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Abstract 

 Virtualization has become a universal generalization layer in contemporary 

data centers. By multiplexing hardware resources into multiple virtual 

machines and therefore facilitating several operating systems to run on the 

same physical platform at the same time, it can effectively decrease power 

consumption and building size or improve security by isolating Virtual 

Machines. In a virtualized system, memory resource supervision acts as a 

decisive task in achieving high resource employment and performance. 

Insufficient memory allocation to a Virtual Machine will degrade its 

performance radically. On the opposing, over allocation reasons ravage of 

memory resources. In the meantime, a Virtual Machine’s memory stipulates 

may differ drastically. As a consequence, effective memory resource 

management calls for a dynamic memory balancer, which, preferably, can 

alter memory allocation in a timely mode for each Virtual Machine based on 

their present memory stipulate and therefore realize the preeminent memory 

utilization and the best possible overall performance.  Migrating operating 

system instances across discrete physical hosts is a helpful tool for 

administrators of data centers and clusters: It permits a clean separation among 
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hardware and software, and make easy fault management. In order to 

approximate the memory stipulate of each Virtual Machine and to adjudicate 

probable memory resource disagreement, a extensively planned approach is to 

build an Least Recently Used based miss ratio curve which provides not only 

the current working set size but also the correlation between performance and 

the target memory allocation size. Regrettably, the cost of constructing an 

MRC is nontrivial. In this paper, we initially present a low overhead LRU-

based memory demand tracking scheme, which includes three orthogonal 

optimizations: AVL based Least Recently Used association, dynamic hot set 

sizing. Our assessment outcome confirm that, for the complete SPEC CPU 

2006 benchmark set, subsequent to pertaining the three optimizing techniques, 

the mean overhead of MRC construction are lowered from 173% to only 2%. 

Based on current WSS, we then predict its trend in the near future and take 

different tactics for different forecast results. When there is a adequate amount 

of physical memory on the host, it locally balances its memory resource for 

the VMs. Once the local memory resource is insufficient and the memory 

pressure is predicted to sustain for a sufficiently long time, a relatively 

expensive solution, VM live migration, is used to move one or more VMs 

from the hot host to other host(s). Finally, for transient memory pressure, a 

remote cache is used to alleviate the temporary performance penalty. Our 

experimental results show that this design achieves 49% center-wide speedup. 

Keywords - virtualization, virtual machine, cloud computing, data centric,   

physical memory, load balancing, cluster, resource allocation. 

 

1. INTRODUCTION  

Virtualization is becoming persistent in massive data centers, cloud computing, and 

enterprise infrastructure, motivated by a number of significant benefits, such as 

theatrical cost reduction, enlarged application availability and further well-organized 

IT management. According to Gartner (16), today, 25% of installed server workloads 

are virtualized. IDC even forecasts that, by 2014, more than 70% of applications on 

newly distributed servers will run in virtual machines (29). However, in a virtualized 

environment, competent and effectual memory resource management is silent a 

demanding problem. In this paper we recommend a memory resource balancing 

method to develop performance and memory resource consumption for center-wide 

virtualized computing. We show that our elucidation can correctly monitor memory 

demand of each virtual machine with very low operating cost and can successfully 

improve overall system performance. Virtualization technologies like Xen(9), 

VMware(54), and Denali(56) have turn into a common generalization layer in 

contemporary data centers. They facilitate multiple operating systems to run on their 

own virtual machines separately. Figure 1.1 illustrates an example, where the 

hypervisor multiplexes the hardware of a single physical machine with several virtual 

machines and a guest Operating System executes inside each virtual machine 

separately. One of the major benefits of using virtualization is server consolidation. It 
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is not unusual to achieve a 15-to-1 or even higher consolidation ratio (11), which is 

the ratio of virtual to physical machine without troublesome performance impact. For 

a data center that hosts a large number of servers, this can successfully save power 

consumption, floor space possession and air conditioning costs. In addition, 

virtualization can advance ease of use by live migration (15). When one physical 

server fall short or wants maintenance, the virtual machines it hosts can be clearly 

migrated to another physical machine with insignificant application downtime. The 

core of virtualization is the virtual machine monitor which is also called hypervisor. 

