
International Journal of Engineering Research and Technology.

ISSN 0974-3154 Volume 11, Number 3 (2018), pp. 501-528

© International Research Publication House

http://www.irphouse.com

Patterns for Effective Handling of Exceptions in

Processes Using Different Modeling Languages and

Notations

 Preetesh Purohit1

Ph.D. Scholar, Institute of Engineering and Technology,

DAVV, Indore, India.

Vrinda Tokekar2

Professor, Institute of Engineering and Technology,

DAVV, Indore, India.

Abstract

Process modeling permits for scrutiny and refinement of processes that

bring together multiple stakeholders working together to carry out a job.

Process modeling generally concentrates on how the participation takes

place when everything goes as expected. Sadly, processes of real-world

rarely carry out that easily. A more complete and detail scrutiny of a

process requires that the process model also include details about what to

do when unhappy path or exceptional conditions occur. We have observed

that, in many scenarios, there are abstract patterns that catch the

relationship between the standard expected process and unhappy path. We

have confidence that process patterns can simplify the documentation,

development, and maintenance of process models. We report these

patterns using Business Process Model and Notation (BPMN), Little-JIL,

and Unified Modeling Language (UML). We represent both the rational

structure of the pattern as well as specimens of the pattern in use.

Keywords: Activity Diagram, BPMN, Little-JIL, Patterns, Process

Modeling, Process Modeling Languages and Notations, UML

I. INTRODUCTION

Sequence of activities set in motion to produce the desired result or a product is

known as a process. The vital importance of being sure that processes in different

502 Preetesh Purohit, Vrinda Tokekar

domains are free of defects and efficient has led to flourishing interest in how best to

depict these processes with models. It is crucial for a process model to include details

of the process behavior under exceptional conditions, to grasp and evaluate a process

completely. Focus of our work is on routine approaches to exception handling in real-

world processes and problems that occur when pointing out correctly these exceptions

handling mechanism in dissimilar process modeling languages and notations.

Process models commonly depict how all entities are coordinated and related to

support better comprehension of the processes being modeled and to support scrutiny

that could lead to refinements to the processes. Process models have been used in

many application domains, such as and e-government [1], [2], [3], [4], healthcare

provision [5], [6], [7], business [8], [9], [10], [11], software engineering [12], [13],

[14].

I.I Processes and Exceptions

We believe that models for processes that do not describe behaviors precisely and

carefully are neither complete nor adequate. Thus, we are unsatisfied with the

mechanism of managing with exceptions by permitting a process model to be changed

dynamically in real time when an exception arises (for example, as suggested in [15]).

In the medical field, inexact or misplaced design of how a process should deal with

exceptional circumstances can lead different people to handle the same circumstances

in a different way, based on individual style, level of knowledge, level of experience,

and the actions of other people [5]. So far, Henneman et al. [16] study that models of

medical processes frequently capture only the normative process and leave out plan of

how to handle exceptions.

Since we believe that it is necessary that process models incorporate sufficient

specifications of exception handling, we have paid substantial consideration to

exceptional scenarios in our effort with processes. Thus, the work we explain here has

two aims: i) the recognition of usual exception management ways and ii) the lucid

illustration of these ways as components of models of processes that incorporate

exception handling.

I.II Patterns for Managing Exceptions in Processes

To tackle the first aim of this paper, we have extensively explored the use of patterns

in the past work. The concept of patterns gained importance in the computer science

society with the book of Design Patterns: Elements of Reusable Object-Oriented

Software [17] in 1994. Stelting [18] presents how to use design patterns to handle

exceptions. Haase [19] describes exception handling idioms in the context of Java

programming. Longshaw and Woods [20], [21] explain patterns of exception handling

for multitier information systems. The notion of process patterns has been explored by

Coplien [22] and later by Ambler [23]. Russell, van der Aalst, and ter Hofstede have

begun to examine the occurrence of patterns within workflow. They classify patterns

Patterns for Effective Handling of Exceptions in Processes… 503

in four workflow definition semantic domains: control flow [24], [25], data flow [26],

resources [27], and exception handling [28]. Osterweil’s research [29] suggests that

this is no less significant and no less possible in a process language and process model

and than in programming languages and application software.

Our understanding in defining processes in a diversity of domains has indicated that

certain behaviors return frequently and thus seem to contain specifiable patterns that

are very much in the same spirit as design and programming language patterns. The

recognition and the subsequent use of such patterns have facilitated writing and

reasoning about processes that employ these patterns. Some of these patterns deal

particularly with exceptions and their management. Therefore, we think that

identification of exception handling patterns and use of regular idioms to code them

can show the way to enhanced readability and understandability of process

definitions.

I.III Establishing Patterns for Managing Exceptions in Process Modeling

Languages

To tackle the second aim of this work, we support the use of process modeling

language that includes precise services for robustly supporting the modeling of

process exceptional conditions and their management. A suitably expressive

language, for example, would be one that facilitates the preferred obvious division of

exceptional conduct from expected conduct and can serve as a medium for keeping

large and difficult process definitions in scholar control. It is generally thought that

support for the clear, explicit specification and handling of exceptions in application

programming languages such as Java makes programs written in these languages

clearer and more agreeable to effective scholar control. Adding analogous

mechanisms to a process modeling language gives process modeler comparable

facilities when modeling processes. However, different process modeling languages

include dissimilar constructs that get across with exception handling in appealing

ways, which turns out to have a major impact on how obviously and particularly the

different languages are able to depict the patterns.

I. IV Procedure

While describing processes, we have documented strong similarities among the

traditions in which the field experts have described how they treat exceptional

conditions. This led to vigilant attempts to outline and classify these dissimilar

approaches to exception management. Primarily, we easily recognized three unlike

rational ways:

 Placing other odd jobs prior to returning to the regular process.

 Terminating the in progress processing.

 Demonstrating possible choices to execute the identical job.

504 Preetesh Purohit, Vrinda Tokekar

We considered, BPMN [30], Little-JIL [31] and UML activity diagrams [32] as

medium for defining these patterns, and establish strengths and weaknesses, of

notation used. We also analyzed the significant contributions of researchers made in

connected areas [33] and our work is inspired as per the past contribution [17], [34].

