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Abstract 

The elastic buckling problem of moderately thick plates, 

presented as a classical problem of the mathematical theory of 

elasticity is solved in this work using the Laplace transform 

method. The governing equation solved was a fourth order 

ordinary differential equation (ODE) and solutions were 

obtained for various end support conditions, namely fixed-

fixed ends, fixed-pinned ends, pinned-fixed ends and pinned-

pinned ends. Application of the Laplace transformation to the 

governing domain equation simplified the ODE to an 

algebraic equation in the Laplace transform space. Inversion 

yielded the general solution in the physical domain space in 

terms of the initial values of the buckled deflection and its 

derivatives. Boundary conditions for the considered end 

support conditions were then used on the general solution, 

reducing the problem to algebraic eigenvalue problem 

represented by a system of homogeneous equations. The 

condition for nontrivial solution was used to obtain the 

characteristic buckling equation for each considered boundary 

condition. The characteristic buckling equations were solved 

using Mathematica and other mathematical and computational 

software tools to obtain the first four eigenvalues. The least 

eigenvalue for each case considered was used to obtain the 

critical elastic buckling loads for rectangular and circular 

cross-sections; which were presented for each considered case 

in Tables. It was found that for t/l< 0.02 and d/l< 0.02 for 

various end support conditions considered, the critical elastic 

buckling load coefficient obtained approximated the 

corresponding solutions for the Bernoulli-Euler beam. For t/l> 

0.02 and d/l> 0.02, the critical elastic buckling load 

coefficients obtained for the various end support conditions 

were smaller than the corresponding values from the 

Bernoulli-Euler theory. The Bernoulli-Euler theory was thus 

found to overestimate the critical elastic buckling load 

capacities of moderately thick beams for the end support 

conditions considered; and this is due to the effect of shear 

deformation on the elastic buckling load capacities which 

were disregarded in the Bernoulli-Euler theory but considered 

in the present study. 

Keywords-algebraic eigenvalue problem, characteristic 

buckling equation, critical elastic buckling load coefficient, 

Laplace transform method, moderately thick beam. 

 

I. INTRODUCTION 

Elastic buckling problems of thick and moderately thick 

beams and beam columns are basically problems of the 

mathematical theory of elasticity. Their governing equations 

are derived using the fundamental equations of the theory of 

elasticity – namely: the constitutive laws, the kinematics 

relations, and the differential equations of equilibrium [1 – 

10]. 

Theories that have been presented for the buckling of beams 

include: (i) the classical Bernoulli-Euler beam theory, (ii) 

Timoshenko beam theory, (iii) Mindlin beam theory, (iv) 

shear deformation beam theories presented by Levinson [11], 

Krishna Murty [12], Heylinger and Reddy [13], Ghugal [14], 

Ghugal and Shimpi [15], Sayyad and Ghugal [16], Ghugal and 

Sharma [17], Soldatos [18], and (v) unified beam theory 

(UBT) presented by Sayyad [19] and Sayyad and Ghugal [20]. 

The Bernoulli-Euler beam theory (BEBT) was developed 

using the hypothesis that plane cross-sections initially 

orthogonal to the undeformed neutral axis remains plane and 

orthogonal to the neutral axis after deformation. The 

implication of the orthogonality hypothesis is that the effects 

of transverse shear deformation on the flexural, stability and 

dynamic behaviour of the beam are disregarded. Thus the 

BEBT is limited in scope of application to thin beams where 

the thickness, t, to span, l, ratios are less than 0.05 (1/20), (t/l< 

0.05) and where transverse shear deformation effects make 

insignificant contributions to the stability, flexural and 
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dynamic behaviours [21 – 23]. The BEBT thus does not 

produce realistic and good estimates of flexural 

displacements, frequencies and buckling load capacities of 

thick and moderately thick beams since shear deformation 

effects have remarkable contributions to their flexural, 

dynamic and buckling responses [24 – 27].  

Other theories were developed primarily to improve on the 

BEBT and address its limitations especially, to include and 

consider the effect of transverse shear deformations.  

The Timoshenko beam theory (TBT) a first order shear 

deformation theory (FSDT) for beams was developed using 

the relaxation or slight modification of the Bernoulli-Euler 

beam orthogonality hypothesis. In TBT, the hypothesis used is 

that plane cross-sections that are initially orthogonal to the 

undeformed neutral axis (middle axis) of the beam would 

remain plane but would not necessarily be orthogonal to the 

neutral axis after deformation. Timoshenko theory assumes 

that the transverse shear strain is constant through the beam 

thickness, thus leading to non vanishing of transverse shear 

stresses on the top and bottom surfaces of the beam, and 

violating the transverse shear stress free boundary conditions 

of some beam stability, dynamics and flexure problems. 

Shear modification factors have been used in the TBT and 

other first order shear deformation beam theories to express 

the transverse shear forces and thus appropriately represent 

the strain-energy of deformation [19]. Another feature of the 

TBT and other FSDT of beams is that they are expressed 

using two unknown displacement functions.  