VMM is accountable for building and organization multiple instances of virtual 

hardware platforms. A bundle of physical resources like CPUs or network interface 

cards can be multiplexed in a time-sharing manner, which is like to how multiple 

processes of a native Operating System would split them. However, the memory 

system is shared all the way through address space partitioning. That is, each virtual 

machine is allocated with a fixed amount of address space of physical memory. 

However, conflicting from how a resident Operating System administers virtual 

memory and physical memory for its processes, for the purpose of fidelity, the VMM 

is not actively involved in memory management of each Virtual Machine. More 

particularly, when created, each VM is allocated with a fixed amount of physical 

memory. Then, it is the guest Operating System’s job to supervise that amount of 

physical memory without the involvement of the hypervisor. As a result, the 

hypervisor is unaware of memory demand of VMs and thus powerless to dynamically 

balance memory resources.  In our solution, we first design a low cost but accurate 

Least Recently Used based working set size tracking scheme as the basis of memory 

resource balancing. The Least Recently Used based working set size form associates 

memory allocation size and performance impact. Based on the form, we propose a 

local memory balancing method, which dynamically amend memory allocation 

amount via ballooning (34, 9) on a single physical machine. Then it is unmitigated to 

a global surroundings, where the physical memory of all interconnected machines is 

balanced via live migration and remote caching. To the best of our knowledge, our 

work uniquely coordinates the global memory balancing practices with a local 

balancing scheme. Without effective local memory balancing, the efficiency of global 

memory balancing will be significantly weakened. Figure 1.2 shows the overview of 

our solution. 
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Figure 1.1 Organization of virtualization 

 

Figure 1.2 Solution overview 

 

2. RELATED WORK 

2.1 Memory Management 

In this section, we first briefly introduce how memory is managed in a native 

operating system. Then we describe how memory management is adapted for 

virtualization and the challenges that virtualization brings. 

 

2.1.1 Memory Management in A Native OS 

Virtual memory was first described in 1960s (21) and it has become a standard feature 

of modern general-purpose operating systems. It gives each process an illusion that it 

is running on a standalone and contiguous memory address space, called virtual 
address space. The size of a virtual address space can be larger than the amount of 

available real, physical memory. Typically, memory is allocated and reclaimed at a 

fixed granularity, called page, whose size is determined by processor architecture. 

Both virtual address space and physical address space are measured at the unit of page 

size. Inside the operating system, it maintains a translation table for each process, 

named page table, which maps a virtual page number to a physical page frame 

number. Inside a processor, there is a memory management unit (MMU) that 

dynamically translates virtual addresses that an application references to the 

corresponding physical addresses by looking up the current page table. When a 

system runs out of physical memory, and if some process requests for a free page, the 

OS selects some physical frame, saves its contents on a secondary storage (called 

swapping-out or paging-out) and allocates the page to the process. Later on, if the 
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previously paged out data is needed, it is loaded into a free physical memory frame, 

which is called paging-in or swapping-in. This page swapping scheme is called 

demand-paging. The strategy that determines which pages are swapped out is called 

page replacement policy. Since the latency of disk accesses is usually thousands of 

times longer than that of memory accesses, frequent page swapping will significantly 

damage the performance. A theoretically optimal page replacement policy should 

select a page whose next use will be the farthest in the future (2). However, in a 

general purpose OS, it is impossible to precisely predict the future memory access 

behaviors. In real world, a commonly used algorithm is the least recently used (LRU) 
replacement policy or its approximation. It works based on the property of program 

locality. That is, the pages that have been heavily and recently used are also most 

likely to be heavily used in near future. For an OS that uses demand paging and the 

LRU page replacement policy, a process that heavily uses a set of pages will 

automatically secure those pages in physical memory. 

 

2.1.2 Memory Management with Virtualization 

To create a virtualized environment, the hypervisor runs at the most privileged level 

that a native OS runs at. For CPUs without virtualization support, guest OSes and its 

processes run at the non-privileged level. Those privileged operations in the guest OS, 

such as page table setup, I/O instructions and etc. are either statically replaced with 

calls to the hypervisor or dynamically trapped and emulated via binary rewriting by 

the hypervisor. With hardware virtualization support, an unmodified guest OS runs on 

the CPU directly without intervention by the VMM until it tries to execute a restricted 

instruction. At this point, the hypervisor takes the control to emulate the instruction. 

