
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1757

Design of A Fast Multiplier with (m, 3)-Adders

Myungchul Yoon

Professor, Department of Electronics and Electrical Engineering,

Dankook University, Republic of Korea.

ORCID: 0000-0001-7952-4349

Abstract

The (7, 3)-adder based multiplier design is presented in this

paper. A (m, 3)-adder (4  m  7) accumulates m bits at a time

and produce 3 output: S, C1, and C2 such that (C2 C1 S)

represents the number of 1s in the m-bit. The (7, 3)-adder based

multiplier uses a (7, 3)-adder as the basic unit and other (m, 3)-

adders as auxiliary units. An algorithm to build a (7, 3)-adder

based tree, called Y-tree, is presented. The height of Y-tree is

about half that of the Wallace-tree so that a Y-tree multiplier

could be faster than a Wallace-tree multiplier depending on the

speed of (7, 3)-adder. By focusing on delay minimization, (m,

3)-adder circuits are designed and it is verified that the (7, 3)-

adder based multipliers can be faster than (3, 2)-adder based

multipliers.

Keywords: High-Speed multiplier design, Multiplier design,

Wallace-tree multiplier, (m, 3)-adder design.

I. INTRODUCTION

The multiplier is an essential element for microprocessors,

digital signal processors and graphic processors so that it is one

of the key hardware blocks in most digital signal processing

systems. Therefore, various studies have been conducted to

produce a high speed multiplier [1]-[6].

The most basic form of multiplication consists of forming the

product of two unsigned binary numbers. This can be

accomplished through the traditional technique taught in

primary school, simplified to base 2. The process to obtain the

final result is composed of additions of partial products. The

speed of a multiplier is determined by the method of

manipulating the partial products.

The array multiplier [1] adds partial products sequentially with

carry save addition (CSA) scheme. The Wallace multiplier [2]

uses parallelism in accumulating all bits in a digit. The Booth

encoded multiplier [4][5] employs an encoding algorithm

which can reduce the number of partial products.

For a 64-bit multiplier, 64-partial products (or 32 for Booth

multipliers) are produced, and these partial products are added

by the digit-wise addition for parallelism like Wallace

multipliers. The number of bits in a digit ranges from 1 to 64,

and most of digits have tens of bits to be added. Most

multipliers use a (3, 2)-adder as the basic unit. A (3, 2)-adder,

called full-adder in general, adds 3 bits at a time and produce a

sum (S) and a carry (C), so that 3 bits are removed and 2 bits

are newly included in a digit. Therefore, one parallel addition

using (3, 2)-adders reduces about 1/3 of the bits in a digit. If

there is an adder which can reduces more bits than a (3, 2)-

adder, it may afford to increase the speed of multipliers.

The (7, 3)-adder based multiplier design is proposed in this

paper. An (m, 3)-adder (4  m  7) adds m bits at a time and

produces 3 outputs, S (sum), C1 (carry1), and C2 (carry2), such

that the binary number made by (C2 C1 S) represents the

number of 1s in the m bits. The (7, 3)-adder based multiplier

uses a (7, 3)-adder as the basic unit and other (m, 3)-adders as

auxiliary units. A (7, 3)-adder removes 7 bits but produces 3

new bits so that parallel additions using (7, 3)-adders can

reduce 4/7 of bits in a stage. Therefore, the (7, 3)-adder can add

all bits in a digit with fewer stages than the (3, 2)-adder.

The disadvantage of (m, 3)-adders is the complexity of their

circuits. The (m, 3)-adder circuits are more complex than the (3,

2)-adder circuit so that they are slower, larger, and consumes

more power than the (3, 2)-adder. However, the (7, 3)-adder

based multiplier requires much fewer adders and stages than

the (3, 2)-adder based multiplier. Therefore, the former could

yeild better performance than the latter depending on the design

of (m, 3)-adder circuits.

A design of high-speed multiplier with (m, 3)-adders is

presented in this paper. The advantages of a (7, 3)-adder based

multiplier design are described in Section II. The algorithm for

building a tree with (m, 3)-adders is presented in Section III,

and the (m, 3)-adder circuits designed for high speed

applications are presented in Section IV. The speed of these

circuits are evaluated in Section V, and Section VI concludes

this paper.

II. (7, 3)-ADDER BASED MULTIPLIER DESIGN

Multiplication of two N-bit numbers P=YX can be viewed as

forming N partial products of N bits each, and then summing

the appropriately shifted partial products to produce an 2N-bit

result P. For example, the multiplication of two 6-bit binary

numbers is performed as in Fig. 1. The pi is obtained by adding

all bits in the column and the carries produced from pi-1 column.