We use all three notations to define exception handling patterns and demonstrate their

possible use.

The article commences by describing the exception management patterns that we

have recognized. Each one is first defined and described informally, and then we

explain how the pattern would be depicted in two of the process notations whose

modeling language characteristics exhibit compelling options in how the exception

handling patterns can be expressed. We present instance of the pattern as well as

general divergences of the pattern. The paper finally wraps up in section III.

II. PATTERNS FOR MANAGING EXCEPTIONS

Patterns are best known in the perspective of object-oriented design. Object-oriented

design patterns [17] demonstrate fascinating ways to join classes and explain methods

to tackle ordinary design issues, permitting software designers to reuse high-level

answers to problems instead of recreating solutions for each new design issue.

Likewise, we concisely launch the exception handling patterns that we have

recognized, following the manner suggested in the classic Design Patterns book [17].

We arrange the patterns into a group of categories. We explain the character of each

category and then introduce the exact patterns that it contains. Our cases are taken

from diverse domains to propose the generality of the patterns.

II.I Embedding Manner of Conducting Action

Routinely noticed way to addressing a process specification issue is to embed

supplementary actions that are required in order to fix issues that have been

recognized during execution of some job. A chief feature that determines different

repairing patterns is the timing of the fixing or repairing activity with respect to when

the exception or error is found. In Instantaneous Repairing, the issues are handled

before continuing with the job, whereas in Postponed Repairing the issue is noted,

possibly worked around, and then addressed completely in future.

Another significant concern is the nature of the repairing activity. One option is for

the repairing activity to be a completely new activity designed particularly for the

intention of treating the particular exception. Another option is for the repairing

activity is to integrate recurrence of earlier activities, resulting in a Reiterate or Error-

Compelled Remake pattern.

In this segment, we first present the Instantaneous and Postponed Repairing patterns.

Then, we show how Reiterate can be used to rerun a job at the time that it fails.

Lastly, we present a more general Error-Compelled Remake pattern in which a job’s

failure is not detected instantaneously, requiring the job to be reperformed at a later

Patterns for Effective Handling of Exceptions in Processes… 505

time.

II.I.I Name: - Instantaneous Repairing Pattern

Pattern’s Intent: When a non regular circumstance is noted, a response is taken to

resolve the issue that caused this situation before continuing with the rest of the

process.

Pattern’s Applicability: This template permits the infusion of additional action to

handle expected, but non regular situations. It is helpful in circumstances where some

likely troublesome issue may arise and a simple method exists to resolve the issue in

such a way that the process can however pursue.

Pattern’s Structure: Using BPMN we present the design of the Instantaneous

Repairing Pattern in Fig. 1. Here, the non regular circumstance is depicted as an

Intermediate (catch) Event connected to the end of a Job. When an Event with one

of the particularized triggers is encountered, the outflow of the process is immediately

diverted through the Intermediate Event, halting rest of the work within the job.

Fig. 1. Instantaneous Repairing pattern in BPMN

The new route of the process is called Exception Flow. In the structure, the

Exception Flow points to a repairing activity before reconnecting the routine route

(Normal Flow). The adoption of the control flow edges to place the exception handler

in the process makes it so apparent where control flows upon culmination of the

exception handler.

Control flow following exception handling is not depicted distinctly in either Little-

JIL or in UML. Little-JIL additionally demands understanding of the semantics of the

continuation icons being used, while in UML, it depends upon where the exception

handler is associated. Fig. 2 shows the design of the Instantaneous Repairing pattern

using UML. If any exception arises during the execution of the Job activity (details of

the activity not depicted in the figure), the exception is raised to the

CallBehaviorAction that initialized the activity call. The exception is then caught by

the Exception Handler, which calls the Repair/Fix activity. After having repaired the

issue, the process continues its execution by calling the Next Job/Task activity.

506 Preetesh Purohit, Vrinda Tokekar

Fig. 2. Instantaneous Repairing pattern in UML

Pattern’s Participants: Instantaneous Repairing pattern have two participants: the

anomaly discoverer/detector and the repairer/fixer. The anomaly discoverer is the

part of the process that identifies that an anomaly has occurred and notifies the

process by throwing an exception. The repairer is the exception handler that repairs

the issue and permits the process to continue.

Pattern’s Instances: A sample of BPMN process in software development that

illustrates the Instantaneous repairing pattern is shown in Fig. 3. Instantaneous

repairing manages exceptions caused by compilation errors that may arise in the Sub-

Process Code the Modules (that is executed multiple times). After repairing the error,

the control flow for this instance of coding abolishes.

Pattern’s Deviations: Moreover to embedding manner of conducting action, it is also

practicable to use this pattern to omit some jobs in the process that are improper in the

context of the exception. This is achieved by allocating the exception handler at the

suitable level of the calling hierarchy.

Fig. 3. Instantaneous and Postponed Repairing patterns in software development

II.I.II Name: - Postponed Repairing Pattern

Pattern’s Intent: When a non regular circumstance is noted, action must be taken to

note the situation and in some way address the situation either temporarily or partially

because addressing the situation fully is neither necessary nor immediately possible.

Afterward, a supplement action needs to be taken to complete the recovery from the

Patterns for Effective Handling of Exceptions in Processes… 507

condition that caused the occurrence of the non regular circumstance.

Pattern’s Applicability: This pattern is appropriate in preventing the process from

coming to a stop even though the likely troublesome effects of an uncommon, yet

foreseeable, circumstance cannot be addressed entirely. The pattern is helpful in

situations where addressing the issue conclusively is attainable only when more time

or facts becomes available, where the need for further work to finish the handling of

the exception can be grabbed in the state of the process, and where interim measures

can enable the process to proceed to the state where such additional time and

knowledge have become available.

Pattern’s Structure: Representation of the design of this pattern in Little-JIL is shown

in Fig. 4. An exception is thrown at the time of the execution of Substep 1. The

exception is managed by Do interim/temporary repair/fix, an exception handler that

makes some worthwhile interim adjustment records the requirement for a more repair,

and then, returns to regular processing, as marked by the continue handler. However,

at some later point in the process, a supplement step (or group of steps), represented

by Some step in the figure, must be executed to either complete the handling of the

non regular circumstance or check that the non regular condition no longer exists.