When an operating system runs on the top of hypervisor, another level of memory 

address space, guest physical address (GPA) space, is introduced. To avoid confusion, 

in virtualization, the real physical address is specifically referred as machine physical 
address (MPA). GPA is used by guest OSes in their physical address space. The 

purpose of using GPA is to provide the guest OS the impression that it is running on a 

real machine with certain amount of contiguous physical memory starting from 

address 0 because there is no guarantee that every guest OS will be allocated with 

contiguous machine memory and most OSes do not support fragmented physical 

address space. The size of the GPA space of an OS is the same as the amount of 

machine memory that the hypervisor statically allocates to the guest OS when it is 

created. Meanwhile, the hypervisor maintains a mapping table to map the contiguous 

GPA space to the possibly scattered MPA space. Figure 2.1 contrasts the address 

spaces between a native OS and a virtualized OS. To support the translation from 

GPA to MPA, currently there are two kinds of approaches based on whether the 

processor supports MMU virtualization or not (1, 53, 39): two software-based 

techniques and a hardware-based approach. 

 

 



206 P.V.S.S.Gangadhar  et al 

 

Figure 2.1 Address spaces in a native OS and a virtualized OS 

 

2.2 Working Set Size Estimation 

In this section, we first introduce the concept of working set. We then discuss various 

techniques to estimate the size of a working set. 

 

2.2.1 Working Set 

Denning (17) first defined the working set as the set of memory pages referenced by a 

process during a time interval. The size of the working set (WSS) is the amount of 

memory that a process needs without paging. Even if the process has very large 

memory footprint, those pages not in its working set can be reclaimed without 

performance penalty. The same idea can be extended to VMs. Assuming a guest OSes 

can well utilize their allocated physical memory, and if the memory allocation amount 

of each VM is exactly its WSS, then the physical memory allocation on the host is 

optimal. Therefore, working set size estimation provides a necessary metric that 

ensures the system to reach the maximum performance as expected. 

 

2.2.2 Miss Ratio Curve Based Working Set Size Estimation 

The miss ratio curved (MRC) based WSS estimation is a widely proposed technique 

(38, 13, 67, 60, 30, 51). A page miss ratio curve plots the page miss ratios against 

various amount of memory allocation. When the allocation size is no less than a 

system’s WSS, the miss ratio is 0, which means all accesses will hit in main memory. 
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When the allocation size is less than its WSS, the MRC tells the ratio of many 

accesses that will cause page swapping. With an MRC, we can redefine WSS as the 

size of memory that results in less than a predefined tolerable page miss rate. Since an 

MRC models the performance and memory allocation size, it is especially suitable for 

memory resource arbitration. For example, when two applications compete for 

memory resources, in order to achieve optimal overall performance, the arbitration 

scheme needs to evaluate how the performance would be impacted by varying their 

allocation sizes A commonly used method to calculate MRC is Mattson’s stack 

algorithm (38). It was initially proposed to reduce the time of trace-driven cache 

simulation. The algorithm uses an LRU stack to store the page numbers of accessed 

page frames. For each entry of the LRU stack, its distance to the top of the stack is 

called stack distance or LRU distance. Each stack entry i is associated with a counter, 

denoted as Hist(i). When a page is referenced, the algorithm first searches the page 

number in the stack and computes it stack distance, dist. It then increments the hit 

counter Hist(dist) by one. Finally, it updates the stack by moving the page number to 

the top of the stack. One can plot an LRU histogram by relating each counter value to 

its corresponding LRU distance.  If there is a stack with depth D and we reduce it to 

depth d, then the expected miss ratio can be calculated as follows:  

                                        Miss_ratio(d)=   

For example, given a system with only four pages of physical memory, the top half of 

Figure 2.4 shows the hit counts for some application that makes a total of 200 

memory accesses. The histogram indicates that 100 accesses hit the most recently 

used (MRU) page, 50 accesses hit the second MRU slot, and so on. Apparently the 

page hit rate is (100+50+20+10)/200 = 90%. We can tell that if we reduce the system 

memory size by a half, the hits to the first two MRU slots are still there while the hits 

to the next two MRU slots now become misses. The hit rate becomes (100+50)/200 = 

75%. The LRU histogram thus can accurately predict miss rate with respect to the 

LRU list size. The bottom part of Figure 2.3 is the miss ratio curve corresponding to 

the histogram on the top.  
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Figure 2.3 LRU histogram example 

 

3. LOCAL MEMORY RESOURCE BALANCING 

With the LRU miss ratio curves of all VMs on a physical machine, we can 

dynamically 

Adjust each VM’s memory allocation size. We call this scheme local memory 
resource 
Balancing. In this chapter, we first present our memory resource balancing and 

arbitration scheme in Section 4.1. When there is no sufficient physical memory to 

meet all VMs’ memory requirement, our arbitration algorithm is able to quickly find 

an allocation plan that aims for the overall performance. 

