
International Journal of Engineering Research and Technology.

ISSN 0974-3154 Volume 11, Number 2 (2018), pp. 201-218

© International Research Publication House

http://www.irphouse.com

 Performance of Memory Virtualization Using Local

Memory Resource Balancing

P.V.S.S.Gangadhar 1,

1(Scientist-D at NIC & Research Scholar at IT Department, GIT,
GITAM University, Visakhapatnam, India.

Dr. Ashok Kumar Hota 2

2(Scientist-F at National Informatics Centre, MEITY, Govt Of India,
Bhubaneswar,India,

Dr. M.Venkateswara Rao 3

3(Professor, Dept. of IT, Gitam University,Visakhapatnam, India,

Dr. V.Venkateswara Rao 4

4(Professor, Dept. of CSE,Sri Vasavi Engg. College,Tadepalligudem,India.

Abstract

 Virtualization has become a universal generalization layer in contemporary

data centers. By multiplexing hardware resources into multiple virtual

machines and therefore facilitating several operating systems to run on the

same physical platform at the same time, it can effectively decrease power

consumption and building size or improve security by isolating Virtual

Machines. In a virtualized system, memory resource supervision acts as a

decisive task in achieving high resource employment and performance.

Insufficient memory allocation to a Virtual Machine will degrade its

performance radically. On the opposing, over allocation reasons ravage of

memory resources. In the meantime, a Virtual Machine’s memory stipulates

may differ drastically. As a consequence, effective memory resource

management calls for a dynamic memory balancer, which, preferably, can

alter memory allocation in a timely mode for each Virtual Machine based on

their present memory stipulate and therefore realize the preeminent memory

utilization and the best possible overall performance. Migrating operating

system instances across discrete physical hosts is a helpful tool for

administrators of data centers and clusters: It permits a clean separation among

202 P.V.S.S.Gangadhar et al

hardware and software, and make easy fault management. In order to

approximate the memory stipulate of each Virtual Machine and to adjudicate

probable memory resource disagreement, a extensively planned approach is to

build an Least Recently Used based miss ratio curve which provides not only

the current working set size but also the correlation between performance and

the target memory allocation size. Regrettably, the cost of constructing an

MRC is nontrivial. In this paper, we initially present a low overhead LRU-

based memory demand tracking scheme, which includes three orthogonal

optimizations: AVL based Least Recently Used association, dynamic hot set

sizing. Our assessment outcome confirm that, for the complete SPEC CPU

2006 benchmark set, subsequent to pertaining the three optimizing techniques,

the mean overhead of MRC construction are lowered from 173% to only 2%.

Based on current WSS, we then predict its trend in the near future and take

different tactics for different forecast results. When there is a adequate amount

of physical memory on the host, it locally balances its memory resource for

the VMs. Once the local memory resource is insufficient and the memory

pressure is predicted to sustain for a sufficiently long time, a relatively

expensive solution, VM live migration, is used to move one or more VMs

from the hot host to other host(s). Finally, for transient memory pressure, a

remote cache is used to alleviate the temporary performance penalty. Our

experimental results show that this design achieves 49% center-wide speedup.

Keywords - virtualization, virtual machine, cloud computing, data centric,

physical memory, load balancing, cluster, resource allocation.

1. INTRODUCTION

Virtualization is becoming persistent in massive data centers, cloud computing, and

enterprise infrastructure, motivated by a number of significant benefits, such as

theatrical cost reduction, enlarged application availability and further well-organized

IT management. According to Gartner (16), today, 25% of installed server workloads

are virtualized. IDC even forecasts that, by 2014, more than 70% of applications on

newly distributed servers will run in virtual machines (29). However, in a virtualized

environment, competent and effectual memory resource management is silent a

demanding problem. In this paper we recommend a memory resource balancing

method to develop performance and memory resource consumption for center-wide

virtualized computing. We show that our elucidation can correctly monitor memory

demand of each virtual machine with very low operating cost and can successfully

improve overall system performance. Virtualization technologies like Xen(9),

VMware(54), and Denali(56) have turn into a common generalization layer in

contemporary data centers. They facilitate multiple operating systems to run on their

own virtual machines separately. Figure 1.1 illustrates an example, where the

hypervisor multiplexes the hardware of a single physical machine with several virtual

machines and a guest Operating System executes inside each virtual machine

separately. One of the major benefits of using virtualization is server consolidation. It

Performance of Memory Virtualization Using Local Memory Resource Balancing203

is not unusual to achieve a 15-to-1 or even higher consolidation ratio (11), which is

the ratio of virtual to physical machine without troublesome performance impact. For

a data center that hosts a large number of servers, this can successfully save power

consumption, floor space possession and air conditioning costs. In addition,

virtualization can advance ease of use by live migration (15). When one physical

server fall short or wants maintenance, the virtual machines it hosts can be clearly

migrated to another physical machine with insignificant application downtime. The

core of virtualization is the virtual machine monitor which is also called hypervisor.