This test is made by an edge predicate, represented by the condition in parenthesis,

before executing Some step, which examines the process state to find if the repair is

needed. Note that the dotted line representation is not syntax, but is proposed just to

perceive that an arbitrary amount of work may happen between when the temporary

repair takes place and the repair is completed.

The structure of the Postponed Repairing pattern in BPMN is shown in Fig. 5. The

Exception Flow includes an interim repairing activity that includes the creation of a

problem report. It then flows back into the Normal Flow, which may include any

number of activities (indicated informally using a dotted line). A Gateway is then

used to test whether a problem report exists in which case a full repairing is carried

out.

Fig. 4. Postponed Repairing pattern in Little-JIL

508 Preetesh Purohit, Vrinda Tokekar

Fig. 5. Postponed Repairing pattern in BPMN

Pattern’s Participants: There are three participants in the Postponed Repairing pattern:

the anomaly discoverer/detector, the patcher/logger, and the repairer/fixer. The

anomaly discoverer is the portion of the process that identifies that an issue has

arisen and notifies the process by throwing an exception. The patcher/logger is

accountable for recording the anomaly and possibly doing an interim repair. In the

Postponed Repairing pattern, the patcher/logger is the exception handler. The

repairer is the later step that examines the log and completes the handling of the non

regular circumstance. Notice that the repairer does not use an exception handling

mechanism, yet is a key participant in resolving the anomaly.

Pattern’s Instances: Example of the Postponed Repairing pattern is included in Figure

3. Postponed Repairing handles exceptions caused by potential test case failures

during program testing (represented in the Sub-Process Test the Program). Here,

every failure is recorded in a test log before the control flow for this instance of

testing terminates. Failures, if recorded, are fixed only after all instances of testing

have been completed.

Another example of the Postponed Repairing pattern is shown in Fig. 6, in Little-JIL.

Here, the commuter has successfully booked/reserved a flight, but the Website that is

used to allow the user to choose a seat is unavailable. Reserve flight throws the

SeatSelectionWebsiteIsDown exception. This is managed by making a note to choose

seats later and then continuing with reserving the hotel and car. At some later stage in

the process, verification is made to see if the seats have been chosen. If not, the Select

plane seats step is executed.

Fig. 6. Postponed Repairing pattern to complete seat selection at a later time

Patterns for Effective Handling of Exceptions in Processes… 509

II.I.III Name: - Reiterate Pattern

Pattern’s Intent: When an issue is identified immediately after the execution of the

activity causing the issue, an action is taken to resolve the issue and then the activity

that caused the issue is reiterated.

Pattern’s Applicability: This pattern is useful when an activity fails but a change to

the state or addition of a short delay seems likely to allow the activity to succeed if it

is reiterated. This is a usual approach when input to an activity is wrong, such as a

debit card number, or transient hardware failures take place, during working on

Internet.

Pattern’s Structure: The design of the Reiterate pattern in Little-JIL is depicted in Fig.

7. During the Do the work step, an exception is thrown. It is managed by the Reiterate

step, which first performs a step to Update Context followed by recursively carrying

out the Task step. The Update Context step may also be accountable for finding

whether to continue with reiterating the Task or whether to leave it and propagate the

exception to be managed somewhere else. This is crucial to refrain retrying the same

task continually. On finishing of the Reiterate step, the Task that it is an exception

handler for is complete. The structure of Reiterate pattern in BPMN is shown in Fig.

8. In design; the Exception Flow contains Update Context, and then, bends back to

Task. An extra Exception Flow is defined for leaving out retry and making known the

exception to be handled somewhere.

Pattern’s Participants: This pattern contains the same two participants as in

Instantaneous Repairing. The anomaly discoverer/detector is identical, but the

repairer/fixer has a more polished design consisting of a step to revise the

perspective prior to a reiterable/retriable activity, which is the activity that is

iteratively or recursively called upon after the context update.

Pattern’s Instances: We present the trip planning process using the Reiterate pattern in

Fig. 9. If it is not likely to get a flight that fits the primary plan, the Book/Reserve

flight step throws the FlightNotAvailable exception. This is managed by the Revise

plan step, which updates the dates and then uses the Make the reservations step

recursively. When the exception handler completes, the initial Make the reservations

step is also complete due to the complete semantics associated with the exception

handler.

Fig. 7. Reiterate pattern in Little-JIL

510 Preetesh Purohit, Vrinda Tokekar

Pattern’s Variations: In few scenarios, it may be reasonable for the repairer to be

missing or play a minimal role. For example, if the exception being handled is that a

Website is not responding, the repairer might simply add a pause prior to retrying the

Website or it might tally the number of retries and terminate if repeated efforts fail.

II.I.IV Name: - Exception-Compelled Remake Pattern

Pattern’s Intent: Between the occurrence of an issue and its discovery an arbitrary

amount of time can pass. During that duration, other activities whose executions

depend on the activity in which the issue occurred can be executed. Once the issue is

detected, the repairing of the issue includes the reexecution of the activity that

introduced the issue originally.

Fig. 8. Reiterate pattern in BPMN

Pattern’s Applicability: Exception-Compelled Remake pattern is a generalization of

Reiterate. It is suitable in almost the same scenarios as Reiterate, other than that it

relaxes the requirement that no time expires between the occurrence and the detection

of the issue. In the Reiterate pattern, a trouble with the original work is detected

immediately after the occurrence of a trouble, and this discovery, in turn, causes the

repeated work to also be done immediately. Exception-Compelled Remake permits for

the detection of the trouble and the repeated work performed to repair the problem to

take place at any time, maybe even after a significant amount of time has elapsed

since the issue was created.

Pattern’s Structure: Exception-Compelled Remake is a generalization of Rework,

where the rework need not be triggered by an exception, but simply requires the

reexecution of a step executed at some point in the past. Cass et al. [33] specify a

much more complete definition and description of rework.

Patterns for Effective Handling of Exceptions in Processes… 511

Fig. 9. Applying the Reiterate pattern to replan a trip

Pattern’s Participants: The participants in this pattern are the anomaly

discoverer/detector and the repairer/fixer. As in the Reiterate pattern, the repairer

can be further disintegrated into a structure that contains a step to update the context

before executing a reiterable/retriable activity.

