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Abstract 

Visual tracking is a hot issue in computer vision with a wide range of 

applications such as intelligent video surveillance. Different types of state-of-

the-art methods such as self-expressive, sparse representation are proposed and 

several modifications are being introduced in public for respectively methods 

in the few decades ago. Unfortunately, due to some destabilizing factors, like 

occlusions and illumination changes which cause the tracking result tend to drift, 

until now, there are still no foolproof methods for visual tracking. This paper 

propose a model to enhance visual tracking by introduce the concept of 

regression analysis in visual tracking for optimization purpose. Instead of using 

random and fix values, the relationship of the dimensionality of projected space 

and learning parameter with the image frame size and the tracked target size has 

been studied. The main idea in the proposed method is to improve the overall 

tracking performance by increase the average overlap rate (AOR) and decrease 

the centre location error (CLE).  The proposed method is evaluated using image 

sequences from various datasets; such as Babenko datasets and Kwon datasets. 

The AOR value has increased to 0.67 and the CLE value is decreased to 13.11. 

The proposed model performs favourably against state-of-the-art tracking 

methods on sequences in term of accuracy and robustness. 
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𝑤  : Width of image 

ℎ  : Height of image 

𝜇𝑖
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0) : Mean of the positive  
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𝑤1  : Tracked target width 

ℎ1  : Tracked target height 

𝑥𝑡, 𝑦𝑡  : Tracked target position 

𝑥𝑔, 𝑦𝑔 : Ground truth 

𝑅𝑂𝐼𝑡  : Tracking bounding box 

𝑅𝑂𝐼𝑔  : Ground truth bounding box 

𝐼𝑉  : Illumination variation 

𝑆𝑉  : Scale variation 
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𝑂𝐶𝐶  : Occlusion 

𝐷𝐸𝐹  : Deformation 

𝑀𝐵  : Motion blur 

𝐹𝑀  : Fast motion 

𝐼𝑃𝑅  : In-plane rotation 

𝑂𝑃𝑅  : Out-of-plane rotation 

𝑂𝑉  : Out-of-view 

𝐵𝐶  : Background clutters 

𝐿𝑅  : Low resolution 

 

1 INTRODUCTION 

Visual tracking is an important and hot research topic in computer vision with wide 

applications ranging from surveillance to human interactions to medical imaging such 

as intelligent video surveillance, automatic driving, intelligent robot, mission analysis 

& recognition, etc. Given the initial state; location & size of the target object, visual 

tracking is aim to estimate the target states in subsequent frames. Today, visual tracking 

is still a challenging issue to handle as there are destabilizing factors which causes 

drifting and overfitting problem to happen during tracking process. There are 11 

attributes stated at [1] as shown in Table 1 which influence tracking performance. The 

most common attributes are illumination variation, background clutters, occlusion and 

fast motion. Until now, there is no single tracker able to deal with all these attributes at 

the same time. 

Table 1. Annotated Sequence Attributes with the Threshold Values in the 

Performance Evaluation [1] 

 

Name Description 

Illumination 

Variation 

the illumination in the target region is significantly changed 

Scale Variation the ratio of the bounding boxes of the first frame and the current 

frame is out of the range ts, ts > 1 (ts=2) 

Occlusion the target is partially or fully occluded 

Deformation non-rigid object deformation 

Motion Blur the target region is blurred due to the motion of target or camera 

Fast Motion the motion of the ground truth is larger than tm pixels (tm=20) 

In-Plane Rotation the target rotates in the image plane 

Out-of-Plane 

Rotation 

the target rotates out of the image plane 

Out-of-View some portion of the target leaves the view 

Background 

Clutters 

the background near the target has the similar color or texture as 

the target 

Low Resolution the number of pixels inside the ground-truth bounding box is less 

than tr (tr =400) 
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In the past few decades, different type of state-of-the-art method and modifications have 

been proposed in order to conquer the problem. Image features model, target 

appearance model and motion model are examples have been introduced for visual 

tracking. There are three typical image features: first, colour features (e.g. Colour 

histogram) which requires low computational cost and are invariant to point-to-point 

transformations. However, they are not performed well against illumination changes. 