 

3.1 Local Memory Resource Balancing And Arbitration 

Once the working set sizes of all VM are estimated, the balancer needs to determine 

the target allocation sizes for them. Assume that P is the size of all available host 

machine memory when no guest is running, and V is the set of all VMs. For QoS 

purposes, each VMi 2V is given a lower bound of memory size Li. Let Ei 
=max(Li,WSSi) be the expected memory size of VMi. When P _ åEi, all VMs can be 

satisfied. We call the residue of allocation (P−åEi) as bonus. The bonus can be spent 

flexibly. In our implementation, we aggressively allocate the bonus to each VM 

proportionally according to Ei. That is Ti = Ei+bonus× EiåEi 
where Ti is the final target memory allocation size. When P < åEi, at least one VM 

cannot be satisfied. Here we assume all VMs have the same priority and the goal is to 

minimize system wide page misses. Let mrci(x) be the miss ratio curve and nri be 
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number of memory accesses in a recent epoch of VMi. Given a memory size m, the 

number of page misses is missi(m) = mcri(m)×nri. The balancer tries to find an 

allocation {Ti} such that åi2V missi(Ti), the total penalty, is a minimum. Since 

ballooning adjusts memory size on a page unit, a brute force search takes nearly 

O(M|V|) time, where M is the maximum number of pages a VM can get. We propose a 

quick approximation algorithm. For simplicity of discussion, we assume that there are 

two VMs, VM1 and VM2, to balance. Choosing an increment/decrement unit size S 
(S _ G), the algorithm tentatively reduces the memory allocation of VM1 by S, 

Increases the allocation of VM2 by S, and calculates the total page misses of the two 

VMs based on the miss ratio curves. We continue this step with increment/decrement 

strides of 2S, 3S, and so on, until the total page misses reach a local minimum. The 

algorithm then repeats the above process but now reducing allocation of VM1 while 

increasing allocation for VM2. It stops when it detects the other local minimum. The 

algorithm returns the allocation plan based on the lower of the two minima. This 

algorithm can run recursively when there are more than two VMs. It is possible that 

the two minima are close to each other in terms of page misses but the allocation 

plans can be quite different. For example, when two VMs are both eager for memory, 

one minimum suggests hVM1 = 50MB,VM2 = 100MBi with total page misses of 

1000, while the other one returns hVM1 = 100MB,VM2 = 50MBi with total page 

misses of 1001. The first solution wins slightly, but the next time, the second one wins 

with a slightly lower number of page misses and this phenomenon repeats. The 

memory adjustment will cause the system to thrash and degrade the performance 

substantially. To prevent this, when the total page misses of both minima are close 

(e.g. the difference is less than 10%), the allocation plan that is closer to the current 

allocation is adopted. It is also necessary to limit the extent of memory reclaiming. 

Reclaiming a significant amount of memory may disturb the target VM because the 

inactive pages may not be ready to be reclaimed instantly. So during each balancing, 

we limit the maximum reduction to 20% of its current memory size to let it shrink 

gradually. 

 

4. EXPERIMENTAL EVALUATION 

In our implementation, the local balancer is written in Python and runs in domain-0, a 

privileged guest domain. It communicates with hypervisor via hyper calls to acquire 

LRU histograms and resize memory allocation. We set the balancing frequency as 

every 5 seconds, an empirical value, which allows the WSS estimator to collect 

enough information but not too long to miss optimizing opportunities. 