For a 64-bit multiplier, hundreds of bits should be added to

obtain a pi.

Those bits are added by many layers (or stages) of adder. All

adders that belong to a layer can operate simultaneously, but

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1758

Fig. 1. Partial products

adders in different layers must operate in different time. Adders

in a layer require the results of adders in the lower layer so that

each layer should operate sequentially. A kind of carry

propagation adder (CPA) of which inputs are the outputs of the

last layer is necessary to obtain the final result P.

An N-bit array multiplier adds the bits in a digit serially by N

layers. Although a regular structure is its an advantage, many

layers increase the delay especially for a large N. Parallelism is

employed to reduce the number of layers. The Wallace-tree

multiplier adds all bits in a digit in parallel with multiple adders

as in Fig. 2. Fig. 2 shows the addition process to obtain p15 for

a 16-bit Wallace-tree multiplier. It needs only 6 layers and a

CPA while a 16-bit array multiplier requires 15 layers and a

CPA. The number of layers is often called as the height of the

tree. Since the layers operate sequentially, the height of tree is

an important factor affecting the delay of multipliers.

Most of multipliers use (3, 2)-adder as the basic adder and (2,

2)-adder as the auxiliary adder. The (3, 2)-adder which is called

full adder conventionally adds 3 bits of the same weight and

produce 2 outputs: S (sum) and C (carry). While S has the same

weight with the input, the weight of C has 2 times greater than

that of inputs. The (2, 2)-adder, usually called half-adder,

produce S and C as well, but it can add only two bits of the

same weight. For a 64-bit multiplier, 64 partial products are

produced so that maximum 64 bits in a digit should be added to

obtain the results. In the Wallace-tree multiplier, those bits are

added by many (3, 2)-adders in parallel. Each (3, 2)-adder takes

3 bits in a same digit and then produces S and C. S is left in the

same digit while C is passed to the next digit. As the result, 3

bits per adder are removed from a digit but two new bits (one

bit from the adder, and one bit from the lower digit) enter to the

digit. Therefore, about 1/3 of bits in a digit are reduced by a (3,

2)-adder layer. Due to this reduction ratio of the full-adder, the

height of 64-bit Wallace-tree multiplier becomes 10. Although

it is much smaller than the height of array multipliers, it is still

high. To increase the speed of a multiplier, it is necessary to

reduce the height of tree.

Two approaches are possible for lowering the height of a tree.

One is reducing the number of partial products like the Booth

encoded multiplier. Radix-4 Booth encoded multiplier can

reduce a half of partial products, but the height of tree decreases

only 1. The other is increasing the reduction ratio of a layer

which is effective in reducing the height of tree.

(7, 3)-adder based multiplier intended to make a fast multiplier

circuit by lowering the height of tree. An (m, 3)-adder (4  m 

7) adds m bits of the same weight (digit) and produces 3 outputs:

Fig. 2. Addition process of a 16-bit Wallace-tree multiplier

Fig. 3. Addition process of a 16-bit (7, 3)-adder based

multiplier

 S (sum), C1 (carry-1), and C2 (carry-2). S has the same weight

with the inputs while the weights of C1 and C2 are 2 and 4

times greater than that of inputs respectively. Each adder in a

(7, 3)-adder layer removes 7 bits in a digit but 3 new bits enter

the digit so that 4/7 of bits in a digit are removed by a layer.

Therefore, the reduction ratio of (7, 3)-adder is almost double

that of (3, 2) –adder.

The (7, 3)-adder based multiplier design uses a (7, 3)-adder as

the basic unit and other (m, 3)-adders, (3, 2)-adder and (2, 2)-

adder, as auxiliary units. Fig. 3 shows the addition process for

a 16-bit (7, 3)-adder based multiplier. Generally, the last layer

is composed of (3, 2)-adders because less than or equal to 3 bits

are left in each digit. The first layer of (2, 2)-adder is used to

trim the number of bits as 2k-1. A separate layer is necessary

for trimming up to 16-bit multipliers, but adders for the

trimming can be merged to the first (7, 3)-adder layer so that it

can be removed from 32-bit multiplier (see the next section).

Compared to Fig. 2, a 16-bit Wallace-tree multiplier has 6 while

the new design has 4 layers.