Second, texture features (Local Binary Patterns (LBP)) which well at discriminate the 

target from background but required high computational cost. Third, shape features 

(contour) which are discriminative as well but couldn’t represent the target well. They 

need to combine with others for high level contour tracking. 

Target appearance model is one of the fundamental components in visual tracking. It 

plays an important role in determining the success of a tracking algorithm. Target 

appearance model detect the variation in target appearance and also background which 

include moving object during tracking. Chen et al. [1] had combined the image sets and 

depth information into a 3D object tracking method to conquer the drift and occlusion 

problem. Based on their studies, a more effective appearance model can be presented 

with useful data variability information contained in image sets. Depth information also 

used by Cao et al. [2] who proposed a 3D novel object tracking method which using 

local patch-based appearance model to handle the deformable target and depth 

information to design a scheme for partial occlusions problem. 

Appearance model can be categorized into either generative or discriminative based on 

whether the background information of the sequences is being used. Discriminative 

approach is classified as tracking-by-detection method which formulates tracking as a 

binary classification problem. Discriminative method separate target from the 

background and focus on the difference between the foreground and background of the 

image sequences. Classification score is used to determine the most likely target 

position, the higher the score, the higher the probability the image region is regarded as 

target. Superpixel method and multiple instance learning (MIL) are example of 

discriminative method. 

Xu et al. [3] have introduced multiple instance learning (MIL) into visual tracking for 

dealing drifting problem. They utilized Fisher information criterion as it produced more 

informative for target from complex background. A tracking method through strong 

temporal slowness constraint and stacked convolutional autoencoders is proposed Kuen 

et al. [4] to learn complex-valued invariant representations from tracked sequential 

image patches. Cong et al. [5] presented an online metric learning (OML) tracker which 

incorporates adaptive metric learning and semisupervised learning into a unified 

framework. They design via low rank constraint to overcome overfitting problem. Sun 

et al. [6] proposed a novel approach to non-rigid objects contour tracking which extracts 

the accurate contours of the target for better description via supervised level sets model 

(SLSM). 

Zhang et al. [7] presented a novel tracking method through multi-view learning 

framework which lead to more accurate and robust representation of target by using 

multiple support vector machines (SVM). Yin et al. [8] method directly learns and 
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predicts the object’s states. They define the objects’ most confident state to combine 

the state-based structures support vector machine (SVM) and increment principal 

component analysis (PCA). They have improve the accuracy and reduce the noise 

interference. 

Generative approach utilise template or subspace to represent the target candidates, it 

calculates the similarity of the tracked object and object candidates image region. 

Generative method use only the information of the tracked object without considering 

its background. It usually construct appearance model with image observations and 

searching the image region being generated that having the highest probability to be the 

true object targets. Sparse representation is one of the generative approach have been 

proposed.  

You et al. [9] proposed a novel tracking method based on local sparse and global 

constraint which improves the local sparse method by adding a constraint on the 

distribution of the local contributions. Wang et al. [10] proposed a sparsity-based 

tracking method which is feature with inverse sparse representation formulation and a 

locally weighted distance metric. In order to adapt the appearance variations during 

tracking, Bai et al. [11] proposed a novel appearance method using sparse 

representation and online dictionary learning techniques.  

Wang et al. [12] method is based on joint optimization of representation and 

classification and it has a well and fast performance even the target undergo several 

kinds of appearance variations. Wang et al. [13] proposed a tracking method by 

modelling targets with online-learned sparse features and classified it using Bayesian 

classifier to select the most likely target candidate by a binary classification process. 

Hu et al. [14] proposed a tracking algorithm based on a multi-feature joint sparse 

representation for tracking multi-objects under occlusions using a multi-feature sparse 

reconstruction.  