Fig. 10. Applying Exception-Compelled Remake in the medical domain

Pattern’s Instances: An example of Exception-Compelled Remake can be found in the

process of medical domain. A fragment from a process of chemotherapy preparation

is shown in Fig. 10. A doctor has prescribed medication dosages as part of his/her

orders for treatment of a patient at some stage earlier in the process. For protection, a

nurse next uses patient height and weight data to manually recalculate the doses of

these same medications and then attempts to verify that newly calculated doses match

the doses ordered by the doctor. If the doses do not match, the nurse needs to notify

the doctor of this issue, then the doctor needs to reenter the correct doses by remaking

a previously executed medication entering activity, which now is done in a new

perspective, namely, one in which the previous faulty performance is now a part of

the history of the execution of the process. After the doctor has prescribed the new

doses, the nurse needs to retry (also in a new perspective) the activity he/she failed to

complete, namely, confirming that the manually calculated doses match the ones just

prescribed by the doctor.

512 Preetesh Purohit, Vrinda Tokekar

Pattern’s Deviations: Remake/Rework is frequently followed by a ripple effect. Other

already executed activities in a process may rely on the conclusions made in or the

outputs generated by the problematic activity. In that situation, only reworking the

problematic activity is not sufficient. To fully repair the trouble, the already executed

activities that are relying on the problematic one should also be revisited.

II.II Nullifying Action

This type of exception handling patterns is one in which an action being pondered

must not be permitted for some cause.

II.II.I Name: - Discard Pattern

Pattern’s Intent: It occasionally becomes evident that an action being pondered

should not be permitted. The driving force pondering the action must be informed and

allowed to make adjustments or transforms and retry, if so required.

Pattern’s Applicability: Discard pattern creates an admission obstruction to a division

of a process.

Fig. 11. Discard pattern in UML

Pattern’s Structure: There are unusual ways to signify the organization of the Discard

pattern using UML notation. One easy approach is given in Fig. 11 using a Decision

Node symbolized in the stature by a diamond and Guards on its output edges. The

guards verify the outcome of the Validate Process Inputs action, and consequently

choose to continue to the next step if the inputs are suitable or to inform the

representative of their dismissal if they are not. There is one final state which both the

nominal and exceptional flows attain.

Patterns for Effective Handling of Exceptions in Processes… 513

Fig. 12. Discard pattern in BPMN

Fig. 12 shows the Discard pattern in BPMN notation. The Exception Flow only

includes an End Event that throws a Message of notification. Compare to the UML

structure, we have two final states, one for the normal flow and an additional for the

exceptional flow.

Pattern’s Participants: The Discard pattern consists of a discarder/rejecter and a

validator/confirmor. The discarder is an activity that causes the portion of the process

that manages the discarded/rejected input to be canceled. The validator decides if the

input should be acknowledged or not.

Fig. 13. Applying the Discard pattern to cancel a trip

Pattern’s Instances: Lot of processes includes tests of different clauses that must be

fulfilled in order for a part or the whole of the process is to continue. Hence, in

Fig.13, we demonstrate a Little-JIL process that terminates a journey if there is no

flight available for the journey. This takes place as the exception handling semantics

in this example is to rethrow the exception, represented by the upward pointing arrow

on the exception handler. Note that this process would give the impression to have the

same objective as the process portrayed in Fig. 9, but the processes vary in the

measures taken when there is no flight available. In the earlier example, we reworked

plans and retried. In this case, we merely back out. Still a dissimilar way to dealing

with this state of affair would be to permit the user to make the selection, leading to a

process that makes use of both patterns. In this situation, discarding the input

outcomes in the complete process being aborted.

514 Preetesh Purohit, Vrinda Tokekar

Fig. 14. Applying the Discard pattern to reject a code fix that does not work

Fig. 14 offers one other illustration of the use of this pattern, now drawn for software

development process in UML. This instance demonstrates a process; Make a good

repair/fix, for repairing/fixing a module. The process initiates by coding the superior

module. Then, there is a test to observe if the module has actually been improved, by

testing, formal and/or informal analysis. If we settle on that the alleged repair is not

truly an upgrading, we discard the repair as a substitute of accommodating it in the

subsequent step. At this point, an exception handler higher in the process (not

revealed) would catch the propagated exception and permit software development

process to carry on, but without the repair that was discarded.

Pattern’s Deviations: The Discard pattern can be used either to end only part of the

process or end the entire process. To end part of the process, an exception handler

superior in the call hierarchy will require for managing the exception to let the process

to continue.

II.II.II Name: - Indemnify Pattern

Pattern’s Intent: When revoking an action, it is commonly essential to undo effort that

has previously been finished. Indemnify pattern addresses the requirement to decide

what effort must be undone and to then carry out the adjusting action(s) required in

order to undo it.

Pattern’s Applicability: Indemnify pattern is mainly valuable in circumstances in

which it is not likely to identify at the beginning that a task will be successful, or the

outcomes produced by the task will confirm ultimately to be suitable. In view of this,

the process must include means for undoing the fraction(s) of the job that did

Patterns for Effective Handling of Exceptions in Processes… 515

complete and/or replacing the outputs that proved to be improper. In a number of

situations, the status of the process past compensation may emerge to be the matching

as if the unsuccessful actions not at all happened. Frequently, nevertheless, there will

be a testimony that the activity happened but the compensating activity cancels the

impact of the original action, as when a debit/credit card credit repays for a

debit/credit card fee for privileged customers of the bank.

Fig. 15. Indemnify pattern in BPMN

Pattern’s Structure: Fig. 15 shows the composition of the Indemnify pattern in BPMN,

using BPMN’s construct. Indemnification/Compensation rolls back some of the

effects of a Transaction. A Transaction is based on a formal business association and

undisputed agreement among two or more participants. It is represented as a Sub-

Process with a double-line boundary. A Cancellation/Termination Event attached

to this boundary will disrupt the Transaction and make the process continue along

the Exception Flow specified. However, previous to opening the Exception Flow,

any accomplished activities within the Transaction that have

Indemnification/Compensation activities are undone by clearly defined rollback

actions. This is designed by attaching a Compensation/Indemnification Event to the

boundary of that activity, and linking it to a unique type of activity, a

Compensation/Indemnification activity (symbolized using a rewind symbol). Figure

shows, two normative jobs are defined in a parallel flow that permits their

implementation in any order (parallel construct in Little-JIL). A

Compensation/Indemnification activity is defined only for Task/Job 1. When a

cancellation/termination of the Transaction happens after Task/Job 1 has

accomplished, the Compensation/Indemnification action is performed, and then, the

Exception Flow defined for the Transaction is turned on. The BPMN illustration

adequately shows how the Indemnify/Compensate blueprint is characteristically used

within the larger perspective of a parent/creator process/procedure.

