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ABSTRACT: 
This paper analyses the convergence of modified variable step block backward 

differentiation formulae (MVS-BBDF) method. We study the conditions for the 

method to be convergence and also investigate the order of the method. This 

method is proven to be of order four and consistent since it satisfies the 

conditions of consistency.  To prove the validity of the method, the numerical 

experiments are carried out on stiff ordinary differential equations (ODEs) 

problem. The efficiency of the proposed method is compared with ODE solver 

in Matlab which are ode15s and ode23s.  

The results obtained prove that the proposed method has better performance as 

compared to ode15s and ode23s. 

 

Keywords: Backward Differentiation Formulae, Block Backward 
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I. INTRODUCTION 

In a scientific problem, a differential equation is usually accompanied by auxiliary 

conditions that (together with the differential equation) specify the unknown function 

precisely [1]. Basically, dynamical real-life problems may be formulated as a 

mathematical model either as a system of ordinary differential equations (ODEs) or 

partial differential equations (PDEs) [2]. 
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Most people have some physical understanding of heat transfer due to its presence in 

many aspects of our daily life. Within mathematics, ODE plays an important role in the 

calculus variations, where optimal trajectories must satisfy the Euler equations, or in 

optimal control problems, where they satisfy the Pontryagin maximum principle. In 

both cases, one is led to boundary value problems for ODEs [3].  

 

Moreover, differential equations with auxiliary conditions are known as an initial value 

problem (IVP). IVP of ODE may be linear or nonlinear, first-order or higher-order, and 

homogeneous or nonhomogeneous. A general form of a single differential equation of 

the first order accompanying an auxiliary condition is as follows 

 

             batxtxtf
dt

tdx
  )(   )),(,(

)(
                        (1) 

 

where t is time and t = a is the initial instant in time. 
dt

tdx )(
is denoted as the first 

derivative while ))(,( txtf  is denoted as derivative function. The solution to (1) is the 

function to )(tx . This function must satisfy an initial condition at baxat  )(, . 

 

The solution to a differential equation is the function that satisfies the differential 

equation and also satisfies certain initial conditions on the function. In solving a 

differential equation analytically, we usually find a general solution containing arbitrary 

constants and then evaluate the arbitrary constant so that the expression agrees with the 

initial conditions [4]. A special problem arising in the numerical solution of ODE is 

stiffness [5]. A stiff equation is a result of phenomena with widely differing time scales. 

Certain physical systems are sometimes modelled by differential equations for which 

the eigenvalues vary widely in magnitude [6]. 

 

To date, many methods have been established in order to find the solution for the IVP 

of stiff ODE problems, such as block backward differentiation formula (BBDF) method 

proposed by [7]. The block method has proven its advantages in producing less 

computational effort because it manages to compute more than one solution value per 

step using back values in the previous block when compared to the reduction method. 

Therefore, the problems in this paper are solved using one of the BBDF method, namely 

MVS-BBDF. It is proven in [8] that MVS-BBDF is stable for solving stiff ODEs where 

all the step size ratios (1, 2 and 5/9) satisfy the zero-stable and A-stable conditions. 

 

Convergence is the requirement that the approximations generated by the method 

approach the actual solution as the step size goes to zero [5]. The numerical methods 

are converged if the numerical solutions approach the exact solution [9]. We use the 

definition and theorem given in [5] to define the convergence and consistency of linear 

multistep method (LMM). 
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Definition 1 The LMM is convergent if, 
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Theorem 1 The LMM is convergent if and only if it is consistent and zero stable. 

 

Consistency is defined as the requirement that the differential equation used by the 

method to be equivalent to the differential equation as the step size goes to zero. 

 

Definition 2 The LMM is said to be consistent provided its error order p satisfies 1p . 

It can be shown that this implies that the first and second characteristic polynomials 

fulfil      11,01  pp . 

 

Definition 3 The LMM is said to be consistent if  
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Since BBDF method is a class of LMM, we use the same definition of convergence for 

LMM to define the convergence for our method. 

 

II. ORDER OF MVS-BBDF METHOD 

The order of MVS-BBDF method is discussed in this section using the definition of 

order for LMM. The multistep method uses the approximation values at more than one 

previous value to approximate the subsequent value. It can be written as a linear 

combination of the value of the solution and the value of the function at previous points. 

In this paper, we focused on MVS-BBDF method where the formulae is as below 
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The general form of LMM is 

                      






 

k

j

jnj

k

j

jnj fhy

00

                                         (3) 

where k is the number of steps used in multistep, h is the step size, 
j and

j  are 

constant with the conditions 

 

   1k and 0|||| 00   . 
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Then, we obtain the general form of MVS-BBDF method in (3) as 

  
 

 
4

0

4

0

22

j j

jnijjnij fhy                                            (4) 

 

Define the LMM (3) associated with the linear difference operator L . 

 



k

j

jj jhxyhjhxyhxyL
0

)()());((                             (5)    

where y(x) is an arbitrary function, continuously differentiable on [a,b]. Expanding the 

function y(x+jh) and its derivative y’(x+jh) as Taylor Series about x. Thus, the equation 

becomes  

 
)(...)()()()(]);([ 33

3

22

210 xyhCxyhCxyhCxhyCxyChxyL qq

q         (6) 

where Cq are constants. 

 

Definition 4 The difference operator (6) and the associated linear multistep method (3) 

are said to be of order q if, ,0...10  qCCC  01 qC . 