A robust combination of particle filter and reverse sparse representation method is 

proposed by Yi et al. [15] which improve the tracking result with occlusions, 

background and illumination changes. A consistent low-rank sparse tracker (CLRST) 

which builds upon the particle filter framework has been proposed by Zhang et al. [16] 

for tracking. It will adaptively prunes and selects candidate particles by exploiting 

temporal consistency. Another which also combined these two is Cheng et al. [17] who 

integrate generative and discriminative approaches under particle filter framework. 

They encode all the tasks simultaneously in a structures multi-task learning manner. 

Hybrid method is used by Zhang et al. [18], a more compact spatial and temporal 

structure constraint ban be exploited and both generative and discriminative are utilized. 

Compressive tracking is also introduced for visual tracking which extracts the features 

of the target object in the compressed domain by using a random measurement matrix. 

Compressive sensing theory suggests that if a signal is sparse or compressive, the 

original signal can be reconstructed by utilizing a few measured values. Chen et al. [19] 

proposed an online semi-supervised compressive algorithm for robust visual tracking. 

They introduced the weighted random projection into an adaptive compressive sensing 
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based appearance model to obtain both local and discriminative information of the 

target. Chen et al. [20] suggest an algorithm to form a localized compressive sensing 

representation by collecting both local and global information which able to formulates 

the partial appearance model discriminatively. This kind of appearance model enables 

fast visual tracking in an intrinsic low-dimensional feature space. 

Zhou et al. [21] have based on manifold ranking in designing a novel and robust 

tracking method. Based on CS theory, they implement non-adaptive random projections 

to preserve the structure of original image space and competently extracted low-

dimensional compressive features using a very sparse measurement matrix for object 

representation. Besides, they utilised spatial context to improve the robustness to 

appearance variations. Wu et al. [22] proposed a multi-scale compressive tracker. They 

integrated an appearance model based on rectangle features extracted in the adaptive 

compressive domain into bootstrap filter. It increase the efficiency in feature extraction 

without increase the complexity.  

A low-dimensional compressive features proposed by Zhang et al. [23] for the 

appearance modelling is utilised for doing the optimization part. Haar-like features 

which require high computational loads for feature extraction is compressed using a 

very sparse measurement matrix. The compressed features help in preserves the object 

structure of the original image space and can be applied efficiently in tracking. This 

model able to track the target object in a low computational cost, however the accuracy 

of the tracking result has been limited by using random and fix parameters such as 

learning parameter for all sequences in tracking. As there is potential for improvement, 

this model is chose as the core algorithm in this paper. 

2 METHODOLOGY 

In this section, the basic concept of the fast compressive tracking algorithm [23] will 

be discussed. The concept of the compressive sensing is discussed follow by the way 

to represent the image in this algorithm. Then, the classification method utilised to 

classify and determine the target location with maximum classification response is 

presented. A flow chart of the proposed method is showed and the proposed method 

will be highlighted. The concept of regression analysis and the proposed optimization 

method are discussed to emphasize the enhanced tracking method. 

2.1 General Method   

The original concept of compressed sensing was proposed by Davis L. Donoho [24]. 

The two important concepts stated in compressive sensing are ‘random projection’ and 

‘random measurement matrix’.  

In random projection, a random measurement matrix 𝑹 ∈ ℝ𝑛𝑥𝑚  projects a high-

dimensional image feature 𝒙 ∈ ℝ𝑚 to a low-dimensional feature 𝒗 ∈ ℝ𝑛 

 𝑣 = 𝑅𝑥 (1) 

where 𝑛 ≪ 𝑚. Baranuik et al. proved that the random matrix satisfying the Johnson-

Lindenstrauss lemma holds true for the restricted isometry property in CS theory. 
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Therefore, the low-dimensional features can reconstruct from the original high-

dimensional information with minimum error. 

A typical measurement matrix satisfying the restricted isometry property is the random 

normal distribution 𝑹 ∈ ℝ𝑛𝑥𝑚  where 𝑟𝑖𝑗~𝒩(0,1) , so a very sparse random 

measurement matrix is adopted with entries defined as 

 
𝑟𝑖𝑗 = √𝜌 ×

{
  
 

  
 1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

1

2𝜌
    

0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −
1

𝜌

−1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
1

2𝜌
       

  

 

(2) 

where 𝜌 =
𝑚

4
~

𝑚

2.4
 is set in this work. This can be efficiently computed for real-time 

tracking. 

