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ABSTRACT 

Heart rate variability (HRV) is a noninvasive indicator for evaluating the 

imbalance of the autonomic nervous system (ANS). Electrocardiogram (ECG) 

has been used more widely than photoplethysmogram (PPG) to detect the 

correct peak-to-peak time intervals between two successive R waves (RRI). 

Recently, PPG has been proposed as a surrogate of ECG in HRV analysis 

because ECG measurements confer discomfort and inconvenience. However, 

PPG is very sensitive to motion artefacts resulting in poor estimation of normal 

beat-to-beat intervals (NNI) in the PPG signal. Therefore, in this study, an 

optimal infinite impulse response (IIR) bandpass filter (IIR BPF) based on the 

digital Butterworth transfer function was proposed to improve the estimation of 

NNI based on the PPG data. Three time-domain and two nonlinear HRV 

parameters were calculated from the PPG datasets and were compared with 

those derived from the ECG datasets to evaluate the filter performance. The 

results show that there is no significant difference between RRI and NNI in the 

estimation of the relative errors of SDNN, RMSSD, SDSD, SD1, and SD2 based 

on the PPG and ECG HRV datasets. The proposed digital IIR BPF enhanced the 

performance of the motion artefact algorithm for peak detection and provided a 

better HRV estimate. 

Keywords: photoplethysmogram, heart rate variability, impulse response, 

autonomic nervous system 
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1. INTRODUCTION 

Heart rate variability (HRV) is a physiological activity reflecting the cardiovascular 

control by the autonomic nervous system (ANS) [1-3]. ANS regulation of various 

functions includes heart rate, respiration, and the functions of all internal organs and is 

related to various diseases. Thus, HRV estimation technology reflecting the activity of 

ANS has been used in various health monitoring systems [4,5]. However, the accurate 

detection of heartbeat interval used in ANS evaluation is essential for successful and 

precise HRV analysis. HRV parameters are traditionally obtained by calculating the R 

wave peaks of the QRS complexes in ECG. Heartbeat interval of two successive R 

waves (RRI) in ECG is believed to provide more accurate RRI than estimation based 

on a finger-type PPG. However, the traditional ECG measurement has several concerns, 

including discomforts and inconveniences: (a) the attachment of at least two cutaneous 

electrodes is required; (b) the metal material of electrodes may cause skin irritations in 

some subjects; and (c) supervision is required to use ECG [6]. For these reasons, several 

studies attempted to evaluate HRV parameters based on PPG measurements, that are a 

simple, low-cost, and easy-to-use replacement of ECG [7-9]. In this paper, we 

demonstrate that HRV analysis can be used to derive the HRV data from a finger-type 

PPG without ECG. A heartbeat interval in milliseconds in the PPG signal is defined as 

a period between successive normal peak-to-peak intervals (NNI) as shown in Figure 

1. Normally, a complete heart cycle starts at the beginning of foot and ends with the 

next foot. Variations in the peak amplitude and the starting point of the PPG foot cause 

problems in detection of an accurate NNI per heartbeat. Moreover, since the PPG signal 

reflects the cutaneous blood flow in the vessels from the heart to the fingertips, PPG is 

susceptible to motion artefacts and a poor signal-to-noise ratio due to even a slight body 

movement. The fingertip PPG signal is based on optical measurements obtained by 

irradiating the skin surface at a wavelength using a light emitting diode (LED) source 

and detecting the intensity of transmitted light using a photodiode opposite to the LED. 

The wavelength and distance between the light source and the photodiode determine 

the penetration depth of the light. Light with a wavelength from 500 to 1100 nm (from 

green to infrared) can be used in PPG. A green LED is suitable due to large variations 

in intensity modulated by pulsatile absorption of the blood; however, green LED has 

the disadvantage of high sensitivity to body movement [10]. An infrared LED is better 

for the measurement of deep-tissue blood flow but is sensitive to changes in the 

volumes of the peripheral vessels, leading to motion artefacts in the PPG measurements. 