VMM is accountable for building and organization multiple instances of virtual

hardware platforms. A bundle of physical resources like CPUs or network interface

cards can be multiplexed in a time-sharing manner, which is like to how multiple

processes of a native Operating System would split them. However, the memory

system is shared all the way through address space partitioning. That is, each virtual

machine is allocated with a fixed amount of address space of physical memory.

However, conflicting from how a resident Operating System administers virtual

memory and physical memory for its processes, for the purpose of fidelity, the VMM

is not actively involved in memory management of each Virtual Machine. More

particularly, when created, each VM is allocated with a fixed amount of physical

memory. Then, it is the guest Operating System’s job to supervise that amount of

physical memory without the involvement of the hypervisor. As a result, the

hypervisor is unaware of memory demand of VMs and thus powerless to dynamically

balance memory resources. In our solution, we first design a low cost but accurate

Least Recently Used based working set size tracking scheme as the basis of memory

resource balancing. The Least Recently Used based working set size form associates

memory allocation size and performance impact. Based on the form, we propose a

local memory balancing method, which dynamically amend memory allocation

amount via ballooning (34, 9) on a single physical machine. Then it is unmitigated to

a global surroundings, where the physical memory of all interconnected machines is

balanced via live migration and remote caching. To the best of our knowledge, our

work uniquely coordinates the global memory balancing practices with a local

balancing scheme. Without effective local memory balancing, the efficiency of global

memory balancing will be significantly weakened. Figure 1.2 shows the overview of

our solution.

204 P.V.S.S.Gangadhar et al

Figure 1.1 Organization of virtualization

Figure 1.2 Solution overview

2. RELATED WORK

2.1 Memory Management

In this section, we first briefly introduce how memory is managed in a native

operating system. Then we describe how memory management is adapted for

virtualization and the challenges that virtualization brings.

2.1.1 Memory Management in A Native OS

Virtual memory was first described in 1960s (21) and it has become a standard feature

of modern general-purpose operating systems. It gives each process an illusion that it

is running on a standalone and contiguous memory address space, called virtual
address space. The size of a virtual address space can be larger than the amount of

available real, physical memory. Typically, memory is allocated and reclaimed at a

fixed granularity, called page, whose size is determined by processor architecture.

Both virtual address space and physical address space are measured at the unit of page

size. Inside the operating system, it maintains a translation table for each process,

named page table, which maps a virtual page number to a physical page frame

number. Inside a processor, there is a memory management unit (MMU) that

dynamically translates virtual addresses that an application references to the

corresponding physical addresses by looking up the current page table. When a

system runs out of physical memory, and if some process requests for a free page, the

OS selects some physical frame, saves its contents on a secondary storage (called

swapping-out or paging-out) and allocates the page to the process. Later on, if the

Performance of Memory Virtualization Using Local Memory Resource Balancing205

previously paged out data is needed, it is loaded into a free physical memory frame,

which is called paging-in or swapping-in. This page swapping scheme is called

demand-paging. The strategy that determines which pages are swapped out is called

page replacement policy. Since the latency of disk accesses is usually thousands of

times longer than that of memory accesses, frequent page swapping will significantly

damage the performance. A theoretically optimal page replacement policy should

select a page whose next use will be the farthest in the future (2). However, in a

general purpose OS, it is impossible to precisely predict the future memory access

behaviors. In real world, a commonly used algorithm is the least recently used (LRU)
replacement policy or its approximation. It works based on the property of program

locality. That is, the pages that have been heavily and recently used are also most

likely to be heavily used in near future. For an OS that uses demand paging and the

LRU page replacement policy, a process that heavily uses a set of pages will

automatically secure those pages in physical memory.

2.1.2 Memory Management with Virtualization

To create a virtualized environment, the hypervisor runs at the most privileged level

that a native OS runs at. For CPUs without virtualization support, guest OSes and its

processes run at the non-privileged level. Those privileged operations in the guest OS,

such as page table setup, I/O instructions and etc. are either statically replaced with

calls to the hypervisor or dynamically trapped and emulated via binary rewriting by

the hypervisor. With hardware virtualization support, an unmodified guest OS runs on

the CPU directly without intervention by the VMM until it tries to execute a restricted

instruction. At this point, the hypervisor takes the control to emulate the instruction.