 

2.1.1  Image Representation 

For each sample 𝒁 ∈ ℝ𝑤𝑥ℎ, it is represented as the convolution of 𝒁 with multi-scale 

filters {𝑭1,1, … , 𝑭𝑤,ℎ} and defined by 

 𝑭𝑤,ℎ(𝑥, 𝑦) =
1

𝑤ℎ
× {
1, 1 ≤ 𝑥 ≤ 𝑤, 1 ≤ 𝑦 ≤ ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 (3) 

 

Each filtered image is represented as a column vector of ℝ𝑤𝑥ℎand concatenate these 

vectors to form a high-dimensional multi-scale image feature vector 𝒙 =
(𝑥1, … , 𝑥𝑚)

⊺ ∈ ℝ𝑚 where 𝑚 = (𝑤ℎ)2. The dimensionality 𝑚 is typically in the order 

of 106 to 1010. Therefore, a sparse random matrix 𝑹 in Eq. (2 is used to project the 

vector 𝒙 onto a low-dimensional vector 𝒗. 

 

2.1.2 Classification 

A naive Bayes classifier is used with the assumption of a uniform prior, 𝑝(𝑦 = 1) =
𝑝(𝑦 = 0) and the sample label 𝑦 ∈ {0,1} is a binary variable. 

 

𝐻(𝒗) = log (
∏ 𝑝(𝑣𝑖|𝑦 = 1)𝑝(𝑦 = 1)𝑛
𝑖=1

∏ 𝑝(𝑣𝑖|𝑦 = 0)𝑝(𝑦 = 0)𝑛
𝑖=1

)

=∑log (
𝑝(𝑣𝑖|𝑦 = 1)

𝑝(𝑣𝑖|𝑦 = 0)
)

𝑛

𝑖=1

 

(4) 
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It is assumed that the conditional distributions 𝑝(𝑣𝑖|𝑦 = 1) and 𝑝(𝑣𝑖|𝑦 = 0) of the 

classifier 𝐻(𝒗) are Gaussian distributed with four parameters (𝜇𝑖
1, 𝜎𝑖

1, 𝜇𝑖
0, 𝜎𝑖

0)  

 𝑝(𝑣𝑖|𝑦 = 1)~𝒩(𝜇𝑖
1, 𝜎𝑖

1), 𝑝(𝑣𝑖|𝑦 = 0)~𝒩(𝜇𝑖
0, 𝜎𝑖

0) (5) 

 

The learning parameter 𝜆 enable the scalar parameters in Eq. (5 incrementally updated 

with following equation 

 

𝜇𝑖
1 ← 𝜆𝜇𝑖

1 + (1 − 𝜆)𝜇1 

𝜎𝑖
1 ← √𝜆(𝜎𝑖

1)2 + (1 − 𝜆)(𝜎1)2 + 𝜆(1 − 𝜆)(𝜇𝑖
1 − 𝜇1)2 

(6) 

where  

𝜎1 = √
1

𝑛
∑ (𝑣𝑖(𝑘) − 𝜇1)2
𝑛−1
𝑘=0|𝑦=1  and 𝜇1 =

1

𝑛
∑ 𝑣𝑖(𝑘)
𝑛−1
𝑘=0|𝑦=1 . 

 

In the basic model, the dimensionality of projected space 𝑛 is set as 100 for the random 

measurement matrix and the learning parameter 𝜆 is set as 0.85 to update the mean and 

standard deviation for classification during the entire tracing process. These two 

parameters have been fixed for all the sequences which border the performance of the 

tracking algorithm and there is still space for improvement. 

 

2.2 Proposed Method  

As there is potential in improvement, the proposed model is introduced to optimize 

visual tracking by improving the two parameters as mentioned in previous subsection. 