A red LED light has moderate absorption by oxyhemoglobin and deoxyhemoglobin 

compared to green and infrared LEDs [11-13]. In this study, red LED was used. PPG 

technology is based on the use of light absorption to measure relative blood volume 

changes in the blood vessels. Thus, PPG is usually distorted by motion artefacts due to 

voluntary or involuntary movement by the subjects. A number of studies have attempted 
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to reduce the motion artefacts to enhance the signal-to-noise ratio [14-17]. As a result, 

a PPG waveform with minimized motion artefacts was successfully obtained, although 

all of the improvements were focused on the characteristics of the PPG waveform 

required for pulse oximetry. Therefore, the PPG signal is considered sufficiently 

accurate in obtaining the NNI required for HRV analysis. However, in this study, we 

have developed an optimal digital infinite impulse response (IIR) bandpass filter (IIR 

BPF) for accurate detection of NNI suitable for HRV analysis; the method is based on 

the transfer function of the analog second-order Butterworth bandpass filler. The 

developed IIR BPF can measure abnormal and normal heartbeat intervals accurately 

regardless of the variations in the amplitude of the PPG signal. It should be noted that 

an optimal digital IIR BPF based on a microcontroller will contribute to the 

development of precise HRV-based health monitoring services that uses the PPG signal. 

 

 

Figure 1. PPG signal representing the normal peak-to-peak interval in time series 

(NNI). 

 

2. HRV PARAMETERS 

Time-domain HRV parameters determine the number of variations in the time interval 

(in milliseconds) between successive heartbeats. Nonlinear HRV parameters quantify 

the structure and complexity of the NNI time series [18]. HRV is considered 

nonstationary and nonlinear. In general, HRV analysis consists of tens of parameters 

obtained from time-domain, frequency-domain, and nonlinear measurements. We have 

used three time-domain (SDNN, RMSSD, and SDSD) and two nonlinear (SD1 and SD2) 

HRV parameters to compare PPG with ECG as shown in Table 1. The parameters are 

calculated according to the following equations: 

NNI (ms)

foot foot
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SDNN = √∑ (𝑁𝑁𝐼𝑛−𝑁𝑁𝐼)
2𝑁−1

𝑛=1

𝑁−1
                       (1) 

RMSSD = √
1

𝑁−1
∑ [𝑁𝑁𝐼𝑛 − 𝑅𝑅𝑛−1]2𝑁−1

1                     (2) 

SDSD = √∑(𝑁𝑁𝐼𝑑𝑖𝑓𝑓−𝑁𝑁𝐼𝑑𝑖𝑓𝑓)
2

𝑁−1
                     (3) 

𝑁𝑁𝐼𝑑𝑖𝑓𝑓 = 𝑁𝑁𝐼𝑛 − 𝑁𝑁𝐼𝑛−1 

Table 1. Descriptions of and comments for five HRV parameters 

HRV 

parameters 

Parameters Description Comment Unit 

Time domain SDNN Standard deviation of all interbeat 

normal-to-normal (NN) intervals 

Long-term 

HRV 

ms 

RMSSD Root mean square of successive NN 

interval differences 

Short-term 

HRV 

ms 

SDSD Standard deviation of differences 

between adjacent NN intervals 

Short-term 

HRV 

ms 

Nonlinear 

domain 

SD1 Standard deviation of the width of the 

Poincare plot 

Short-term 

HRV 

ms 

SD2 Standard deviation of the length of the 

Poincare plot 

Long-term 

HRV 

ms 

 

Poincare plot analysis was performed according to the following equations (4-7). The 

HRV NNI data vector is defined as x = (𝑥0, 𝑥1, … , 𝑥𝑁). Two auxiliary vectors defined 

in (4) and (5), and all parameters of the Poincare plot are determined as follows: 

𝑥𝑎 = (𝑥0, 𝑥1, … , 𝑥𝑁−1)                             (4) 

𝑥𝑏 = (𝑥1, 𝑥2, … , 𝑥𝑁)                               (5) 

𝑥𝑐 =
𝑥𝑎−𝑥𝑏

√2
 ,    𝑥𝑑 =

𝑥𝑎+𝑥𝑏

√2
                           (6) 

SD1 =  √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑐) ,    SD2 =  √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑑)      (7) 

The ellipse fitting method was used to calculate the dimensionless standard deviations 

(SD) of the distances of the points perpendicular to the axis of the line-of-identity 

(y = -x) and the SDs of the distances of the points along the axis of the line-of-identity 

(y = x), defined as SD1 and SD2, respectively, as shown in Figure 2. SD1 and SD2 

indices represent the semi-minor (width) and semi-major (length) axes of the ellipse, 

respectively [19]. 
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Figure 2. Poincare plot of 323 samples of NNI. The semi-major and semi-minor axes 

of the ellipse represent SD2 and SD1, respectively. 