When an operating system runs on the top of hypervisor, another level of memory

address space, guest physical address (GPA) space, is introduced. To avoid confusion,

in virtualization, the real physical address is specifically referred as machine physical
address (MPA). GPA is used by guest OSes in their physical address space. The

purpose of using GPA is to provide the guest OS the impression that it is running on a

real machine with certain amount of contiguous physical memory starting from

address 0 because there is no guarantee that every guest OS will be allocated with

contiguous machine memory and most OSes do not support fragmented physical

address space. The size of the GPA space of an OS is the same as the amount of

machine memory that the hypervisor statically allocates to the guest OS when it is

created. Meanwhile, the hypervisor maintains a mapping table to map the contiguous

GPA space to the possibly scattered MPA space. Figure 2.1 contrasts the address

spaces between a native OS and a virtualized OS. To support the translation from

GPA to MPA, currently there are two kinds of approaches based on whether the

processor supports MMU virtualization or not (1, 53, 39): two software-based

techniques and a hardware-based approach.

206 P.V.S.S.Gangadhar et al

Figure 2.1 Address spaces in a native OS and a virtualized OS

2.2 Working Set Size Estimation

In this section, we first introduce the concept of working set. We then discuss various

techniques to estimate the size of a working set.

2.2.1 Working Set

Denning (17) first defined the working set as the set of memory pages referenced by a

process during a time interval. The size of the working set (WSS) is the amount of

memory that a process needs without paging. Even if the process has very large

memory footprint, those pages not in its working set can be reclaimed without

performance penalty. The same idea can be extended to VMs. Assuming a guest OSes

can well utilize their allocated physical memory, and if the memory allocation amount

of each VM is exactly its WSS, then the physical memory allocation on the host is

optimal. Therefore, working set size estimation provides a necessary metric that

ensures the system to reach the maximum performance as expected.

2.2.2 Miss Ratio Curve Based Working Set Size Estimation

The miss ratio curved (MRC) based WSS estimation is a widely proposed technique

(38, 13, 67, 60, 30, 51). A page miss ratio curve plots the page miss ratios against

various amount of memory allocation. When the allocation size is no less than a

system’s WSS, the miss ratio is 0, which means all accesses will hit in main memory.

Performance of Memory Virtualization Using Local Memory Resource Balancing207

When the allocation size is less than its WSS, the MRC tells the ratio of many

accesses that will cause page swapping. With an MRC, we can redefine WSS as the

size of memory that results in less than a predefined tolerable page miss rate. Since an

MRC models the performance and memory allocation size, it is especially suitable for

memory resource arbitration. For example, when two applications compete for

memory resources, in order to achieve optimal overall performance, the arbitration

scheme needs to evaluate how the performance would be impacted by varying their

allocation sizes A commonly used method to calculate MRC is Mattson’s stack

algorithm (38). It was initially proposed to reduce the time of trace-driven cache

simulation. The algorithm uses an LRU stack to store the page numbers of accessed

page frames. For each entry of the LRU stack, its distance to the top of the stack is

called stack distance or LRU distance. Each stack entry i is associated with a counter,

denoted as Hist(i). When a page is referenced, the algorithm first searches the page

number in the stack and computes it stack distance, dist. It then increments the hit

counter Hist(dist) by one. Finally, it updates the stack by moving the page number to

the top of the stack. One can plot an LRU histogram by relating each counter value to

its corresponding LRU distance. If there is a stack with depth D and we reduce it to

depth d, then the expected miss ratio can be calculated as follows:

 Miss_ratio(d)=

For example, given a system with only four pages of physical memory, the top half of

Figure 2.4 shows the hit counts for some application that makes a total of 200

memory accesses. The histogram indicates that 100 accesses hit the most recently

used (MRU) page, 50 accesses hit the second MRU slot, and so on. Apparently the

page hit rate is (100+50+20+10)/200 = 90%. We can tell that if we reduce the system

memory size by a half, the hits to the first two MRU slots are still there while the hits

to the next two MRU slots now become misses. The hit rate becomes (100+50)/200 =

75%. The LRU histogram thus can accurately predict miss rate with respect to the

LRU list size. The bottom part of Figure 2.3 is the miss ratio curve corresponding to

the histogram on the top.