In this subsection, the flow chart of the proposed model will be discussed and the steps 

to track the target object are demonstrated. Details of the regression analysis carried out 

in this proposed model will be explained and the way to evaluate the performance of 

the tracking method is showed. 

 

2.2.1 Flow Chart 

Instead of fixing the space dimensionality and learning parameter, in our proposed 

method, these two parameters will change accordingly with sequence based on their 

frame size and target size of the image frame with equation Eq. (7) and (8). Below show 

the flow chart of the proposed method,  
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Figure 1. Flow Chart of enhanced FCT 

 

Once the first image is read, the frame size and target size will be determined and space 

dimensionality Eq. (8) and learning parameter Eq. (7) will be calculated. Then, based 

on the initial parameter, the sample template and feature template are computed and 

feature is extracted for following tracking purpose. The tracking process is started after 

the following image is read, coarse to fine sampling is undergo in this algorithm to 

reduce computational complexity. Similarly, both will sample a set of image patches 

and extract the feature with low dimensionality, then classifier Eq. (4) is used for each 

feature extract and getting the tracking location with maximum classifier response. The 

process will continue until the last image frame. Each tracking location is recorded for 

performance evaluation purpose. 

Below show the equations for the two parameters which obtained through regression 

analysis, 

 

𝜆 = 1.773 + 0.000195ℎ +
68.21

ℎ
+ 0.0699 cos(ℎ1)

+ 0.000331𝑤1ℎ1 + 1.021𝑒15ℎ𝑤1 −
0.133ℎ1
𝑤1

− 0.00653ℎ1 − 0.0384𝑤1 

(7) 

Input first image frame 

Determine space dimensionality n & learning parameter λ with 

equations Eq. (7) and (8) 

Computer sample, feature template & extract feature 

Tracking starts 

Input tth image frame 

Sample image patches & extract low dimensionality features 

Classifier 

Update classifier parameters, features & samples 

Tracking location 
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𝑛 = 656 + 0.143ℎ1
2 + ℎ1 cos(1.87 + 39.69ℎ1)

−
1370 sin(3.45𝑤1)

ℎ1 cos(ℎ1)
− 16.93ℎ1

− 228.9 cos(ℎ1) sin (3.448𝑤1) 

(8) 

 

2.2.2 Regression Analysis 

In order to determine the natural relations between the existing parameters, Schmidt et 

Lipson [25] proposed a principle for the identification of nontriviality. There are many 

existing data modelling methods, such as fixed-form parametric model and numerical 

models. Schmidt et Lipson used symbolic regression method for searching the 

mathematical expression with minimise error.  

Symbolic regression which able to develop an analytic model which is useful for 

predicting response behaviours and summarize all data, is used to determine the 

symbolic function to describe the data effectively. Different from traditional regression 

method which fit parameters into a given formed equation, symbolic regression 

searches both the parameters and the form of equations simultaneously. They randomly 

combining mathematical building blocks like algebraic operators and analytical 

functions to form the initial expressions and continuously update the equation by 

recombining previous equations and varying their subexpressions. When a desired 

accuracy is reached, the algorithm will terminate and returning a set of equation which 

best describe the parameters relations. 

To enhance the visual tracking, the relationship between the image frame sizes and 

target tracking sizes with dimensionality of projected space and learning parameters 

has been studied for the sequences from various datasets, such as Babenko datasets, 

Ross datasets and Kwon datasets as shown in Table 2. At first, the original setting of 

dimensionality of projected space,  𝑛 = 100  is fixed to test with the sequences for 

learning parameter ranging from 0 to 1. The performance of each sequences evaluated 

and studied. From this study, the best performance of the sequences fall on the learning 

parameter ranging from 0.5 to 1. 