Neither UML nor Little-JIL has a Compensation/Indemnification design. This makes

the Compensation/Indemnify model more complicated to articulate in the widespread

case. For the reason that it at present becomes essential to define tests in the process

to decide which steps are finish in order to make out which

compensation/indemnification actions are essential when an exception raises. Fig. 16

516 Preetesh Purohit, Vrinda Tokekar

illustrates how this would be signified in Little-JIL. Both Step 1 and 2 are done side

by side. If Step 2 not succeeds but Step 1 finishes, an exception handler is used to

compensate/indemnify for the impacts of Step 1. Observe that the process wishes to

verify clearly if Step 1 is finish in its exception handler.

Fig. 16. Indemnify pattern in Little-JIL

Pattern’s Participants: The members in this blueprint are the Performer, the Abolisher,

and the Indemnifier. The Performer carries out few jobs that the Abolisher later

wants to undo. The undo is performed by the Indemnifier, which comprehends the

work that was accomplished and how to undo it.

Pattern’s Instances: Fig. 17 illustrates one more deviation of the Little-JIL procedure

of scheduling a journey. In this case, the bookings can be achieved in any sequence. If

we not succeed to get an air travel, we terminate the journey. This will involve

abolishing cab and inn bookings if those actions have previously completed. The vital

distinction among this case and that in Fig. 13 is that, in the former case, the

consumer got the airplane booking first and thus had nothing to revoke if there was no

air travel available. In this case, the consumer can do the three bookings in any

sequence, and conceivably simultaneously, therefore we have to find out what was

done if we need to cancel the trip.

Fig. 18 demonstrates a BPMN case method of management for order of client. It is

represented using a Transaction Manage Client/Customer Order that comprises

actions of charging the client and dispatching a proof of payment, and selecting the

planned product from the warehouse and delivering it to the client. Three of these

actions are linked with Indemnification Activities. When abolition (for example,

order abolition) happens, any of the three actions that has accomplished is recouped as

stated in backward order of the regular course. Once the Transaction is completely

rolled back, the control flow is diverted according to the Exception Flow described

and defined on the parent stage.

Patterns for Effective Handling of Exceptions in Processes… 517

Fig. 17. Applying the Indemnify pattern to cancel a trip

Pattern’s Deviations: Indemnification can be joined with supplementary patterns. In

specific, any time that an activity not passes with an exception, it may be obligatory to

unwrap several effort that has been accomplished. As a result, reparation could form

component of the exception handling used in any of the previous patterns.

A different variation is that it is not every time essential to encompass in the process

the checks to decide what work requires to be recouped, even in the absence of an

indemnification build similar to BPMN has. This is the case if the place of the

exception handler is enough to decide what job is accomplish, as would be the case if

the indemnification was in the perspective of chronological jobs rather than parallel

jobs.

II.III Seeking Other Options

One general class of exception management patterns defines how to deal with

opinions about which of numerous alternative courses of action to follow. In few

cases, such verdicts are based upon situations that can be set directly in the process,

fundamentally with an if-statement to make the selection. In other situations, at prior,

it may be hard to catch all situations for which each course of action is best suited. For

specific cases, it is time and again most helpful to just present the process actor with

options to try. If the option that is attempted fails, another option is to be attempted in

its place, using exception management to move on to not attempted options. In this

group, we have recognized two different exception management patterns: sequenced

options pattern and disordered options pattern.

518 Preetesh Purohit, Vrinda Tokekar

Fig. 18. Applying the Indemnify pattern to cancel an order

II.III.I Name: - Sequenced Options Pattern

Pattern’s Intent: There are numerous ways to complete a job and there is a preset

order in which the options should be attempted. Preparation must be made for the

likelihood that no options will be successful.

Pattern’s Applicability: Sequenced options pattern is appropriate when there is a

chosen order amongst the options that should be attempted in order to carry out a job.

Fig. 19. Sequenced Options pattern in Little-JIL

Pattern’s Structure: Fig. 19 shows the composition of the Sequenced Options pattern

in the Little-JIL notations. Practices are symbolized in Little-JIL as ranked

disintegrations into steps. At this point, we see the step named Job/Task through three

substeps, each one defining one mean to accomplish the job. The symbol at the left

side of the black step bar of Job/Task specifies that it is a Try/Attempt step. The

interpretation of the semantics of the Little-JIL Try/Attempt step go with the

meaning of this blueprint fairly closely, as the Try/Attempt step meanings states that

the step’s descendants correspond to options that are to be attempted in sequence from

left to right. If an option accomplishes something, the ancestor step is concluded and

Patterns for Effective Handling of Exceptions in Processes… 519

no additional options are proposed. If carrying out of an option raises an exception,

the exception is managed by the handler affixed to the Try/Attempt step by the

rightmost edge. The symbol linked with the exception handler signifies that the

Try/Attempt step should carry on with the subsequent option. This goes on up to the

time that one of the option substeps turns out successfully. If not any of the substeps

accomplishes something, an unusual exception, called

NoFurtherOptions/NoMoreAlternatives, is thrown. NoFurtherOptions exception must

be managed by a predecessor of the Try step. Representing that all options have not

succeeded is element of the blueprint, but the managing of that exception must take

place in the perspective in which the blueprint is used rather than as component of the

blueprint.

Fig. 20. Sequenced Options pattern in UML

Neither UML nor BPMN have a build resembling to the Try/Attempt step in Little-

JIL. The outcome is that this model is conveyed by attaching jointly the options with

exception handlers as revealed in the Activity Diagram drawn using UML in Fig. 20.