The shortcomings of both the BEBT, TBT and other FSDT of 

beams inspired the research into the development of higher 

order shear deformation theories of moderately thick and thick 

beams. Levinson [11], Krishna Murty [12], Heylinger and 

Reddy [13] and others formulated parabolic shear deformation 

theories for moderately thick and thick beams for stability, 

vibration and flexural behaviours. Ghugal [14] formulated an 

extension of the parabolic shear deformation theory for thick 

and moderately thick beams to incorporate transverse, normal 

strains and transverse shear strain effects for the bending, 

vibration and stability analysis of isotropic beams. Ghugal and 

Shimpi [15] developed a trigonometric shear deformation 

theory incorporating transverse shear deformation effects and 

which could be useful for the flexural, vibration and stability 

analysis of moderately thick and thick beams. 

Sayyad and Ghugal [16] developed a trigonometric shear and 

normal deformation theory which included the effects of 

transverse shear and normal deformation for the analysis of 

moderately thick and thick isotropic and laminated beams. 

Karama et al. [28] derived an exponential shear deformation 

theory for the analysis of moderately thick and thick beams 

subjected to flexural, vibrating and stability conditions and for 

various boundary conditions. 

Soldatos [18] developed a hyperbolic shear deformation 

theory for moderately thick and thick beams under flexural, 

vibrating and stability cases and isotropic, homogenous beam 

materials for various boundary conditions. Sayyad and Ghugal 

[20] derived a unified beam theory (UBT) for the flexural, 

vibration and buckling analysis of moderately thick and thick 

beams. In the UBT, parabolic, hyperbolic, exponential and 

trigonometric functions are used in terms of the thickness 

coordinates to represent the effect of transverse shear 

deformation, thus assuring the applicability of the UBT to the 

moderately thick and thick beams. 

In this work, the elastic buckling problem of an isotropic 

homogeneous beam with a prismatic cross-section is derived 

from first principles from a simultaneous application of the 

differential equations of equilibrium, kinematics relations and 

the material constitutive laws, and shown to be a boundary 

value problem (BVP) of the mathematical theory of elasticity. 

The BVP is represented by a fourth order ordinary differential 

equation. The BVP is solved using the method of Laplace 

transformation to simplify the problem to an algebraic 

eigenvalue problem. 

 

II.THEORETICAL FORMULATION 

Moderately thick beam considered 

The beam as shown in Figure 1, is defined using three 

dimensional (3D) Cartesian coordinates: 

0 , ,
2 2 2 2

b b t tx l y z         

where x, y, z are the 3D Cartesian coordinates, l is the beam 

length, b is the width, and t is the beam thickness. The cross-

section lies on the yz plane while the x-axis is the longitudinal 

axis of the beam. The beam is assumed to be subject to 

various boundary conditions. 

 

Figure 1: Elastic buckling of moderately thick beam under 

compressive loads 

 

Fundamental assumptions 

The assumptions of the formulation include:  

(i) the inplane displacement is made up of a pure 

bending displacement component, and a component 

due to shear deformation. 

(ii) the transverse displacement component in the z 

coordinate direction depends only on the position in 

the longitudinal coordinate axis. 

(iii) stress-strain equations are one dimensional. 

(iv) transverse displacements are so small as compared to 

the beam thickness that transverse strains are 

assumed to be insignificant. 

(v) body forces are neglected. 
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(vi) transverse displacement field w(x, z) has two 

components namely: flexural or bending component 

wb(x) and shear compoment ws(x). 

(vii) the beam is made of homogeneous, linear elastic, 

isotropic material. 

 

Displacement field 

The x, y, and z Cartesian components of the displacement field 

are given by: 

( , ) ( ) ( )u x z u x z x    (1) 

( , ) 0v x z    (2) 

( , ) ( ) ( ) ( )b sw x z w x w x w x    (3) 

where ( )x  is the rotation of the beam’s cross-section at the 

neutral axis, u(x, z), v(x, z) and w(x, z) are the x, y, and z 

components of the displacement u(x) is the axial displacement 

corresponding to pure bending and ( )z x  is the 

displacement due to the shear deformation. 

The rotation ( )x  is 

( )
( ) bdw x
x

dx
    (4) 

 

Strain fields from the kinematic relations 

From the small displacement assumptions of elasticity theory, 

the strain fields are obtained using the kinematic relations as: 

2

2
b

xx

wu
z

x x


  

 
 (5) 

0yy

v

y


  


  (6) 

0zz

w

z


  


  (7) 

0xy

u v

y x

 
   

 
 (8) 

0yz

v w

z y

 
   

 
 (9) 

( )s
xz

w xu w

z x x

 
   

  
 (10) 

where εxx, εyy, εzz are normal strains, while γxy, γyz, γxz are shear 

strains. 

 

 

Stress fields 

The stress fields are obtained from the stress-strain relations 

for one dimensional problems as: 

2

2

( )( ) b
xx xx

d w xdu x
E E Ez

dx dx
      11) 

( )s
xz xz

dw x
G G

dx
     (12) 

0yy zz xy xz         (13) 

where G is the shear modulus, and E is the Young’s modulus 

of elasticity, ,xx yy   and zz  are normal stresses, while 

, ,xy xz yz    are shear stresses. 