Therefore, by setting with this range of learning parameter 𝜆 = (0.5~ 1), the space 

dimensionality ranging from 50 to 500 with interval of 50 is studied and recorded. From 

the result for all combination of these two parameters, the global best performance of 

the tracking result for each sequence with the particular space dimensionality and 

learning parameter are recorded. With this information, the natural relation of the 

parameters with image frame sizes and target tracking sizes is obtained through Eureqa 

[25]. Eureqa is a software tool which is used to identify the mathematical formulae that 

best describe a data set. It employs symbolic regression to determine the best-fitting 

functional equation. The result from regression analysis and the improved tracking 

result will be discussed in section 3. 
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Table 2. The information of sequences 

Sequence Frame Size Target Size Attributions 

Bolt2 270 x 480 34 x 64 DEF, BC 

CarDark 240 x 320 29 x 23 IV, BC 

ClifBar 240 x 320 30 x 54 SV, OCC, MB, FM, IPR, OV, BC 

Coupon 240 x 320 57 x 89 OCC, BC 

Deer 400 x 704 95 x 65 MB, FM, IPR, BC, LR 

Faceocc2 240 x 320 82 x 98 IV, OCC, IPR, OPR 

Football 352 x 624 39 x 50 OCC, IPR, OPR, BC 

Panda 233 x 312 28 x 23 SV, OCC, DEF, IPR, OPR, OV, LR 

Shaking 352 x 624 61 x 71 IV, SV, IPR, OPR, BC 

Skating1 360 x 640 34 x 84 IV, SV, OCC, DEF, OPR, BC 

Sylvester 240 x 320 51 x 61 IV, IPR, OPR 

Tiger1 480 x 640 76 x 84 IV, OCC, DEF, MB, FM, IPR, OPR 

Tiger2 480 x 640 68 x 78 IV, OCC, DEF, MB, FM, IPR, OPR, OV 

 

2.2.3 Performance Evaluation  

To evaluate the tracking performance, we take centre location error (CLE) and average 

overlap ratio (AOR) as the parameters to evaluate qualitatively and compare the 

performance of the proposed algorithm with other algorithms. CLE is computed based 

on the ground truth of the target at the pixel level. It measured the Euclidean distance 

between the central locations of the tracked object and the ground truth. 

 𝐶𝐿𝐸 = √(𝑥𝑡 − 𝑥𝑔)
2
+ (𝑦𝑡 − 𝑦𝑔)

2
 (9) 

The smaller the CLE indicates that the shorter the distance different between the tracked 

target and ground truth, the better the tracking performance. AOR is the indication of 

extent of region overlapping between tracking results and ground truths. The tracking 

result is considered as success if only if AOR score is more than 0.5.  

 𝐴𝑂𝑅 =
𝑎𝑟𝑒𝑎{𝑅𝑂𝐼𝑡 ∩ 𝑅𝑂𝐼𝑔}

𝑎𝑟𝑒𝑎{𝑅𝑂𝐼𝑡 ∪ 𝑅𝑂𝐼𝑔}
 (10) 

The values of AOR range from 0 to 1. The larger the values of AOR, the higher the 

accuracy of the tracking results. 

 

3 RESULT 

This section will present the regression analysis result and tracking result of the 

proposed algorithm on the available image sequences as stated in Table 2. The best 𝑛 
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and 𝜆 for each sequences to obtain the global best performance is showed and the root 

mean square error and coefficient of determination of 𝑛 and 𝜆 for each sequence are 

plotted. The tracking result is showed and compare with the original model and also 

other algorithms. 

3.1 Regression Analysis 

The optimization process has been carried out with the image sequences for 

dimensionality of projected space, 𝑛(50,… ,500) and learning parameter 𝜆 = (0.5~ 1) 
for all image sequences. Through this process, the global best performance for each 

sequences with its own 𝜆  and 𝑛  has been obtained. The equation to describe the 

relationship of these two parameters with image frame size and target size has been 

obtained through Eureqa. The result computed from the Eq. (7) and (8) which is the 

best fit line to describe the data set that can be determined. 

The root mean square error is useful in showing how well the predicted values 

correspond to the actual data which attempt to model. In order to facilitates the 

comparison between the sequences, the normalized root mean square error (nRMSE) 

for the 𝑛 and 𝜆 are computed. With lower nRMSE indicates less residual variance, 

comparatively, learning parameter having a better predicted values as most of the 

sequences, nRMSE shows value close to 0. While for dimensionality of projected space, 

nRMSE is relatively high but all the nRMSE values are less than 0.12.  