208 P.V.S.S.Gangadhar et al

Figure 2.3 LRU histogram example

3. LOCAL MEMORY RESOURCE BALANCING

With the LRU miss ratio curves of all VMs on a physical machine, we can

dynamically

Adjust each VM’s memory allocation size. We call this scheme local memory
resource
Balancing. In this chapter, we first present our memory resource balancing and

arbitration scheme in Section 4.1. When there is no sufficient physical memory to

meet all VMs’ memory requirement, our arbitration algorithm is able to quickly find

an allocation plan that aims for the overall performance.

3.1 Local Memory Resource Balancing And Arbitration

Once the working set sizes of all VM are estimated, the balancer needs to determine

the target allocation sizes for them. Assume that P is the size of all available host

machine memory when no guest is running, and V is the set of all VMs. For QoS

purposes, each VMi 2V is given a lower bound of memory size Li. Let Ei
=max(Li,WSSi) be the expected memory size of VMi. When P _ åEi, all VMs can be

satisfied. We call the residue of allocation (P−åEi) as bonus. The bonus can be spent

flexibly. In our implementation, we aggressively allocate the bonus to each VM

proportionally according to Ei. That is Ti = Ei+bonus× EiåEi
where Ti is the final target memory allocation size. When P < åEi, at least one VM

cannot be satisfied. Here we assume all VMs have the same priority and the goal is to

minimize system wide page misses. Let mrci(x) be the miss ratio curve and nri be

Performance of Memory Virtualization Using Local Memory Resource Balancing209

number of memory accesses in a recent epoch of VMi. Given a memory size m, the

number of page misses is missi(m) = mcri(m)×nri. The balancer tries to find an

allocation {Ti} such that åi2V missi(Ti), the total penalty, is a minimum. Since

ballooning adjusts memory size on a page unit, a brute force search takes nearly

O(M|V|) time, where M is the maximum number of pages a VM can get. We propose a

quick approximation algorithm. For simplicity of discussion, we assume that there are

two VMs, VM1 and VM2, to balance. Choosing an increment/decrement unit size S
(S _ G), the algorithm tentatively reduces the memory allocation of VM1 by S,

Increases the allocation of VM2 by S, and calculates the total page misses of the two

VMs based on the miss ratio curves. We continue this step with increment/decrement

strides of 2S, 3S, and so on, until the total page misses reach a local minimum. The

algorithm then repeats the above process but now reducing allocation of VM1 while

increasing allocation for VM2. It stops when it detects the other local minimum. The

algorithm returns the allocation plan based on the lower of the two minima. This

algorithm can run recursively when there are more than two VMs. It is possible that

the two minima are close to each other in terms of page misses but the allocation

plans can be quite different. For example, when two VMs are both eager for memory,

one minimum suggests hVM1 = 50MB,VM2 = 100MBi with total page misses of

1000, while the other one returns hVM1 = 100MB,VM2 = 50MBi with total page

misses of 1001. The first solution wins slightly, but the next time, the second one wins

with a slightly lower number of page misses and this phenomenon repeats. The

memory adjustment will cause the system to thrash and degrade the performance

substantially. To prevent this, when the total page misses of both minima are close

(e.g. the difference is less than 10%), the allocation plan that is closer to the current

allocation is adopted. It is also necessary to limit the extent of memory reclaiming.

Reclaiming a significant amount of memory may disturb the target VM because the

inactive pages may not be ready to be reclaimed instantly. So during each balancing,

we limit the maximum reduction to 20% of its current memory size to let it shrink

gradually.

4. EXPERIMENTAL EVALUATION

In our implementation, the local balancer is written in Python and runs in domain-0, a

privileged guest domain. It communicates with hypervisor via hyper calls to acquire

LRU histograms and resize memory allocation. We set the balancing frequency as

every 5 seconds, an empirical value, which allows the WSS estimator to collect

enough information but not too long to miss optimizing opportunities.

To evaluate the effect of automatic memory resource balancing, we first start from

balancing for two VMs, each runs different workloads. We evaluate various workload

combinations, including a simple scenario of CPU intensive + memory intensive

workloads where there is no memory contention, a workload combination of DaCapo

and SPEC WEB that has occasional memory competition, a combination of two

memory intensive workloads.

210 P.V.S.S.Gangadhar et al

4.1 Balancing For Two VMs (CPU Intensive + Memory Intensive Workloads)

Our evaluation starts with a simple scenario where memory resource contention is

rare. The workloads include the DaCapo benchmark suite and 186.crafty, a program

with intensive CPU usage but low memory load. On VM1, 186.crafty runs 12

iterations followed by the DaCapo benchmark suite. Meanwhile, on VM2, the

DaCapo suite runs first, followed by the same number of iterations of 186.crafty.