 

Stress resultants 

The bending moment Mxx(x) is: 

/ 2 / 2

/ 2 / 2

( )

t b

xx xx

t b

M x z dy dz

 

    (14) 

For buckling problems, 

/2 /2 2 2
2

2 2
/2 /2

( ) ( )
( )

t b
b b

xx

t b

d w x d w x
M x Ez dy dz EI

dx dx
 

      (15) 

where 

/ 2 / 2
2

/ 2 / 2

t b

t b

I z dy dz

 

    (16) 

where I is the moment of inertia. 

Introduction of a shear modification factor ks leads to the 

expression of the shear force Qx as: 

/ 2 /2

/2 /2

( )
t b

s
x s xz s

t b

dw x
Q k dy dz k GA

dx
 

     (17) 

where A is the beam cross-sectional area. 

 

Differential equation of equilibrium 

When body forces are neglected, the equilibrium equation is: 

0xzxx

x z


 

 
 (18) 

By integration, 

2

0xzxx

R

z dy dz
x z

 
  

  
  (19) 
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0xx
x

dM
Q

dx
   (20) 

2

2

( ) ( )b s
s

d w x dw xd
EI k AG

dx dxdx

 
   

 

 (21) 

Hence, by integration, 

2 2

2 2

( ) ( )2(1 )
( ) b b

s
s s

d w x d w xEI I
w x

k AG k Adx dx

 
     (22) 

where μ is the Poisson’s ratio. 

From the differential equation of equilibrium in the z 

direction, 

0xdQ
q

dx
    (23) 

where q is the applied transverse load. 

 

Stability equation 

The stability equation is given by: 

( )
0xx

x x

dMdw x
N Q

dx dx
    (24) 

where Nx is the axial load. 

0xdQ

dx
   (25) 

if q = 0, there is no applied transverse load on the beam. 

Substitution and simplification gives: 

2 2 4

2 2 4

( ) ( ) ( )
( )b s b

x

d w x d w x d w x
N EI q x

dx dx dx

 
     

 

 (26) 

Substitution for ws(x) and simplification gives: for 

compressive load Px 

where Px = –Nx 

2 4 2

4 2

(1 ) ( ) ( )
( )

6

x b b
x

s

P t d w x d w x
EI P q x

k dx dx

  
    

 

 (27) 

for rectangular cross-sections, and 

2 4 2

4 2

(1 ) ( ) ( )
( )

8

x b b
x

s

P d d w x d w x
EI P q x

k dx dx

  
    

 

 (28) 

for circular cross-sections. When transverse loads q(x) are 

absent, q(x) = 0, and the governing equations become: 

2 4 2

4 2

(1 ) ( ) ( )
0

6

x b b
x

s

P t d w x d w x
EI P

k dx dx

  
    

 

 (29) 

2 4 2

4 2

(1 ) ( ) ( )
0

8

x b b
x

s

P d d w x d w x
EI P

k dx dx

  
    

 

 (30) 

For rectangular cross-sections, ks = 5/6 while for circular 

cross-sections,  

6(1 )

7 6
sk

 


 
  (31) 

( 0.25) 0.8824sk     (32) 

( 0.30) 0.8864sk     (33) 

Hence, for circular cross-sections, 0.90sk  (34) 

Then, the governing equations for elastic buckling of 

moderately thick beams are: 

2 4 2

4 2

(1 ) ( ) ( )
0

5

x b b
x

P t d w x d w x
EI P

dx dx

  
    

 

 (35) 

for rectangular cross-sections, and 

2 4 2

4 2

(1 ) ( ) ( )
0

7.2

x b b
x

P d d w x d w x
EI P

dx dx

  
    

 

 (36) 

for circular cross-sections. 

 

III. METHODOLOGY 

The governing equations for elastic buckling problems are 

presented generally as: 

4 2
2

4 2

( ) ( )
0b bd w x d w x

dx dx
    (37) 

where 2

2(1 )

5

x

x

P

P t
EI

 
 



 (38) 

for rectangular cross-sections, and 

2

2(1 )

7.2

x

x

P

P d
EI

 
 



 (39) 

for circular cross-sections. 

By application of the Laplace transformation, the governing 

equation is transformed to the Laplace integral. 

 

24
2

4 2
0

( )( )
0bsx b

d w xd w x
e dx

dx dx




 
   
 
 

  (40) 
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By the linearity property of the Laplace transform, it is 

obtained that: 

4 2
2

4 2
0 0

( ) ( )
0sx sxb bd w x d w x

e dx e dx
dx dx

 
      (41) 

Hence: 

4 2
2

4 2
0 0

( ) ( )
0sx sxb bd w x d w x

e dx e dx
dx dx

 
      (42) 

Simplifying, 

4 3 2( ) (0) (0) (0)s W s s w s w sw      

 2 2(0) ( ) (0) (0) 0w s W s sw w       (43) 

where  

0

( ) ( ) ( )sx
b bW s e w x dx w x


  ‹  (44) 

W(s) is the Laplace transform of wb(x) 

Simplifying Equation (4), we have: 