 

3. DIGITAL IIR BAND-PASS FILTER 

A recursive IIR (Infinite Impulse Response) digital filter is an LTI (Linear Time 

Invariant) system based on the difference equation (8), which is called an IIR filter. 

y[n] = − ∑ 𝑎[𝑘]𝑦[𝑛 − 𝑘]𝑁
𝑘=1 + ∑ 𝑏[𝑘]𝑥[𝑛 − 𝑘]𝑀

𝑘=0             (8) 

The transfer function is defined by the difference equation (9). 

H(z) =
𝑏0+𝑏1𝑧−1+𝑏2𝑧−2+ ∙∙∙∙+𝑏𝑀𝑧−𝑀

1+𝑎1𝑧−1+𝑎2𝑧−2+ ∙∙∙∙+𝑎𝑁𝑧−𝑁                            (9) 

H(z) =
𝐵(𝑧)

𝐴(𝑧)
                                            (10) 

Where 

B(z) =  ∑ 𝑏[𝑛]𝑧−𝑛𝑀
𝑛=0                                    (11) 

A(z) = 1 +  ∑ 𝑎[𝑛]𝑧−𝑛𝑁
𝑛=0                               (12) 

H(z) can be written as 

H(z) =  
𝑧−𝑀

𝑧−𝑁 ∙
𝑏0𝑧𝑀+𝑏1𝑧𝑀−1+𝑏2𝑧𝑀−2+ ∙∙∙∙+𝑏𝑀

𝑧𝑁+𝑎1𝑧𝑁−1+𝑎2𝑧𝑁−2+ ∙∙∙∙+𝑎𝑁
                   (13) 
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The zeroes of H(z) are the roots of the polynomial in equation (14). 

𝑏0𝑧𝑀 + 𝑏1𝑧𝑀−1 + 𝑏2𝑧𝑀−2 + ∙∙∙∙ +𝑏𝑀                 (14) 

The poles of H(z) are the roots of the polynomial in equation (15). 

𝑧𝑁 + 𝑎1𝑧𝑁−1 + 𝑎2𝑧𝑁−2 + ∙∙∙∙ +𝑎𝑁                  (15) 

Our design of the IIR filter is based on analog prototype transfer function equivalent, 

the Butterworth filter, which maps the s-plane poles and zeros of the analog filter into 

the z-plane using the bilinear transformation. The bilinear z-transform is a mathematical 

transformation from the s-domain to the z-domain that preserves the frequency 

characteristics and is defined by equation (16). 

s =  
2

𝑇

1−𝑧−1

1+𝑧−1 ,  where T = sampling period             (16) 

Bilinear transformation gives a nonlinear relationship between the analog frequency 

𝜔𝑎 and digital frequency 𝜔𝑑. The frequency response of a digital filter is defined by 

setting z =  𝑒𝑗𝜔𝑇. 

s = j𝜔𝑎 =  
2

𝑇

1−𝑒−𝑗𝜔𝑑𝑇

1+𝑒−𝑗𝜔𝑑𝑇 =
2

𝑇

𝑒
𝑗𝜔𝑑𝑇

2 −𝑒
−𝑗𝜔𝑑𝑇

2

𝑒
𝑗𝜔𝑑𝑇

2 +𝑒
−𝑗𝜔𝑑𝑇

2

                  (17) 

𝜔𝑎 =
2

𝑇
𝑡𝑎𝑛

𝜔𝑑𝑇

2
                          (18) 

The cutoff frequencies of a digital filter must be tangentially warped compared with the 

cutoff frequencies of an analog filter used to design the digital filter. Therefore, it is 

necessary to prewarp the digital cutoff frequencies before designing the analog filter. 

Finally, an analog filter is designed with the appropriate warped cutoff frequencies. 

Applying the bilinear transformation to this analog filter gives a digital filter with the 

desired cutoff frequencies. Two cutoff frequencies are required to design a bandpass 

filter. We chose the first cutoff, and the second cutoff frequencies of 0.3 (𝑓𝑑1) and 3 

Hz (𝑓𝑑2), respectively, for a sampling rate of 1 kHz (T=10−3 𝑠ec). Application of the 

pre-warping transformation to equation (18) yields two analog cutoff frequencies. 