The coefficient of determination is a key output of regression analysis. It is understood 

as the proportion of the variance in the dependent variable that is predictable from the 

independent variable. It ranges from 0 to 1 with 1 indicates the dependent variable can 

be predicted without error from the independent variable. The learning parameter in all 

image sequences as it shows the value close to 1. While for dimensionality of projected 

space, most of the sequences show a value close to 1. With nRMSE close to 0 and R2 

close to 1, it shows the learning parameter and dimensionality of projected space can 

be predicted with a very little error from the frame sizes and tracking target sizes. 

3.2 Tracking Result 

Based on the Eq. (7) and (8) obtained through Eureqa, the proposed model is evaluated 

and compared with the original algorithm which fix the learning parameter and 

dimensionality of projected space. As stated in Table 3, 10 out of 13 image sequences 

has showed an improvement in their tracking result based on the performance 

evaluation parameters, AOR and CLE. The best improvement in percentage for AOR 

is as high as 446.67% for CarDark sequence, at the same time, CarDark sequence also 

show the highest percentage improvement in CLE which is 95.71%. Besides, the 

average performance of these two algorithm is also computed and compared. Both AOR 

and CLE also show improvement based on their average performance. AOR has 

improved about 36.73% from 0.49 increase to 0.67 while in CLE, 45.10% has been 

improved as it has decrease from 23.88 to 13.11 in pixels. 
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Furthermore, the proposed algorithm is also evaluated with other 5 state-of-the-art 

tracking methods on the image sequences. The 5 evaluated trackers are distribution 

field (DF) [26] tracker, multi-task tracker (MTT) [27], circulant structure tracker (CST) 

[28], sparsity-based collaborative model (SCM) [29] tracker and adaptive structural 

local sparse appearance (ASLA) [30]. The tracking result of these tracking algorithms 

are obtained from [23]. Table 4. shows the comparison of the AOR results on the image 

sequences for the six methods, the five methods mentioned above and the original FCT 

method with the proposed algorithm. Comparing for all the image sequences, the 

proposed methods only performed well in 2 out of 13 sequences with the highest AOR 

value. However, as stated in Table 5 which shows the comparison of the CLE result, 

the proposed method has performed well in most of the image sequences. The proposed 

method having the lowest CLE in 8 out of 13 sequences. It shows the proposed model 

have improved the overall performance of visual tracking. 

Table 3. Comparison of result between original FCT with proposed FCT 

 AOR ACLE 

 FCT FCTop % FCT FCTop % 

Bolt2 0.59 0.69 16.95 9.99 7.38 26.13 

CarDark 0.15 0.82 446.67 46.34 1.99 95.71 

Clifbar 0.55 0.56 1.82 11.51 10.87 5.56 

Coupon 0.60 0.77 28.33 19.51 8.76 55.10 

Deer 0.68 0.73 7.35 10.92 8.64 20.88 

Faceocc2 0.65 0.75 15.38 20.92 13.86 33.75 

Football 0.46 0.67 45.65 17.36 8.24 52.53 

Panda 0.49 0.56 14.29 8.11 6.44 20.59 

Shaking 0.36 0.72 100.00 36.27 8.39 76.87 

Skating1 0.25 0.36 44.00 68.02 59.79 12.10 

Sylvester 0.68 0.70 2.94 8.47 9.35 -10.39 

Tiger1 0.58 0.73 25.86 20.08 11.05 44.97 

Tiger2 0.38 0.60 57.89 32.92 16.71 49.24 

Average 0.49 0.67 36.73 23.88 13.11 45.10 
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Table 4. Average overlap ratio (AOR) comparison 