2 2 2 2 2 2

(0) (0) (0) (0)
( )

( ) ( )

w w w w
W s

s s s s s s

  
   

   
 (45) 

Hence, by inversion, 

1 1 1

2

1 1
( ) ( ) (0) (0)bw x W s w w

s s

     ‹ ‹ ‹  

        1 1

2 2 2 2 2

1 1
(0) (0)

( ) ( )
w w

s s s s

  
   

‹ ‹  (46) 

( ) (0) (0)b b bw x w xw    

 
2 2 3

1 cos sin
(0) (0)b

x x x
w w

     
     

      
 (47) 

IV. RESULTS 

Results for moderately thick beams with fixed-fixed ends 

The boundary conditions for moderately thick beams with 

fixed (clamped) ends at x = 0, and x = l, as shown in Fig 2, 

are: 

 (0) (0) 0b bw w   (48) 

 ( ) ( ) 0b bw l w l   (49) 

 

 

Figure 2: Moderately thick beam with fixed (clamped)  

ends at x = 0, and x = l under compressive load 

From Equation (48), the buckled deflection function is  

2 2 3

1 cos sin
( ) (0) (0)b b b

x x x
w x w w

     
      

     

 (50) 

Using the boundary conditions, Equation (49), the problem 

reduces to the algebraic eigenvalue problem given by the 

system of homogeneous equations: 

2 2

2

1 cos 1 sin (0) 0

sin 1 cos

(0) 0

b

b

l l w
l

l l

w

          
                                    

 (51) 

For nontrivial solutions, the characteristic bucking equation is 

given by: 

2 2

2

1 cos 1 sin

0
sin 1 cos

l l
l

l l

     
   

    


   
 

  

 (52) 

Expansion of the determinant and simplification, yields the 

characteristic buckling equation as the transcendental equation  

sin 2cos 2 0l l l        (53) 

The characteristic buckling equation has an infinite number of 

roots each corresponding to the buckling modes. The first four 

nontrivial roots of the transcendental buckling equation 

obtained using Newton-Raphson’s iteration, Mathematica and 

other mathematical and computational software tools are 

given by: 

1 6.28318530717959l    (54) 

2 8.98681891581813l    (55) 

3 12.5663706143592l    (56) 

4 15.4505036738754l    (57) 

The least eigenvalue β1 is used to determine the critical elastic 

buckling load Pxcr. For rectangular cross-sections: 

2
2
1 2

6.283185

(1 )

5

cr

cr

x

x

P

l P t
EI

 
 

           
  
 

 (58) 

Simplifying, 

 
12 2 2

39.478414

1 7.89568(1 )
crx cr

EI EI
P K

l lt
l

  

  

 (59) 

For μ = 0.25, 
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1

2 2

2

2

39.478414
( 0.25)

1 9.8696

( 0.25)

crx

cr

EI
P

t l

l

EI
K

l

  



  

 (60) 

 

For μ = 0.30, 

 

1

2 2

2

39.478414
( 0.30)

1 10.264384

( 0.30)

crx

cr

EI
P

lt
l

EI
K

l

  



  

 (61) 

where Kcr1 is the critical elastic buckling load coefficient for 

moderately thick beam with fixed-fixed ends and rectangular 

cross-section. 

For circular cross-sections,  

2
2
1 2

6.283185

(1 )

7.2

cr

cr

x

x

P

l P d
EI

 
    

  


 (62) 

Hence, 

 
22 2 2

39.478414

1 5.483111(1 )
crx cr

EI EI
P K

l ld
l

 

  

 (63) 

 

2

2 2

2

39.478414
( 0.25)

1 6.85389

( 0.25)

crx

cr

EI
P

ld
l

EI
K

l

  



  

 (64) 

 

2

2 2

2

39.478414
( 0.30)

1 7.12804

( 0.30)

crx

cr

EI
P

ld
l

EI
K

l

  



  

 (65) 

where Kcr2 is the critical elastic buckling load coefficient for 

moderately thick beam with fixed-fixed ends and circular 

cross-section. 

Equations (60) and (61) are used to determine Kcr1, the critical 

elastic buckling load coefficients for moderately thick beams 

of rectangular cross-section for various values of t/l and for 

values of Poisson’s ratio, μ = 0.25, and μ = 0.30, and the 

values presented as Table 1. 

Equations (64) and (65) are used to determine Kcr2, the critical 

elastic buckling load coefficients for moderately thick beams 

of circular cross-section for various values of d/l and for 

Poisson’s ratio μ = 0.25 and μ = 0.30 which are presented in 

Table 2. 