A core action, in the build called

SequencedOptionsPattern/OrderedAlternativesPattern, is used as a perspective to call

the carrying out of the Normative/Regular action. This call is guaranteed by a

CallConductActivity/CallBehaviorAction, which, in UML, serves as the ways to

call an activity from inside a different one. Regular actions contains a set of

operations to be executed by the representative and which are confined within a

DisciplinedPursuitNode/StructuredActivityNode, a controlled segment of the

520 Preetesh Purohit, Vrinda Tokekar

action that is not used in common with any supplementary segment and which can be

sheltered by an Exception Handler. Any exception originated by the carrying out of

any deed within the disciplined node and having a category equivalent to the

exception types managed by the supervisor will be trapped by the exception handler.

If an exception takes place, the control flow is ended within the disciplined node and

the flow is transmitted to the Exception Handler. The exception handler will then

call the first option, which is characterized in Fig. 20 by the Option 1 action using

another CallConductActivity/CallBehaviorAction. The actions in the Option 1

activity may also be sheltered by an Exception Handler, which may call a second

option if Option 1 not succeeds as well. In case of no further options, Option 2 will

terminate, causing the NoFurtherOptions exception to disseminate to the call action

that summoned Option 2, then to the ancestor activity possessing the call action, and

so on.

Pattern’s Participants: This blueprint has three types of members: the list, the options,

and the pursuer. The list is the segment of the process that arranges the options into a

sequence. The options are the diverse means in which the preferred job can be

executed. While the illustrations confirm three options, there is no limit to the number

of options that could be used in this model. Each option, excluding perhaps the very

last, must have the capability to throw an exception that originates thoughtfulness of

the subsequent option. The pursuer is the exception supervisor that specifies that the

course of action should go on with the next option.

Pattern’s Instances: Fig. 21 illustrates the utilization of the Sequenced Options pattern

in a Little-JIL practice to arrange journey to be present at a symposium. This blueprint

can be witnessed in the Book inn/Reserve Hotel step. At this juncture, the progression

calls for first trying to get a booking at the symposium inn ahead of taking into

consideration other inns. If the symposium inn is occupied, the InnFull/HotelFull

exception is thrown. This is managed by causing the Book other inn/hotel step to be

tried after that.

The implementation of the Inn/Hotel Booking/Reservation process in UML is shown

in Fig. 22. The chief action calls the Book/Reserve Symposium/Conference Inn/Hotel

action by means of a CallConductActivity/CallBehaviorAction. The Book/Reserve

Symposium/Conference Inn/Hotel action holds an order of activities described within

a Disciplined Pursuit Node/Structured Activity Node which is sheltered by an

Exception handler. The structure of the Exception handler comprises of a call to the

Book/Reserve Other Inn/Hotel activity and is prompted if an accomplishment within

the sheltered node not succeeds.

Patterns for Effective Handling of Exceptions in Processes… 521

Fig. 21. Applying the Sequenced and Disordered Options patterns for a journey

Pattern’s Deviations: One deviation of this model uses Boolean situations after an

option is attempted, rather than anticipating the option to throw an exception. If the

situation evaluates to correct, it conveys that the option has succeeded. If the situation

evaluates to incorrect, it conveys that the option failed and the course of action should

continue to the subsequent option. The compromise at this point is basically

comparable as we observe in procedural programming approach when determining

whether a function must return a status value to prove if it has accomplished

something successfully or it should throw an exception, if failed.

If the states of affairs under which an option will do well are identified in advance, the

options are better signified with a build similar to an if-else build in a conventional

programming language. This permits the orders to be particularized at the same time

as avoiding the call for exception handling. It is the Exclusive Choice pattern offered

as a control flow pattern by van der Aalst et al. [24].

II.III.II Name: - Disordered Options Pattern

Pattern’s Intent: There possibly will be several ways of finishing a task, however there

are incidents when a predetermined order in which options are to be attempted is

either not well-known or not required. If an exception takes place while attempting

one approach, an option other than all of those that have been attempted previously is

to be attempted in its place. This is to carry on until an option succeeds or until all

options have been attempted and have failed. In this later case, the letdown of all

options is indicated as an exception to be managed by the process perspective in

which this pattern is implanted.

522 Preetesh Purohit, Vrinda Tokekar

Fig. 22. Applying the Sequenced Options pattern to select a hotel

Pattern’s Applicability: This model applies when there are numerous ways to

complete a job and it is not recognized a priori which approach is the most suitable.

Here, the choice of the order in which the options are attempted is postponed until

runtime. If a tried option fails, there is a different effort to finish the work by selecting

another option. There possibly will be numerous aspects that control the sequence in

which the options are attempted. Such as, the state of the artifacts or the state of the

process being controlled by the process may perhaps control the sequence.

In addition, a number of options can need dissimilar resources than others, so resource

accessibility and availability may control the sequence in which the options are well

thought-out. The information of the actors/performers contributing in the process may

also control the sequence in which options are attempted. Specifically, a person actor

might utilize knowledge concerning the results of trying earlier attempted options to

determine which option is to be attempted subsequently. Note that the blueprint would

have the same organization, autonomous of the aspects that control the eventual

sequence that is selected, as in this case, the aspects controlling the sequence are

dynamic while the blueprint captures only static information. In this fashion, the

Sequenced Options pattern can signify either internal or external nondeterministic

choice.

Pattern’s Structure: The structure of the Disordered Options pattern is shown in Fig.

23 using Little-JIL notations. This pattern is identical like the preceding one apart

from that a Choice/Option step is used rather than a Try/Attempt step. This is

showed by the symbol at the left side of the black step bar for Task/Job. The

semantics/meanings of the Little-JIL Choice/Option step go with the description of

this blueprint moderately closely as the Choice/Option step semantics specify that the

step’s offspring stand for the options that are to be attempted, without representing

any sequence. The semantics/meanings of the Choice/Option step indicate that only

Patterns for Effective Handling of Exceptions in Processes… 523

one option is to be attempted. If the selected option is victorious, the job is

accomplished. If the option is not victorious, then an exception is thrown, resulting in

the options that have not yet been tried to be depicted to the manager. As with

SequencedOptions, if all options are unsuccessful, the

NoFurtherOptions/NoMoreAlternatives exception is thrown and should be managed

in the perspective in which the blueprint is utilized. In the blueprint, there are three

options to select from, however, in common; there can be random number of options.