Figure 4.1(a) displays the actual allocated memory size and expected memory size on

both VMs respectively. Note that the VMrunning 186.crafty gradually gives up its

memory to the other VM.When both VMs are running 186.crafty, bonus is gradually

allocated to the two VMs.

To show the performance that an ideal memory balancer could deliver, we measure

the best case performance on two VMs, each with 380 MB fixed memory, the peak

memory allocation that a VM could own during balancing.

Table 4.1 lists the number of major page faults and execution time for both VMs.

With memory balancing, the number of total major faults is reduced by a factor of 25.

Table 4.1 Major page faults and execution time

 Baseline Balancing Best

VM1 VM2 VM1 VM2 VM1 VM2

Major page faults 158,810 110,96

5

4102 6499 1428 538

Execution time

(DaCapo)

1,619 1,267 147 153 127 110

Execution

time (186.crafty)

32.5 32.5 32.7 32.9 32.5 32.7

Figures 4.1(b) and 4.1(c) show the execution time of each benchmark in the three

settings

respectively: baseline, best case, and balancing. With memory balancing, the

performance of 186.crafty is nearly the same, but DaCapo gains a speedup of 11 and

8.3 on the two hosts, respectively. Most notable improvements are from Eclipse and

Xalan, whose average execution time on the two VMs is cut into 1/18 and 1/32,

respectively. These two benchmarks require around 350 MB memory, resulting in a

large number of page faults without memory balancing. Eventually, using memory

balancing, it achieves an overall speedup of the two VMs of 8.05.

Performance of Memory Virtualization Using Local Memory Resource Balancing211

Figure 4.1 Local memory resource balancing: DaCapo + 186.crafty.

For readability, in Fig. 4.1(a), only a few program names of DaCapo are labeled.

Fig. 4.1(b) and 4.1(c) show the complete program names in the order of execution.

4.2 Mixed Workloads Of Four VMs

To simulate a more realistic setting in which multiple VMs are hosted and diverse

applications are deployed, four VMs are created and different workloads are assigned

to each of them. VM1 runs the DaCapo suite, VM2 r, uns the DaCapo suite in reverse

order, VM3 runs 186.crafty for 12 iterations, and VM4 runs SPEC Web 2005.

As shown in Figure 4.2, with memory balancing, the performance of DaCapo and

DaCapo are boosted by a factor of 8.17 and 10.72, respectively, with the cost of a

70% slowdown for Banking. The performance of 186.crafty and Ecommerce are

slightly impacted by 3% and 5%. The overall mean speedup of using memory

balancing is 1.72.

212 P.V.S.S.Gangadhar et al

Figure 4.2: DaCapo + DaCapo’

5. CONCLUSION

As demonstrated by the experimental results, based on the WSS tracking scheme, our

local memory resource balancer can effectively improve overall system performance.

Even for the case with heavy memory resource competition, our arbitration algorithm

still boosts the overall performance by a factor of 3. And for programs with large

working set sizes, the experimental results show that the WSS tracking scheme is able

to guide memory balancing with low cost and eventually boots the overall

performance by 1.85 times. The 4-VM setting shows that our balancing algorithm can

balance memory resources for multiple virtual machines. To achieve better overall

performance, the algorithm may sacrifice the performance of some VMs, but after

applying higher priority to important VMs, the quality of service of those VMs can be

guaranteed. Though the local balancing scheme improves the memory utilization of a

single host, performance penalty still exists when the total memory demand of all

VMs exceeds the host’s available physical memory or a spike of memory demand

occurs.

References

[1] On Strategies for Dynamic Resource Management in Virtualized Server

Environments. Kochut, A and Beaty, K. Washington, DC, USA : IEEE

Computer Society, 2007. Proceedings of the 2007 15th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems. pp. 193--200. 978-1-4244-1854-1.

[2] Ou, George. Introduction to server virtualization. TechRepublic. [Online]

May 22, 2006. http://www.techrepublic.com/article/introduction-to-server-

virtualization/6074941.

Performance of Memory Virtualization Using Local Memory Resource Balancing213

[3] Live Migration of Virtual Machines. Clark, Christopher, et al., et al. 2005.

In Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems

Design and Implementation (NSDI.

[4] Rajan, J. P. How Live Migration works in Hyper-V R2. [Online] March 31,

2010. http://blogs.technet.com/b/ranjanajain/archive/2010/03/31/how-live-

migration-works-in- hyper-v-r2.aspx.