Table 1: Kcr1, the critical elastic buckling load coefficients for 

moderately thick beams with rectangular cross-section with 

fixed-fixed ends for μ = 0.25 and μ = 0.30 for various values 

of t/l 

t/l μ = 0.25 

1 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  
 

μ = 0.30 

1 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  
 

0.01 39.4395 39.4379 

0.02 39.3232 39.3170 

0.05 38.3278 38.4907 

0.10 35.9321 35.8034 

0.15 32.3046 32.0715 

0.20 28.3043 27.9875 

0.25 24.4169 24.0500 

0.30 20.9073 20.5211 

0.35 17.8714 17.4885 

0.40 15.3068 14.9409 

0.45 13.1656 12.8238 

0.50 11.3856 11.0705 

 

Table 2: Kcr2, the critical elastic buckling load coefficients for 

moderately thick beams (circular cross-section) with fixed-

fixed ends for μ = 0.25, and μ = 0.30 for various values of d/l 

d/l μ = 0.25 

2 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  

 

μ = 0.30 

2 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  
 

0.01 39.4514 39.4503 

0.02 39.3705 39.3662 

0.05 38.8134 38.7872 

0.10 36.9462 36.8516 

0.15 34.2038 34.0219 

0.20 30.9840 30.7196 

0.25 27.6388 27.3112 

0.30 24.4169 24.0499 

0.35 21.4603 21.0756 

0.40 18.8295 18.4437 

0.45 16.5326 16.1570 

0.50 14.5490 14.1906 

 

Results for moderately thick beams with fixed-pinned ends 

The boundary conditions for moderately thick beams of length 

l fixed at x = 0, and pinned at x = l, as shown in Figure 3 are: 

(0) (0) 0b bw w   (66) 
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( ) ( ) 0b bw l w l   (67) 

 

 

Figure 3: Elastic buckling of moderately thick beam with 

fixed end at x = 0, and pinned at x = l due to load Px 

 

The buckled deflection function is obtained by using the 

boundary conditions at x = 0, as: 

2 2 3

1 cos sin
( ) (0) (0)b b b

x x x
w x w w

     
      

     

 (68) 

Enforcement of the boundary conditions at x = l, Equation 

(67), leads to the homogeneous eigenvalue problem given by 

the system of homogeneous equations: 

2 2

1 cos 1 sin
(0) 0

sin
(0) 0cos

b

b

l l
wl

l
wl

      
       

                      

 (69) 

For nontrivial solutions, the characteristic buckling equation is 

obtained as: 

2 2

1 cos 1 sin

0
sin

cos

l l
l

l
l

     
   

     





 (70) 

Expansion and simplification yields the characteristic 

buckling equation as the transcendental equation: 

tan l l     (71) 

The methods for solution of the transcendental equation are: 

Newton-Raphson’s iteration, Regula falsi, simple iteration or 

use of Mathematica software or other symbolic algebra 

software. The transcendental equation has an infinite number 

of nontrivial roots (zeros) which are the eigenvalues of the 

characteristic buckling equation. The first four roots (zeros) or 

eigenvalues of the transcendental equation are: 

1 4.49341l    (72) 

2 7.72525184l    (73) 

3 10.90412166l    (74) 

4 14.0661939l    (75)  

The critical buckling load Pxcr for this boundary condition is 

obtained using the least eigenvalue. Thus, for rectangular 

cross-sections, 

2
2
1 2

P4.49341

(1 )

5

cr

cr

x

x
l P t

EI

 
 

          
  
 

 (76) 

Hence, 

32 2 2

2

20.19073

1 4.038146(1 )
crx cr

EI EI
P K

t l l

l

 

  

 (77) 

 

3

2 2

2

20.19073
( 0.25)

1 5.04768

( 0.25)

crx

cr

EI
P

lt
l

EI
K

l

  



  

 (78) 

 

3

2 2

2

20.19073
( 0.30)

1 5.24959

( 0.30)

crx

cr

EI
P

lt
l

EI
K

l

  



  

 (79) 

where Kcr3 is the critical elastic buckling load coefficient for 

moderately thick beam with fixed-pinned ends and rectangular 

cross-section. 

For circular cross-sections, 

2
2
1 2

4.49341

(1 )

7.2

cr

cr

x

x

P

l P d
EI

 
   

  


 (80) 

Hence, 

 
42 2 2

20.19073

1 2.80427(1 )
crx cr

EI EI
P K

l ld
l

 

  

 (81) 

 

4

2 2

2

20.19073
( 0.25)

1 3.50534

( 0.25)

crx

cr

EI
P

ld
l

EI
K

l

  



  

 (82) 

 

4

2 2

2

20.19073
( 0.30)

1 3.64555

( 0.30)

crx

cr

EI
P

ld
l

EI
K

l

  



  

 (83) 

where Kcr4 is the critical elastic buckling load coefficient for 

moderately thick beam with fixed-pinned ends and circular 

cross-section. 
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Kcr3, the critical elastic load buckling coefficients are 

calculated for this boundary condition for rectangular cross-

sections and presented in Table 3. Similarly, Kcr4, the critical 

elastic load buckling coefficients for fixed-pinned ends and 

circular cross section are presented in Table 4. 