Here also, neither BPMN nor UML have a control build comparable to the Little-JIL

choice/option step. In these representations, Disordered Options are symbolized using

a provisional build to decide which option is chosen by the client. If the chosen option

not get pass, command loops back to permit the user to choose another time. Fig. 24

illustrates the depiction of the Disordered Options pattern in UML. Here, the

PonderClientOption/ConsiderUserChoice action permits the client to make a choice.

The Conditional/Provisional Node/Point contains a check/test and structure/body

for every option. If the chosen option passes the check, the Disordered Options are

accomplish. If fails the check, an exception is thrown. The exception handler

upgrades the list that the client can select from. If further options stay, control flows

back to the deed that shows the updated list to the client.

Pattern’s Participants: Similar to Sequenced Options, this blueprint has three kinds of

members: the list, the options, and the pursuer. The list shows the options, however,

here, the sequence of the options has no semantics/meanings. The options are the

numerous ways in which the job can be performed. Each option must throw an

exception that can then be managed to permit the further options to be tried. The

pursuer is the exception controller that causes the further options to be reviewed.

Fig. 23. Disordered Options pattern in Little-JIL

Pattern’s Instances: Fig. 21 further illustrates the moves included in booking of air-

travel for a journey. At this point, the client can select either to use Indigo/Southwest

or to use Jet/Travelocity to book air travel on other airlines (since Jet/Travelocity does

not list Indigo/Southwest schedule for flights). If there is no desired flight exists via

the first amenity selected, an exception is thrown. The exception controller carries on

with the Book air-travel/Reserve flight step by allowing the client attempt the further

option.

524 Preetesh Purohit, Vrinda Tokekar

To opt for a shipper disordered option pattern being used as depicted in Fig. 25. An

exception will be thrown, if a shipper cannot satisfy the delivery conditions. The

exception is managed by permitting the client to attempt the new shipper.

Pattern’s Deviations: As the blueprint is represented here, whenever an option fails,

only the options that have not yet been attempted are permitted. In a different

distinction, all options are permitted every time. There are rewards and drawbacks in

both variations. It could be that the options themselves have a bunch of substructure

to them. Therefore, it may likely be that the same option could be executed numerous

times, with dissimilar outcomes each time. In that scenario, it would be favored to

permit all the options every time. By contrast, if each option at all times generates the

identical outcome no matter how frequently it is attempted, it is significant to

eliminate options from deliberation as they are tried to stay away from a never-ending

loop.

III. CONCLUSIONS

We have discovered the blueprints for managing exceptions, which were depicted, to

be helpful in raising the reflection level of process models. They give a method, for

moving toward exceptional case, by giving a system of inquiries. Would we be able to

settle the issue quickly? Is there another option the procedure should provide? Would

it be advisable for us to dismiss this information completely?

As there are numerous utilizations of classes that do not play parts in standard object

oriented designs, models and patterns, we expect that there are requirements for

special exceptional case taking care of in forms that cannot be met by any of the

examples and designs we characterize here in our research. Along these lines, in our

research, we do not give thought to all lawful methods for joining approaches for

exception handling. More willingly, we have concentrated on blends that we have

experienced over and over in our work in characterizing forms and designs in such

differing spaces as software design and development, commerce and business,

transaction/negotiation and medical and health related aspects. While we trust that the

decent variety of these areas affirms our claim that the examples of patterns proposed

by us are broadly useful in nature, we unquestionably don't trust that this list of

blueprints is finished and we expect that it will develop and grow further in near

future.

While a few examples and blueprints are less demanding to express in a few modeling

language and notation than others, we additionally trust that the examples and patterns

are autonomous/independent of modeling language and notation used. Then again, the

nearness and presence of specific builds/constructs using a modeling language and

notation influences the manners by which one models processes. Indeed, our

involvement with analyzing genuine procedures demonstrates that numerous

procedures do exclude special exceptional case in their depictions and descriptions.

This might be partially because of the noncritical idea of the procedures/processes, yet

it might likewise be in any event somewhat because of the nonappearance of

Patterns for Effective Handling of Exceptions in Processes… 525

builds/constructs that are helpful for expressing and dealing effectively with unhappy

path in those modeling language and notation. We trust that this research on effective

management of exception through patterns will urge process modelers, designers and

developers to incorporate and deal with exceptional case more efficiently. We believe

our contribution will motivate process modeling language designers, to give a

(re)thought to builds/constructs, to ease and smooth the way for dealing with

exception more cautiously.

Fig. 24. Disordered Options pattern in UML

.

Fig. 25. Applying the Disordered Options pattern to select a shipper

526 Preetesh Purohit, Vrinda Tokekar

REFERENCES

[1] M.S. Raunak, B. Chen, A. Elssamadisy, L.A. Clarke, and L.J.Osterweil,

“Definition and Analysis of Election Processes,” Proc. Software Process

Workshop (SPW ’06) and 2006 Process Simulation Workshop, pp. 178-185,

2006.

[2] L.J. Osterweil, C.M. Schweik, N.K. Sondheimer, and C.W.Thomas, “Analyzing

Processes for E-Government Development: The Emergence of Process

Modeling Languages,” J. E-Govt., vol. 1, no. 4, pp. 63-89, 2004.

[3] B.I. Simidchieva, M.S. Marzilli, L.A. Clarke, and L.J. Osterweil, “Specifying

and Verifying Requirements for Election Processes,” Proc. 2008 Int’l Conf.

Digital Govt. Research, pp. 63-72, 2008.

[4] L. Clarke, A. Gaitenby, D. Gyllstrom, E. Katsh, M. Marzilli, L.J.Osterweil, N.K.

Sondheimer, L. Wing, A. Wise, and D. Rainey, “A Process-Driven Tool to

Support Online Dispute Resolution,” Proc. 2006 Int’l Conf. Digital Govt.

Research, pp. 356-357, 2006.

[5] S.C. Christov, G.S. Avrunin, B. Chen, L.A. Clarke, L.J. Osterweil, D. Brown, L.

Cassells, and W. Mertens, “Rigorously Defining and Analyzing Medical

Processes: An Experience Report,” Proc. Models in Software Eng.: Workshops

and Symp. at MoDELS ’07, 2007.