[5] VMware, Inc. VMware vMotion. [Online] 2009.

www.vmware.com/files/pdf/VMware-VMotion-DS-EN.

[6] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian,

“Resource Management in the Autonomic Service-Oriented Architecture,” in

Proceedings of the 2006 IEEE International Conference on Autonomic

Computing (ICAC 2006), June 2006, pp. 84–92.

[7] J. Anselmi, E. Amaldi, and P. Cremonesi, “Service Consolidation with

End-to-End Response Time Constraints,” in Proceedings of 34th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA

2008.), September 2008, pp. 345–352.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[9] B. Arnold, S. A. Baset, P. Dettori, M. Kalantar, I. I. Mohomed, S. J.

Nadgowda, M. Sabath, S. R. Seelam, M. Steinder, M. Spreitzer, and A. S.

Youssef, “Building the ibm containers cloud service,” IBM Journal of

Research and Development, vol. 60, no. 2-3, pp. 9:1–9:12, March 2016.

[10] M. Assuncao, M. Netto, B. Peterson, L. Renganarayana, J. Rofrano, C. Ward,

and C. Young, “CloudAffinity: A framework for matching servers to

cloudmates,” in Proceedings of the 2012 IEEE Network Operations and

Management Symposium (NOMS 2012), April 2012, pp. 213–220.

[11] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-event system

simulation. Prentice Hall, 2010.

[12] P. Barham et al., “Xen and the art of virtualization,” in Proceedings of the 19th

ACM Symposium on Operating Systems Principles (SOSP 2003), October

2003, pp. 164–177.

[13] L. A. Barroso and U. H¨ olzle, “The case for energy-proportional computing,”

Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[14] C. L. Belady and D. Beaty, “Roadmap for datacom cooling,” ASHRAE

journal, vol. 47, no. 12, p. 52, 2005.

[15] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines

in cloud data centers,” in Proceedings of the 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing (CCGrid 2010), May

2010, pp. 577–578.

214 P.V.S.S.Gangadhar et al

[16] Adaptive threshold-based approach for energy-efficient consolidation of

virtual machines in cloud data centers,” in Proceedings of the 8th International

Workshop on Middleware for Grids, Clouds and e-Science, December 2010,

pp. 4:1–4:6.

[17] F. Caglar, S. Shekhar, and A. Gokhale, “A performance Interference-aware

virtual machine placement strategy for supporting soft realtime applications in

the cloud,” Institute for Software Integrated Systems, Vanderbilt University,

Nashville, TN, USA, Tech. Rep. ISIS-13-105, 2013.

[18] P. DELFORGE, “Energy efficiency, data centers—NRDC,”

http://www.nrdc.org/ energy/data-center-efficiency-assessment.asp, (Accessed

on 02/18/2016).

[19] B. H. Li, X. Chai, and L. Zhang, “New advances of the research on cloud

simulation,” in Advanced Methods, Techniques, andApplications inModeling
and Simulation, vol. 4 of Proceedings in Information and Communications
Technology, pp. 144–163, 2012.

[20] . Jafer, Q. Liu, and G. Wainer, “Synchronization methods in parallel and

distributed discrete-event simulation,” Simulation Modelling Practice
andTheory, vol. 30, pp. 54–73, 2013.

[21] R. Fujimoto, A. Malik, and A. Park, “Parallel and distributed simulation in the

cloud,” SCS Modeling and Simulation Magazine, pp. 1–10, 2010.

[22] A. W. Malik, A. J. Park, and R. M. Fujimoto, “An optimistic parallel

simulation protocol for cloud computing environments,” SCS M&S Magazine,

vol. 4, 2010.

[23] A. J´avor and A. Fur, “Simulation on the Web with distributed models and

intelligent agents,” Simulation, vol. 88, no. 9, pp. 1080–1092, 2012.

[24] IEEE Std 1516.1-2010, IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA), Framework and Rules Specification, 2010.

[25] IEEE Std 1516.2-2010, IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA), Object Model Template (OMT) Specification,

2010.

[26] IEEE Standard, 1516.1-2010—IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)—Federate Interface Specification,

2010.

[27] Google, "Google App Engine", (2012), [online]. Available: cloud.google.com

[Nov 1, 2012].

[28] Amazon, "Amazon Elastic Compute Cloud (Amazon EC2)", (2012), [online].

Available: aws.amazon.com/ec2/ [Nov 1, 2012].

[29] Microsoft, "Windows Azure.", (2012), [online].