 FCT FCTop DF MTT CST SCM ASLA 

Bolt2 0.59 0.69 0.01 0.01 0.92 0.01 0.01 

CarDark 0.15 0.82 0.78 0.59 0.48 0.47 0.57 

Clifbar 0.55 0.56 0.26 0.55 0.96 0.41 0.40 

Coupon 0.60 0.77 0.34 0.39 0.81 0.62 0.71 

Deer 0.68 0.73 0.06 0.87 1.00 0.98 0.96 

Faceocc2 0.65 0.75 0.78 0.88 0.99 0.76 0.93 

Football 0.46 0.67 0.56 0.67 0.69 0.17 0.07 

Panda 0.49 0.56 0.13 0.11 0.15 0.29 0.71 

Shaking 0.36 0.72 0.84 0.02 0.36 0.54 0.98 

Skating1 0.25 0.36 0.19 0.10 0.09 0.76 0.61 

Sylvester 0.68 0.70 0.32 0.67 0.83 0.76 0.82 

Tiger1 0.58 0.73 0.36 0.25 0.42 0.31 0.14 

Tiger2 0.38 0.60 0.65 0.34 0.37 0.02 0.24 

 

Table 5. Centre location error (CLE) comparison 

 FCT FCTop DF MTT CST SCM ASLA 

Bolt2 9.99 7.38 277 293 12 200 210 

CarDark 46.34 1.99 6 7 8 45 8 

Clifbar 11.51 10.87 52 25 7 99 49 

Coupon 19.51 8.76 23 72 21 73 23 

Deer 10.92 8.64 252 17 15 16 13 

Faceocc2 20.92 13.86 22 19 13 24 20 

Football 17.36 8.24 33 9 17 200 207 

Panda 8.11 6.44 64 47 46 156 9 

Shaking 36.27 8.39 10 115 21 47 10 

Skating1 68.02 59.79 174 78 10 42 72 

Sylvester 8.47 9.35 56 18 8 10 9 

Tiger1 20.08 11.05 30 61 25 146 49 

Tiger2 32.92 16.71 13 24 22 230 36 

 

Table 6 shows the average performance of the tracking result for all the seven methods 

as listed. The proposed method achieved the highest in both AOR and CLE average 

value of 0.67 and 13.11 respectively. The proposed method is only show little 

enhancement from CST method by 10.64% in AOR value and 4.24% in CLE value. In 
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term of AOR value, the proposed method outperforming the DF with the highest 

improvement of 61.90%, follow by MTT with 40.32%, SCM with 36.36%, FCT with 

26.87% and ASLA with 24.49%. For CLE average value comparison, the highest 

improved in performance is achieved with 273.08% if compared with MTT. The 

proposed method has also outperformed the DF, ASLA and SCM methods with a very 

high improved in percentage which is 107.22%, 175.42% and 156.31% respectively. 

Table 6. Average result comparison for AOR and CLE 

 AOR CLE 

 Average Diff in % Average Diff in % 

DF 0.41 -61.90 77.85 107.22 

MTT 0.42 -40.32 60.38 273.08 

CST 0.62 -10.64 17.31 4.24 

SCM 0.47 -36.36 99.08 156.31 

ASLA 0.55 -24.49 55 175.42 

FCT 0.49 -26.87 23.88 82.15 

FCTop 0.67 - 13.11 - 

 

4 CONCLUSION 

Despite of various tracking methods have been proposed, visual tracking is still a 

challenging issue due to the attributes causing the tracking tend to drift. In this paper, a 

model including the concept of regression analysis was proposed and it enhances the 

overall performance of visual tracking. The relationship of the dimensionality of 

projected space and learning parameter with the frame size and tracked target size was 

studied. Instead of using random and fix values, the proposed model implemented the 

formulae generated through Eureqa which best describe the relationship of those 

parameters during tracking. The proposed model improved the AOR and CLE value in 

most of the sequences and the average AOR is increased to 0.67 and the average CLE 

is decreased to 13.11. The performance of the proposed method was compared with 

others tracking methods. Result shows the proposed algorithm performs favourably 

against several state-of-the-art tracking algorithms. The enhanced FCT model improves 

and shows a better performance in tracking result. 
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