The constant qC  is defined in terms of the coefficients  j and  j as follows 
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Given the linear difference operator L associated with our method in (2) defined by 

 
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where qC  are constant column matrices. Equation (2) can also be expressed in matrix 

form as 
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From equation (9), let 
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For this case, the values for qC  are as below 
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Since 0,0,0 43210  CCCCC and ,05 C  from definition 1, this method is of 

order 4 and we can call the method as modified block backward differentiation formula 

of order 4. 

 

 

III. CONVERGENT OF MVS-BBDF METHOD 

Theorem 2 The necessary and sufficient conditions for the linear multistep method of 

Equation (2) to be convergent are that it must be consistent and zero-stable. 

 

Proof: See [10]. 

 

III.I CONSISTENCY OF MVS-BBDF METHOD 

 

Definition 5 A LMM (2) is said to be consistent if it has order 1p . The method is 
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See [10]. 
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Since the order of our method is four, which is 1  as well as
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III.11 ZERO STABILITY OF MVS-BBDF METHOD 

Definition 6 The LMM (2) is said to be zero stable if no root of the first characteristic 

polynomial )(rp  has a modulus greater than one, and if every root with unit modulus 

is simple. 

 

 

Apply method in (2) to the test equation,  yf  and thus gives the stability 

polynomial as follows 
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Proof: See [8]. 

 

To obtain zero stability, replace 0 hH  to the stability polynomial in equation (13). 

Thus, we yield 
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To obtain the roots, solve t in the equation (14). Therefore, we have the values of t as 

1, 0.0207917599 and -0.2441420137. From definition 3, we can say that MVS-BBDF 

method is zero-stable since it satisfies the condition of zero-stability where all the roots 

are less than or equal to 1. 

Consequently, the necessary conditions to be consistent have been fulfilled by the 

method in (2). Hence, the method shown in (2) is consistent. 

 

 

IV. RESULTS AND DISCUSSIONS 

In order to validate the efficiency of the proposed method, we provide three problems, 

found in [4], [11], and [12] in the numerical experiments. 

 

Problem 1 :  

         20,0     ,200030001000   xeyy x  

 

subject to the initial condition 

  

   00 y  
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with the exact solution 

      

      xx eexy   002.2998.03 1000  

 

 with eigenvalue 

 

100  

 

Problem 2 :  

         10,0     ,11000  xyy  

 

subject to the initial condition 
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with the exact solution 
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with eigenvalue 

  

       1000,1  
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The notations below are used in the following tables and figures. 

 

MVS-BBDF 
Modified variable step block backward differentiation 

formulae method 

TSs 
Total steps taken during the computation of approximate 

solution 

TOL Tolerance limit 

MAXE Maximum error 

 

 

   Table 1. Comparison results for Problem 1 

 

Problem Method TOL TSs MAXE 

1 

MVS-

BBDF 

10-2 

10-4 

10-6 

29 
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135 

1.1090e-004 

1.5807e-006 

9.9454e-007 

ode15s 

10-2 

10-4 

10-6 

40 

93 

165 

8.4000e-003 

1.6634e-004 

3.0953e-006 

ode23s 

10-2 

10-4 

10-6 

36 

181 

1193 

4.5000e-003 

2.5500e-004 

1.0911e-005 

 

 

Table 2. Comparison results for Problem 2 

 

Problem Method TOL TSs MAXE 

2 

MVS-

BBDF 

10-2 

10-4 

10-6 

25 

41 

80 

1.1170e-004 

6.8523e-007 

1.0311e-008 

ode15s 

10-2 

10-4 

10-6 

32 

63 

107 

1.4200e-002 

2.6095e-004 

6.3216e-006 

ode23s 

10-2 

10-4 

10-6 

20 

41 

137 

6.4000e-003 

3.4021e-004 

1.6180e-005 
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Table 3. Comparison results for Problem 3  

Problem Method TOL TSs MAXE 

3 

MVS-

BBDF 

10-2 

10-4 

10-6 

30 

61 

152 

1.1291e-004 

1.0537e-007 

1.1345e-008 

ode15s 

10-2 

10-4 

10-6 

37 

89 

167 

1.7600e-002 

1.8659e-004 

3.9569e-006 

ode23s 

10-2 

10-4 

10-6 

22 

67 

287 

7.3100e-003 

3.6837e-004 

1.7039e-005 

 

 
         Figure 1. Efficiency curves MVS-BBDF and Matlab’s ODE solvers for 

              Problem 1 

 

 

 
  Figure 2. Efficiency curves MVS-BBDF and Matlab’s ODE solvers for 

        Problem 2 
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 Figure 3. Efficiency curves MVS-BBDF and Matlab’s ODE solvers for 

        Problem 3 

 

 
    Figure 4. Total steps curves for Problem 1 

 

 

 
  Figure 5. Total steps curves for Problem 2 
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  Figure 6. Total steps curves for Problem 3 

 

From the results obtained, Tables 1-3 and Fig. 1-6 show that MVS-BBDF method gave 

a better accuracy where the value of maximum error produced is the smallest when 

compared to ode15s and ode23s. In addition, the proposed method also produced less 

number of total steps for all of the problems considered. 

 

V. CONCLUSION 

From the analysis of the convergence and order of MVS-BBDF, it is proven that MVS-

BBDF method is of order four method and consistent since it satisfied all the conditions 

of consistency. In addition, we have also shown the efficiency of the method by 

comparing our method with Matlab’s ODE solver, ode15s and ode23s. By comparing 

them, we found that MVS-BBDF method showed better performances in terms of 

accuracy and the number of total steps. In conclusion, MVS-BBDF method is suitable 

for solving stiff ODE problems. 
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