 

Table 3: Kcr3, the critical elastic buckling load coefficients for 

moderately thick beams (rectangular cross-sections) (a) fixed 

at x = 0, and pinned at x = l for μ = 0.25, and μ = 0.30; (b) 

pinned at x = 0, and fixed at x = l for μ = 0.25, and μ = 0.30 

for various values of t/l 

t/l 

3 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  
 

3 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  
 

0.01 20.1805 20.1801 

0.02 20.1500 20.1484 

0.05 19.9391 19.9292 

0.10 19.2205 19.1837 

0.15 18.1315 18.0578 

0.20 16.7989 16.6868 

0.25 15.3486 15.2027 

0.30 13.8836 13.7122 

0.35 12.4762 12.2884 

0.40 11.1697 10.9736 

0.45 9.9848 9.7869 

0.50 8.9264 8.7315 

 

Table 4: Kcr4, the critical elastic buckling load coefficients for 

moderately thick beams (circular cross-sections) (a) fixed at x 

= 0, and pinned at x = l for μ = 0.25, and μ = 0.30; (b) pinned 

at x = 0, and fixed at x = l for μ = 0.25, and μ = 0.30 for 

various values of d/l 

d/l 

4 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  
 

4 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  
 

0.01 20.1837 20.1834 

0.02 20.1625 20.1613 

0.05 20.0153 20.0084 

0.10 19.5069 19.4806 

0.15 18.7147 18.6601 

0.20 17.7078 17.6212 

0.25 16.5622 16.4440 

0.30 15.3486 15.2027 

0.35 14.1253 13.9576 

0.40 12.9357 12.7524 

0.45 11.8086 11.6157 

0.50 10.7607 10.5634 

 

Results for moderately thick beams pinned at x = 0 and 

fixed at x = l 

The boundary conditions for moderately thick beams of length 

l pinned at x = 0, and fixed at x = l, as shown in figure 4 are: 

(0) (0) 0b bw w   (84) 

( ) ( ) 0b bw l w l   (85) 

 

 

 

Figure 4: Moderately thick beam under compressive load – 

case of pinned end at x = 0, and fixed end at x = l. 

 

The buckled deflection function for this case is: 

2 3

sin
( ) (0) (0)b b b

x x
w x w x w

 
    

  
 (86) 

Enforcement of boundary conditions at x = l yields the 

homogeneous equations: 

 

2 3

2 2

sin (0) 0

1 cos
1

(0) 0

b

b

l l w
l

l

w

       
      

                         

 (87) 

 

For nontrivial solutions, the characteristic buckling equation is 

obtained as: 

2 3

2 2

sin

0
1 cos

1

l l
l

l

 
 

  


 
 

  

 (88) 

 

Expansion and simplification yields Equation (71) which is 

the same solution as the moderately thick beam clamped at x = 

0, and pinned at x = l. The critical elastic buckling load 

expressions for this case is the same as the case for the beam 

fixed at x = 0 and pinned at x = l and is presented in Tables 3 

and 4 for the rectangular and circular cross-sections 

respectively. 
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Results for moderately thick beams with pinned ends at x 

= 0, and x = l 

The boundary conditions for moderately thick beams with 

ends at x = 0, x = l pinned as shown in Figure 5 are: 

(0) (0) 0b bw w   (89) 

( ) ( ) 0b bw l w l   (90) 

 

 

 

Figure 5: Moderately thick beam under compressive load 

with pinned ends x = 0, x = l 

 

The buckling deflection function wb(x) is: 

2 3

sin
( ) (0) (0)b b b

x x
w x w x w

 
    

  
 (91) 

 

Enforcement of the boundary conditions at x = l yields: 

2 3

(0) 0sin

sin
0

(0) 0

b

b

wl l
l

l

w

     
     

      
    
          

 (92) 

 

For nontrivial solutions, the characteristic buckling equation is 

given as: 

2 3

sin

0
sin

0

l l
l

l

 
 

   




 (93) 

 

Expansion of the determinant and simplification yields the 

characteristic buckling equation as: 

sin 0l    (94) 

 

The eigenvalues (zeros) are: 

nl n     (95) 

n = 1, 2, 3, 4, … 

 

The eigenvalues βn is used to obtain the buckling loads as 

follows: 

For rectangular cross-sections: 

2
2

2(1 )

5

x
n

x

Pn

l P t
EI

 
   

  


 (96) 

2

2 2 2

2

( )

( ) (1 )
1

5

x

n EI
P

n t l

l




  


 (97) 

The critical buckling load is obtained using the least 

eigenvalue as: 

5

2

2 2 2 2

2

( 1)
(1 )

1
5

crx x cr

EI EI
P P n K

t l l

l


   

  


 (98) 

5

2

2 2 2
2

2

( 0.25) ( 0.25)

1 0.25
crx cr

EI EI
P K

t l l

l


     

 

 (99) 

5

2

2 2
2

2

( 0.30)

1 0.26

( 0.30)

crx

cr

EI
P

lt

l

EI
K

l


  

 
    

  

 (100) 

Kcr5 is the critical elastic buckling load coefficient for 

moderately thick beam with pinned-pinned ends and 

rectangular cross-section. 