𝜔𝑑1 = 2𝜋 × 0.3 = 0.6𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐                   (19) 

𝜔𝑑2 = 2𝜋 × 3.0 = 6.0𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐                   (20) 

𝜔𝑎1 = 0.03289868 𝑟𝑎𝑑/𝑠𝑒𝑐                      (21) 

𝜔𝑎2 = 0.32898682 𝑟𝑎𝑑/𝑠𝑒𝑐                      (22) 
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4. IMPLEMENTATION 

We applied the bilinear transformation that maps an imaginary axis of the s-plane onto 

a unit circle of the z-plane. Digital filter specifications, including the order of the filter 

and two cutoff frequencies, were converted to the specifications of an analog prototype 

Butterworth bandpass filter. Then, we determined the transfer function of the analog 

bandpass filter to transform the analog transfer function into the desired digital transfer 

function, H(z) according to equation (23). All coefficients for the digital IIR BPF were 

calculated using MATLAB (2014b; MathWorks Inc., Natick, MA, USA), as shown in 

Table 2. 

 

Table 2. IIR BPF coefficients calculated by MATLAB program 

B[k] Numerator A[k] Denominator 

b0 0.000071094 a0 1.000000000 

b1 0.000000000 a1 -3.975938926 

b2 -0.000142189 a2 5.928172637 

b3 0.000000000 a3 -3.928527652 

b4 0.000071094 a4 0.976293942 

 

Using the coefficients listed in Table 2, a digital IIR BPF transfer function was defined 

according to the following equation (23). 

H(z) =  
0.000071094+0𝑧−1−0.000142189𝑧−2+0𝑧−3+0.000071094𝑧−4

1−3.975938926𝑧−1+5.928172637𝑧−2−3.928527652𝑧−3+0.976293942𝑧−4     (23) 

Four poles and four zeros were calculated in the following values. 

𝑝1 = 0.9893 + 0.0135𝑖 

𝑝2 = 0.9893 − 0.0135𝑖 

𝑝3 = 0.9987 + 0.0013𝑖 

𝑝4 = 0.9987 + 0.0013𝑖 

𝑧1 = −1.0019, 𝑧2 = −0.9981, 𝑧3 = 1.0019, 𝑧4 = 0.9981         (24) 

The locations of the 4 poles and 4 zeros and the magnitude frequency response of the 

IIR BPF are shown in Figures 3 and 4, respectively. 
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Figure 3. Locations of all poles and zeros on the z-plane for IIR BPF 

 

 

Figure 4. Magnitude frequency response of digital IIR BPF with -3 dB at the desired 

second cutoff frequency 𝑓𝑑2= 3 Hz. 
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The IIR BPF algorithm was programmed according to equation (25) based on a 

microcontroller (MSP430F6638, Texas Instruments, Dallas, TX, USA), embedded into 

a commercial pulse analyzer, TAS9VIEW (CANOPY9 RSA, IEMBIO. Ltd., 

Chuncheon-si, South Korea). 

y[n] = 0.00071094x[n] − 0.000142189x[n − 2] + 0.0000710941x[n − 4]

+ 3.975938926y[n − 1] − 5.928172637y[n − 2] + 3.928527652y[n − 3]

− 0.976293942y[n − 44] 

         (25) 

 

5. DATA COLLECTION 

The participant was in the sitting position in a quiet room and was not allowed to talk 

or move while the two measurements were performed. In this study, a 5-min HRV data 

pair of handgrip ECG recordings were obtained using a commercial HRV analyzer 

(CANOPY9 VIEW, IEMBIO. Ltd., Chuncheon-si, South Korea); the fingertip PPG 

recordings used in the IIR BPF testing were simultaneously obtained using a pulse 

analyzer equipment (TAS9VIEW or CANOPY9 RSA). The experimental setup was 

described in our previous study. The ECG and PPG signals were sampled at 1000 

samples s-1. Two recordings were inspected to select the data pairs that did not have any 

time delay that could influence the results [20]. 