Available:windowsazure.com [Nov 1, 2012].

http://www.nrdc.org/

Performance of Memory Virtualization Using Local Memory Resource Balancing215

[30] IBM, "SmartCloud." (2012), [online]. Available: ibm.com/cloudcomputing

[Nov 1, 2012].

[31] P. Mell and T. Grance, "The NIST definition of cloud computing(draft)," NIST
special publication, vol. 800, p. 145.

[32] A. Desai, "Virtual Machine." (2012), [online]. Available:

http://searchservervirtualization.techtarget.com/definition/virtualmachin

[33] VMWare, "vSphere ESX and ESXi Info Center.", (2012), [online]. Available:

vmware.com/products/vsphere/esxi-and-esx [Nov 1, 2012].

[34] Microsoft, "Windows Virtual PC.", (2012), [online]. Available:

http://www.microsoft.com/windows/virtual-pc/ [Nov 1, 2012].

[35] Xen, "Xen Hypervisor.", (2012), [online]. Available:

http://www.xen.org/products/xenhyp.html [Nov 1, 2012].

[36] Microsoft, "Hyper-V Server 2012.", (2012), [online]. Available:

microsoft.com/server-cloud/hyper-v-server/ [Nov 1, 2012].

[37] KVM, "Kernel-based Virtual Machine.", (2012), [online]. Available: linux-

kvm.org [Nov 1, 2012].

[38] Oracle, "VirtualBox.", (2012), [online]. Available: virtualbox.org [Nov1,

2012]

[39] Nagpurkar P, Krintz C, Hind M, Sweeney PF, Rajan VT. Online phase

detection algorithms. In Proceedings of the International Symposium on Code

Generation and Optimization. 2006;(CGO ’06):111–123.

[40] Newhall T, Finney S, Ganchev K, Spiegel M. Nswap: A network swap module

for linux clusters. In Proceedings of the 9th European Conference on Parallel

Processing (Euro-Par). 2003:1160–1169.

[41] Pinter SS, Aridor Y, Shultz S, Guenender S. Improving machine virtualization

with ’hotplug memory’. In Proc. 17th International Symposium on Computer

Architecture and High Performance Computing SBAC-PAD 2005. 24–27

Oct. 2005:168–175.

[42] Romer TH, Ohlrich WH, Karlin AR, Bershad BN. Reducing tlb and memory

overhead using online superpage promotion. SIGARCH Computer

Architecture News. 1995;23(2):176–187.

[43] Sapuntzakis CP, Chandra R, Pfaff B, Chow J, LamMS, RosenblumM.

Optimizing the migration of virtual computers. In In Proceedings of the 5th

Symposium on Operating Systems Design and Implementation. 2002:377–

390.

[44] Seiden SS. A guessing game and randomized online algorithms. In

Proceedings of the thirty-second annual ACM symposium on Theory of

computing. 2000;(STOC ’00):592–601.

[45] Shen X, Zhong Y, Ding C. Locality phase prediction. In Proceedings of the

http://searchservervirtualization.techtarget.com/definition/virtualmachin

216 P.V.S.S.Gangadhar et al

11th International Conference on Architectural Support for Programming

Languages and Operating Systems. 2004.

[46] Sherwood T, Perelman E, Calder B. Basic block distribution analysis to find

periodic behavior and simulation points in applications. In Proceedings of the

2001 International Conference on Parallel Architectures and Compilation

Techniques.2001;(PACT ’01):3–14.

[47] Sherwood T, Perelman E, Calder B. Basic block distribution analysis to find

periodic behavior and simulation points in applications. In Proceedings of the

2001 International Conference on Parallel Architectures and Compilation

Techniques. 2001;(PACT ’01):3–14.

[48] Sherwood T, Sair S, Calder B. Phase tracking and prediction. In Proceedings

of the 30th International Symposium on Computer Architecture. 2003.

[49] Shirazi BA, Hurson AR, Kavi KM. Scheduling and Load Balancing in Parallel

and Distributed Systems. IEEE Computer Society; 1995.

[50] Sugumar RA, Abraham SG. Efficient simulation of caches under optimal

replacement with applications to miss characterization. In Proceedings of the

1993 ACM SIGMETRICS Conference on Measurement & Modeling

Computer Systems. May 1993:24–35.

[51] Tam DK, Azimi R, Soares LB, Stumm M. RapidMRC: Approximating l2 miss

rate curves on commodity systems for online optimizations. In Proceeding of

the 14th International Conference on Architectural Support for Programming

Languages and Operating Systems. 2009:121–132.