For circular cross-sections, 

2
2

2(1 )

7.2

x
n

x

Pn

l P d
EI

 
   

  


 (101) 

2

2 2 2

2

( )

( ) (1 )
1

7.2

x

n EI
P

n d l

l




  


 (102) 

6

2

2 22

2

( 1)
(1 )

1
7.2

crx x

cr

EI
P P n

ld

l

EI
K

l


  

    
   



 (103) 
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6

2

2 2

2

( 0.25)

1 1.713475

( 0.25)

crx

cr

EI
P

ld

l

EI
K

l


  

 
   

  

 (104) 

6

2

2 2

2

( 0.30)

1 1.782014

( 0.30)

crx

cr

EI
P

ld

l

EI
K

l


  

 
   

  

 (105) 

Kcr6 is the critical elastic buckling load coefficient for 

moderately thick beam with pinned-pinned ends and circular 

cross-section. 

 Equations (99) and (100) are used to calculate the 

critical elastic buckling load coefficients for moderately thick 

beams with pinned ends and rectangular cross-sections as 

presented in Table 5. Similarly, Equations (104) and (105) are 

used to calculate the critical elastic buckling loads for 

moderately thick beams with pinned ends and circular cross-

sections as presented in Table 6. 

 

Table 5: Kcr5, critical elastic buckling load coefficients for 

moderately thick beams with pinned ends and rectangular 

cross-sections for values of t/l and for μ = 0.25 and μ = 0.30. 

t/l 

5 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  

 

5 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  

 
Pakhare et al 

[25] 

2crx cr
EIP K

l
  

0.01 9.86717 9.8671 9.8671 

0.02 9.85987 9.8595 9.8595 

0.05 9.8091 9.8067 9.8067 

0.10 9.63195 9.6227 9.6227 

0.15 9.35050 9.3309 9.3309 

0.20 8.98302 8.9509 8.9509 

0.25 8.55094 8.5055 8.5055 

0.30 8.07616 8.0179 8.0179 

0.35 7.57885 7.5091 7.5091 

0.40 7.07608 6.9969 6.9969 

0.45 6.58128 6.49472  

0.50 6.10422 6.01246  

 

Table 6: Kcr6, critical elastic buckling load coefficients for 

moderately thick beams with pinned ends and circular cross-

sections for values of d/l and for μ = 0.25 and μ = 0.30. 

d/l 

6 2

( 0.25)

( 0.25)

crx

cr

P

EIK
l

 

  

 

6 2

( 0.30)

( 0.30)

crx

cr

P

EIK
l

 

  

 

0.01 0.999828π2 0.999822π2 

0.02 0.999315π2 0.999288π2 

0.05 0.99573π2 0.995565π2 

0.10 0.983154π2 0.982492π2 

0.15 0.962878π2 0.96145π2 

0.20 0.935857π2 0.933462π2 

0.25 0.903267π2 0.899786π2 

0.30 0.866391π2 0.861786π2 

0.35 0.826514π2 0.820818π2 

0.40 0.784833π2 0.778136π2 

0.45 0.74240π2 0.73483π2 

0.50 0.700099π2 0.69180π2 

 

V. DISCUSSION 

The elastic buckling problems of thick and moderately thick 

beams have been presented in this work as boundary value 

problems of the mathematical theory of elasticity. The 

formulation considered thick and moderately thick beams with 

cross-sectional plane on the yz plane, and longitudinal 

coordinate axis on the x-axis. The considered beam was 

assumed isotropic, homogeneous, linear elastic, and subject to 

small deformations. 

The displacement field components were considered as 

Equations (1) – (3), where the rotation of the cross-section at 

the vertical axis is given by Equation (4). Simultaneous 

considerations of the fundamental equations of elasticity were 

used to obtain the governing equations as Equation (35) for 

rectangular cross-sections and Equation (36) for circular 

cross-sections when transverse loads are absent. 

The method of Laplace transform was applied to solve the 

homogeneous fourth order ODE governing the elastic stability 

of moderately thick beams. Application of the Laplace 

transformation to the governing ODE give the Laplace 

integral equation, Equation (40). Use of the linearity property 

of the Laplace transformation, and simplification gave the 

solution in the Laplace transform space W(s) as Equation (45). 

Inversion of W(s) yielded the solution in the physical domain 

space as Equation (47). The solution in the physical domain 

space was obtained in terms of the initial values (parameters) 

of , ,b b bw w w   and bw  at x =  0, the origin. 

Several end support conditions were considered, namely: 

fixed-fixed ends, fixed-pinned ends, pinned-fixed ends and 

simply supported ends. For moderately thick beams with 

fixed-fixed ends, the buckled deflection function was found as 

Equation (50). The use of the boundary conditions Equation 

(49) simplified the BVP to a system of homogeneous 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1626-1638 

© International Research Publication House.  http://www.irphouse.com 

1636 

algebraic equations presented in matrix form – Equation (50). 