[6] A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van

Harmelen, P. Lucas, S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang,

“Improving Medical Protocols by Formal Methods,” Artificial Intelligence in

Medicine, vol. 36, no. 3, pp. 193-209, 2006.

[7] M.S. Raunak, L.J. Osterweil, A. Wise, L.A. Clarke, and P.L. Henneman,

“Simulating Patient Flow through an Emergency Department Using Process-

Driven Discrete Event Simulation,” Proc. Workshop Software Eng. in Health

Care, 2009.

[8] W.M.P. van der Aalst, “Business Process Management Demystified: A Tutorial

on Models, Systems and Standards for Workflow Management,” Lectures on

Concurrency and Petri Nets, J. Desel, W. Reisig, and G. Rozenberg, eds., pp. 1-

65, Springer-Verlag, 2004.

[9] A.-W. Scheer, ARIS—Business Process Modeling, third ed. Springer-Verlag,

2000.

[10] H.A. Reijers, S. Limam, and W.M.P. van der Aalst, “Product-Based Workflow

Design,” J. Management Information Systems, vol. 20, no. 1, pp. 229-262, 2003.

[11] D. Mu¨ ller, M. Reichert, and J. Herbst, “Data-Driven Modeling and

Coordination of Large Process Structures,” Proc. Move to Meaningful Internet

Systems ’07: Int’l Conf. Cooperative Information Systems, Int’l Conf.

Distributed Objects and Applications, Conf. Ontologies, DataBases, and

Applications of Semantics, Int’l Conf. Grid Computing, High Performance and

Distributed Applications, and Int’l Symp. Information Security, 2007.

[12] A.G. Cass and L.J. Osterweil, “Process Support to Help Novices Design

Software Faster Better,” Proc. 20th IEEE/ACM Int’l Conf. Automated Software

Eng., pp. 295-299, 2005.

[13] M. Li, B. Boehm, and L.J. Osterweil, Unifying the Software Process Spectrum.

Patterns for Effective Handling of Exceptions in Processes… 527

Springer-Verlag, New York, 2006.

[14] Modelplex, IST European Project Contract IST-3408, http://www.modelplex-

ist.org, 2010.

[15] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst,

“Dynamic and Extensible Exception Handling for Workflows: A Service-

Oriented Implementation,” BPM Center Report BPM-07-03, BPMCenter.org,

2007.

[16] E.H. Henneman, R.L. Cobleigh, K. Frederick, E. Katz-Bassett, G.A. Avrunin,

L.A. Clarke, L.J. Osterweil, C. Andrzejewski, K.Merrigan, and P.L. Henneman,

“Increasing Patient Safety and Efficiency in Transfusion Therapy Using Formal

Process Definitions,” Transfusion Medicine Rev., vol. 21, no. 1, pp. 49-57,

2007.

[17] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented software. Addison-Wesley, 1994.

[18] S. Stelting, Robust Java: Exception Handling, Testing and Debugging. Prentice

Hall, 2005.

[19] A. Haase, “Java Idioms: Exception Handling,” Proc. Seventh European Conf.

Pattern Languages of Programs, July 2002.

[20] A. Longshaw and E. Woods, “Patterns for Generation, Handling and

Management of Errors,” Proc. Ninth European Conf. Pattern Languages of

Programs, July 2004.

[21] A. Longshaw and E. Woods, “More Patterns for the Generation, Handling and

Management of Errors,” Proc. 10th European Conf. Pattern Languages of

Programs, July 2005.

[22] J.O. Coplien, “A Development Process Generative Pattern Language,” Pattern

Languages of Programs, 1994.

[23] S.W. Ambler, Process Patterns: Building Large-Scale Systems Using Object

Technology. Cambridge Univ. Press, 1998.

[24] W. van der Aalst, A. ter Hofstede, B. Keipuszewski, and A.P.Barros,

“Workflow Patterns,” Distributed and Parallel Databases, vol. 14, no. 3, pp. 5-

51, July 2003.

[25] W. van der Aalst, A. ter Hofstede, B. Keipuszewski, and A.P. Barros,

“Advanced Workflow Patterns,” Proc. Seventh Int’l Conf. Cooperative

Information Systems, O. Etzion and P. Scheuermann, eds., pp. 18-29, 2000.

[26] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst, “Workflow Data

Patterns: Identification, Representation and Tool Support,” Proc. 24th Int’l

Conf. Conceptual Modeling, L. Delcambre et al., eds., pp. 353-368, 2005.

[27] N. Russell, W. van der Aalst, A. ter Hofstede, and D. Edmond, “Workflow

Resource Patterns: Identification, Representation and Tool Support,” Proc. 17th

Conf. Advanced Information Systems Eng., O. Pastor and J.F. e Cunha, eds., pp.

216-232, 2005.

[28] N. Russell, W. van der Aalst, and A. ter Hofstede, “Exception Handling Patterns

in Process-Aware Information Systems,” BPM Center Report BPM-06-04,

BPMCenter.org,http://www.workflowpatterns.com/documentation/documents/B

PM-06-04.pdf, 2006.

528 Preetesh Purohit, Vrinda Tokekar

[29] L.J. Osterweil, “Software Processes Are Software, Too,” Proc.Ninth Int’l Conf.

Software Eng., pp. 2-13, 1987.

[30] OMG, Business Process Modeling Notation (BPMN) Version 1.2,

http://www.omg.org/spec/BPMN/1.2, 2010.

[31] A. Wise, “Little-JIL 1.5 Language Report,” technical report, Dept. of Computer

Science, Univ. of Massachusetts, 2006.

[32] OMG, Unified Modeling Language, Superstructure Specification, Version 2.1.1,

http://www.omg.org/spec/UML/2.1.1/Superstructure/PDF/, 2010.

[33] A.G. Cass, S.M. Sutton, and L.J. Osterweil, “Formalizing Rework in Software

Processes,” Proc. Ninth European Workshop Software Process Technology, pp.

16-31, 2003.

[34] B.S. Lerner, S. Christov, L.J. Osterweil, R. Bendraou, U. Kannengiesser, A.

Wise, “Exception Handling Patterns for Process Modeling,” IEEE Transactions

On Software Engineering, pp. 162-183, 2010.