[52] Uhlig R, Neiger G, Rodgers D, Santoni A, Martins F, Anderson A, Bennett S,

Kagi A, Leung F, Smith L. Intel virtualization technology. Computer. may

2005;38(5):48 – 56.

[53] Waldspurger CA. Memory resource management in VMware ESX server.

SIGOPS Operting Systems Review. 2002;36(SI):181–194.

[54] Werstein P, Jia X, Huang Z. A remote memory swapping system for cluster

computers. In Parallel and Distributed Computing, Applications and

Technologies, 2007. PDCAT ’07. Eighth International Conference on. dec.

2007:75 –81.

[55] Whitaker A, Shaw M, Gribble SD. Denali: Lightweight virtual machines for

distributed and networked applications. In In Proceedings of the USENIX

Annual Technical Conference. 2002.

[56] Williams D, Jamjoom H, Liu YH, Weatherspoon H. Overdriver: handling

memory overload in an oversubscribed cloud. In Proceedings of the 7th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments. 2011;(VEE ’11):205–216.

[57] Wood T, Shenoy P, Venkataramani A, Yousif M. Black-box and gray-box

strategies for virtual machine migration. In Proceedings of the 4th USENIX

Performance of Memory Virtualization Using Local Memory Resource Balancing217

conference on Networked systems design & implementation.

2007;(NSDI’07):17–17.

[58] Yang T, Hertz M, Berger ED, Kaplan SF, Moss JEB. Automatic heap sizing:

taking real memory into account. In Proceedings of the 4th international

symposium on Memory management. 2004;(ISMM ’04):61–72.

[59] Yang T, Berger ED, Kaplan SF, Moss JEB. CRAMM: virtual memory support

for garbage collected applications. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation. 2006:103–116.

[60] Zayas E. Attacking the process migration bottleneck. SIGOPS Operating

Systems Review. 1987;21(5):13–24.

[61] Zeileis A, Kleiber C, Kramer W, Hornik K. Testing and dating of structural

changes in practice. Computational Statistics & Data Analysis. 2003;44:109–

123.

[62] Zhang X, Dwarkadas S, Shen K. Towards practical page coloring-based multi-

core cache management. In Proceedings of the 4th ACM European

Conference on Computer systems. 2009.

[63] Zhao W, Wang Z. Dynamic memory balancing for virtual machines. In

Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments. 2009:21–30.

[64] Zhao W, Jin X, Wang Z, Wang X, Luo Y, Li X. Low cost working set size

tracking In Proceedings of the 2011 annual conference on USENIX Annual

Technical Conference. 2011.

[65] ZhaoW, Jin X,Wang Z, XiaolinW, Yingwei L. Efficient LRU-based working

set size tracking. Technical Report CS-TR-11-01, Houghton, MI, USA, 2011.

P.V.S.S.GANGADHAR is Scientist-D in NIC & Ph.D

Scholar. Presently studying Ph.D, Department of Information

Technology at Gitam Institute of Technology, Gitam

University,Vishakapatnam, AndhraPradesh, India. His

Research interests e-governance, Cloud computing, fuzzy logic

and Data mining ORCID:0000-0002-8548-8492

Dr. Ashok Kumar Hota is Scientist-F at NIC, MEITY,OSU,

Bhubaneswar, Govt of India. His research interests include e-

governance, Tribal informatics, Cloud Computing, Data

Mining, and Big Data Analytics. He published several papers

in International conferences journals.

ORCID:0000-0002-9117-1504

218 P.V.S.S.Gangadhar et al

Dr. Mandapati Venkateswara Rao is Professor in

Department of Information Technology at Gitam Institute of

Technology, Gitam University, Vishakhapatnam, India. He

has received M.Tech in CST and PhD in Robotics from Andhra

University. His Research Interests includes Robotics, Cloud

Computing and Image processing. He published several papers

in International conferences and journals. ORCID:0000-0002-

7598-3473

Dr.Vedula Venkateswara Rao is Professor in the Department

of Computer Science Engineering at Srivasavi Engineering

College, tadepalligudem, India. He received Matsers Degree in

Computer Science Engineering from JawaharLalNehru

Technological University Kakinada, Masters Degreen In

Information Technology from Punjabi University, Patiayala,

India and PhD from Gitam University. His research interests

include Cloud Computing and Distributed Systems, Data

Mining, Big Data Analytics and Image Processing. He

published several papers in International conferences and

journals.

ORCID:0000-0003-0131-4944