 

6. RESULTS 

The results of digital IIR BPF with and without a motion artefact introduced in the PPG 

signal are presented in Figure 5. Upper and lower waves represent the PPG and digital 

IIR BPF output acquired using a microcontroller, respectively. Figure 5(b) illustrates 

the comparison between PPGs with and without a motion artefact. The results indicate 

that the developed IIR BPF can efficiently remove the motion artefact from the noisy 

PPG signal. Waveform of the IIR BPF output from the artefact-free PPG was slightly 

different from that of the PPG with an artefact; however, an accurate heartbeat interval 

could be obtained through an analog comparator to create a pulse back into a 

microcontroller. Motion artefacts were introduced by vertical or horizontal movements 

of the finger during measurement. The calculation of NNI (ms) depends on the peak-

to-peak values of the PPG signal. Thus, it is important that the optimal IIR BPF 

algorithm preserves this characteristic in the filtered output, as indicated by the lower 

wave in Figure 5(b). Because the PPG signal is produced within the range from 0.5 to 

4.0 Hz [14], we determined two cutoff frequencies of the bandpass filter, 0.3 and 3.0 

Hz. The original PPG signal was initially processed by an analog RC filter to filter out 
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the high frequency noise and then, the signal was input into an ADC (analog-to-digital 

converter) pin port on a microcontroller. 

 

  

(a) No motion artefact (b) Motion artefact 

  

Figure 5. An IIR BPF output (lower wave) for the detection of NNI based on the PPG 

signal (upper wave) and the impact of a motion artefact. 

 

The HRV parameters derived from PPG and ECG were compared based on the relative 

errors as shown in Table 3. The smallest errors are observed in the case of SDNN in the 

2nd test and in the case of SDSD in the 1st test with relative errors of 0.00 and 0.66, 

respectively. The highest errors were observed in the case of SD1 with relative errors 

of 0.68 % and 2.40 % for the 1st and 2nd test, respectively. All parameters derived from 

the HRV datasets obtained by two different methods (PPG and ECG recordings) were 

within 2.4 % relative error margin. The smallest difference between PPG and ECG 

among the five HRV parameters is SD2 (relative error of 0.86 % and 0.53 %, 

respectively). Therefore, the results show that there were no significant differences 

between the PPG and ECG datasets. 
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Table 3. Values of five HRV parameters for two 5-min recordings of the PPG-ECG 

data pairs. 

Measurement Type SDNN RMSSD SDSD SD1 SD2 

1st test 

PPG1 57.87 49.75 49.68 35.23 73.65 

ECG1 57.47 50.09 50.01 35.47 73.02 

Relative Error 

(%) 

0.69 -0.68 0.66 0.68 0.86 

2nd test 

PPG2 57.71 49.44 49.37 35.01 73.82 

ECG2 57.71 50.62 50.54 35.85 73.43 

Relative Error 

(%) 

0.00 -2.38 2.37 2.40 0.53 

 

7. CONCLUSIONS 

Recursive IIR BPF allowed us to achieve the desired characteristics of the frequency 

response using a filter of lower order than that in the case of a nonrecursive filter. The 

recursive filter developed in the present work has all poles and zeros in close proximity 

to the unit circle on the z-plane. We used the bilinear transformation method to convert 

a Laplace transfer function of an analog prototype Butterworth filter into a digital 

transfer function. However, all poles of the IIR coefficients were be very close to the 

unit circle. Thus, IIR BPF performance is very sensitive to changes in the values of the 

poles, resulting in a high possibility that the response of the actual digital IIR filter can 

deviate from the desired response. For a filter circuit to be stable, all its poles must lie 

within the unit circle on the z-plane. Therefore, to ensure the stability of the IIR filter, 

the poles must be specified with high accuracy (9 decimal places) due to the 

implementation of a 16-bit microcontroller. The positions of the poles in the z-plane are 

the important factors in determining the stability of the IIR BPF system. It may be 

impossible or very expensive to implement IIR BPF with the desired specification as 

an analog filter design with an RLC circuit because of the required tolerances in the 

component values and in the electrical characteristics of the operational amplifier. The 

frequency response of the Butterworth filter, a maximally flat filter, has no ripples in 

the passband or the stopband. A smooth, monotonically decreasing frequency response 

in the transition region is an advantage of the Butterworth filter. However, the frequency 

response of the Chebyshev filter has a narrower transition range than that of the 

Butterworth filter, resulting in a passband or stopband with more ripples. Therefore, the 
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Butterworth prototype filter is more suitable than the Chebyshev filter because PPG has 

oscillations in the amplitude due to an optical measurement that senses the blood 

volume changes. We recommend that the IIR BPF developed in the present study is 

implemented into a PPG system for the detection of NNI in HRV analysis as a 

replacement for the ECG system. 
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