The characteristic buckling equation was obtained for 

nontrivial solutions as Equation (52), which upon expansion 

and simplification yielded Equation (53), a transcendental 

equation with infinite number of roots (eigenvalues). The first 

four eigenvalues obtained using Mathematica computational 

software tools are given as Equations (54 – 57). The least 

eigenvalue was used to obtain the critical elastic buckling load 

for rectangular cross-sections as Equation (59) or (60) for μ = 

0.25, and Equation (61) for μ = 0.30. The critical elastic 

buckling load for the case of circular cross-section was 

similarly obtained as Equations (63), (64) for μ = 0.25, and 

Equation (65) for μ = 0.30. The critical elastic buckling load 

coefficients for moderately thick beams with fixed ends for 

rectangular and circular cross-sections are presented in Tables 

1 and 2 respectively for various values of t/l, d/l and for μ = 

0.25, and μ = 0.30. For the considered case of fixed-pinned 

ends, the buckled deflection function was obtained as 

Equation (68). The use of boundary conditions at x = l yielded 

the eigenvalue problem – Equation (69). The conditions for 

nontrivial solutions of Equation (69) yielded the characteristic 

buckling equation as Equation (70), which upon expansion 

and simplification gave Equation (71), a transcendental 

equation with an infinite number of roots (eigenvalues). The 

solution of the transcendental characteristic equation using 

Mathematica computational software tool give the first four 

eigenvalues as Equations (72 – 75). The least eigenvalue was 

used to obtain the critical elastic buckling load for rectangular 

cross-sections as Equation (77), and Equation (78) for μ = 

0.25, Equation (79) for μ = 0.30, and for circular cross-

sections as Equation (81) and Equation (82) for μ = 0.25, and 

Equation (83) for μ = 0.30. The critical elastic buckling load 

coefficients for this case are presented in Tables 3 and 4 

respectively for rectangular cross-sections and circular cross-

sections. 

For moderately thick beams with pinned-fixed ends, the 

buckled deflection was found as Equation (86). Enforcement 

of boundary conditions at x = l gave the homogeneous 

equation in matrix form as Equation (87). The condition for 

nontrivial solutions was used to obtain the characteristic 

buckling equation for this case as Equation (88) which yielded 

upon expansion and simplification the same characteristic 

buckling equation for the case of fixed-pinned ends, and 

hence the same elastic buckling loads and the same critical 

elastic buckling load. 

For moderately thick beams with pinned-pinned ends, the 

buckling deflection function is obtained as Equation (91). The 

use of boundary conditions at x = l gave the homogeneous 

algebraic problem – Equation (92). The characteristic 

buckling equation for nontrivial solutions is obtained as 

Equation (93) which upon expansion and simplification yields 

Equation (94). The eigenvalues are obtained as Equation (95), 

and the buckling loads are found as Equations (97) for 

rectangular cross-section, and Equation (102) for circular 

cross-section. The least eigenvalue is used to obtain the 

critical buckling loads as Equation (98), and Equation (99) for 

μ = 0.25, and Equation (100) for μ = 0.30 for rectangular 

cross-sections and Equation (103), Equation (104) for μ = 

0.25, and Equation (105) for μ = 0.30 for circular cross-

sections. The critical elastic buckling load coefficients for 

moderately thick beams with pinned-pinned ends were 

presented in Tables 5 and 6 for rectangular cross-sections and 

circular cross-sections respectively. 

 

VI. CONCLUSION 

In conclusion, 

(i) the elastic buckling problem of moderately thick 

beams formulated using first order shear deformation 

theory is a boundary value problem (BVP) of the 

mathematical theory of elasticity. 

(ii) the BVP is represented in general as a fourth order 

inhomogeneous ordinary differential equation when 

distributed transverse loads act together with axial 

compressive loads, and a fourth order homogeneous 

ODE when transverse distributed loads are absent. 

(iii) the method of Laplace transformation simplified the 

BVP to an algebraic equation in the Laplace 

transform space, which was solved to obtain an 

initial value (parameter) presentation of the solution 

in the Laplace transform space. Inversion of the 

solution in the Laplace transform space yielded the 

general solution in the physical domain space in 

terms of the initial values at the origin. 

(iv) boundary conditions for the considered cases of end 

supports were used to present the problem as 

algebraic eigenvalue problems and find the 

characteristic stability equations for nontrivial 

solutions. 

(v) the characteristic stability equations were obtained as 

transcendental equations which were solved using 

computational software tools and other numerical 

algorithms for solving nonlinear and transcendental 

solutions to obtain the eigenvalues (zeros or roots). 

(vi) the least eigenvalue for each considered end support 

conditions were used to obtain the critical elastic 

buckling loads corresponding to the end support 

condition. 

(vii) the n eigenvalues for each considered end support 

conditions were used to obtain the n elastic buckling 

loads corresponding to the n eigenvalues. 

(viii) for t/l< 0.02, and d/l< 0.02, the critical buckling loads 

coefficients found for the various end support 

conditions are approximately equal to the critical 

elastic buckling load coefficients for the Bernoulli-

Euler beam with the corresponding end support 

conditions. 

(ix) for t/l> 0.05 and d/l> 0.05, for each considered end 

support conditions, the critical elastic buckling load 

coefficient is much smaller than the critical elastic 

buckling load coefficient obtained using the 

Bernoulli-Euler beam theory. 

(x) for t/l> 0.05, d/l> 0.05, the Bernoulli-Euler beam 
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theory is found to significantly overestimate the 

critical elastic buckling load capacity of beams for 

each considered end support condition. 

(xi) shear deformation effects should be accounted for to 

give better estimates of the critical elastic buckling 

load capacities of moderately thick beams for safe 

design. 
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