To evaluate the effect of automatic memory resource balancing, we first start from 

balancing for two VMs, each runs different workloads. We evaluate various workload 

combinations, including a simple scenario of CPU intensive + memory intensive 

workloads where there is no memory contention, a workload combination of DaCapo 

and SPEC WEB that has occasional memory competition, a combination of two 

memory intensive workloads. 
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4.1 Balancing For Two VMs (CPU Intensive + Memory Intensive Workloads) 

Our evaluation starts with a simple scenario where memory resource contention is 

rare. The workloads include the DaCapo benchmark suite and 186.crafty, a program 

with intensive CPU usage but low memory load. On VM1, 186.crafty runs 12 

iterations followed by the DaCapo benchmark suite. Meanwhile, on VM2, the 

DaCapo suite runs first, followed by the same number of iterations of 186.crafty.  

Figure 4.1(a) displays the actual allocated memory size and expected memory size on 

both VMs respectively. Note that the VMrunning 186.crafty gradually gives up its 

memory to the other VM.When both VMs are running 186.crafty, bonus is gradually 

allocated to the two VMs. 

To show the performance that an ideal memory balancer could deliver, we measure 

the best case performance on two VMs, each with 380 MB fixed memory, the peak 

memory allocation that a VM could own during balancing. 

Table 4.1 lists the number of major page faults and execution time for both VMs. 

With memory balancing, the number of total major faults is reduced by a factor of 25. 

 

Table 4.1 Major page faults and execution time 

 Baseline Balancing Best 

VM1 VM2 VM1 VM2 VM1 VM2 

Major page faults 158,810 110,96

5 

4102 6499 1428 538 

Execution time 

(DaCapo) 

1,619 1,267 147 153 127 110 

Execution 

time (186.crafty) 

32.5 32.5 32.7 32.9 32.5 32.7 

 

Figures 4.1(b) and 4.1(c) show the execution time of each benchmark in the three 

settings 

 

respectively: baseline, best case, and balancing. With memory balancing, the 

performance of 186.crafty is nearly the same, but DaCapo gains a speedup of 11 and 

8.3 on the two hosts, respectively. Most notable improvements are from Eclipse and 

Xalan, whose average execution time on the two VMs is cut into 1/18 and 1/32, 

respectively. These two benchmarks require around 350 MB memory, resulting in a 

large number of page faults without memory balancing. Eventually, using memory 

balancing, it achieves an overall speedup of the two VMs of 8.05. 

 



Performance of Memory Virtualization Using Local Memory Resource Balancing211 

 

Figure 4.1 Local memory resource balancing: DaCapo + 186.crafty. 

For readability, in Fig. 4.1(a), only a few program names of DaCapo are labeled. 

Fig. 4.1(b) and 4.1(c) show the complete program names in the order of execution. 

 

4.2 Mixed Workloads Of Four VMs 

To simulate a more realistic setting in which multiple VMs are hosted and diverse 

applications are deployed, four VMs are created and different workloads are assigned 

to each of them. VM1 runs the DaCapo suite, VM2 r, uns the DaCapo suite in reverse 

order, VM3 runs 186.crafty for 12 iterations, and VM4 runs SPEC Web 2005. 

As shown in Figure 4.2, with memory balancing, the performance of DaCapo and 

DaCapo are boosted by a factor of 8.17 and 10.72, respectively, with the cost of a 

70% slowdown for Banking. The performance of 186.crafty and Ecommerce are 

slightly impacted by 3% and 5%. The overall mean speedup of using memory 

balancing is 1.72. 
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Figure 4.2: DaCapo + DaCapo’ 

 

5. CONCLUSION 

As demonstrated by the experimental results, based on the WSS tracking scheme, our 

local memory resource balancer can effectively improve overall system performance. 

Even for the case with heavy memory resource competition, our arbitration algorithm 

still boosts the overall performance by a factor of 3. And for programs with large 

working set sizes, the experimental results show that the WSS tracking scheme is able 

to guide memory balancing with low cost and eventually boots the overall 

performance by 1.85 times. The 4-VM setting shows that our balancing algorithm can 

balance memory resources for multiple virtual machines. To achieve better overall 

performance, the algorithm may sacrifice the performance of some VMs, but after 

applying higher priority to important VMs, the quality of service of those VMs can be 

guaranteed. Though the local balancing scheme improves the memory utilization of a 

single host, performance penalty still exists when the total memory demand of all 

VMs exceeds the host’s available physical memory or a spike of memory demand 

occurs. 
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