L., Moor, O.d., Sittampalam, G., Verbrugge,
C.: Measuring the dynamic behaviour of aspectj programs. In: OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN Conference on Object-
oriented programming, systems, languages, and applications. Volume 39.,
New York, NY, USA, ACM Press (2004) 150–169

10. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa, A.v.: On the reuse
and maintenance of aspect-oriented software: An assessment framework. In:
Proceedings XVII Brazilian Symposium on Software Engineering. (2003)

11. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on 20 (1994) 476–493

12. Lopes, C.I.V.: D: A Language Framework For Distributed Programming. PhD
thesis, College of Computer Science of Northeastern University (1997)

13. Gu ́h ́neuc, Y.G.: Un cadre pour la tra �abilit ́ des motifs de conception. PhD
thesis, Ecole des Mines de Nantes et Universit ́ de Nantes (2003)