Assuming that the last (3, 2)-layer and the CPA of both

multipliers have the same delays, let us except them in

comparison. Then, the number of (7, 3)-adder layers is less than

a half of that of the Wallace-tree multiplier. In general,

if the number of partial products is 2k, the (7, 3)-adder based

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1759

// The adder-allocation algorithm for Y-tree multiplier

// This algorithm is valid for NN (N=2m) multiplier // beginning of adder- allocation for each layer

// with the constraint that the maximum number of bits for (i = bottom_layer ; ; i++) {

// to be added in a digit (Pmax) is Pmax < 2h+4 (h  m) Pmax= MAX(p[0], …, p[2n-1]) ;

 Clear_All (c[.]) ;

ADDER_ASSIGNEMENT (N, p[.]) if (Pmax == 2) { arrange a Carry Propagation Adder; Exit ;}

 p[j] ; // The number of bits in the j-th digit (0 j 2N-1) else if (Pmax == 3) {

 adder[i][j][k] ; // the number of k-input adders for (j=0; j < 2N ; j++) {

 // arranged to the j-th digit in the layer i if (p[j] + c[j] ==3) {

 c[j] ; // the number of carry-bits enterring adder [i][j][p[i]] = adder [i][j][p[i]] + 1 ;

 // to the j-th digit in the next layer c[j+1] = 1 ;

 p[j] = 1 ; }

Begin p[j]= p[j] + c[j] ; }

Clear_All (adder[.][.][.]) ; else if (Pmax < 8) {

Clear_All (c[.]) ; for (j=0; j < 2N ; j++) {

Load (p[.]) if (p[j] + c[j] > 3) {

bottom_layer = 0 ; adder [i][j][p[i]] = adder [i][j][p[i]] + 1 ;

Pmax= MAX(p[0], …, p[2n-1]) ; c[j+1] = c[j+1] +1 ;

 if(p[j] > 3) c[j+2] = c[j+2] +1 ;

// Trimming step - the adders in this layer can be operated p[j]= 1 ; }

// in parallel with the next layer if h >4 p[j]= p[j] + c[j] ; }

 else {

Find_Integer (h) // h satisfying Pmax < 2h + 4 and h m for (j=0 ; j < 2N ; j++) {

if (Pmax > 2h -1) L =  p[j] / 8  ; R = p[j] - 8  L :

 for (j=0; j < 2N ; j++) { // assign adders for the j-th digit adder [i][j][7] = L ;

 T = p[j] + c[j] - (2h -1) c[j+1] = c[j+1] + L ;

 if (T > 0) { c[j+2] = c[j+2] + L ;

 adder[0][j][T+1] = 1 ; p[j] = 2  L ;

 p[j] = p[j] - T + 1 ; if (R + (c[j] -2L) > 3) {

 c[j+1] = c[j+1] + 1 ; adder [i][j][R] = adder [i][j][R] + 1 ;

 if(T > 2) c[j+2] = c[j+2] + 1 ; c[j+1] = c[j+1] +1 ;

 } if(R > 3) c[j+2] = c[j+2] +1 ;

 p[j] = p[j] + c[j] ; p[j] = p[j] +1 ; }

 if (h < 5) bottom_layer = 1 ; p[j]= p[j] + c[j] ; }

 } }

// End of trimming End

Fig. 4. The pseudo-algorithms for building Y-tree

multiplier consists of k-2 of (7, 3)-layers and one (3, 2)-layer

while the Wallace-tree multiplier has 2(k-1) of (3,2)-layers.

Therefore, the height of (7, 3)-adder based multiplier is half

that of the Wallace-tree multiplier.

III. An ADDER ARRANGEMENT ALGORITHM FOR

THE (7, 3)-ADDER BASED MULTIPLIER DESIGN

For the (7, 3)-adder based multiplier design, 5 other adders, (2,

2), (3, 2), (4, 3) (5, 3), and (6, 3) adder can be used as auxiliary

units. Since the number of bits to be added in a digit is different

digit by digit, the type and the number of adders required to add

these bits must be different digit by digit. Therefore, an

algorithm is necessary that decides the efficient number and the

type of adders for a given number of bits. A pseudo-algorithm

for adder-allocation is suggested as in Fig. 4. Based on the

number of bits in a digit, the algorithm determines the type and

the number of adders for each layer of the tree.

The algorithm presented in Fig. 4 is valid only for design of

NN multiplier with N = 2m bits. For the multiplication of two

N -bit binary numbers, N partial products are produced as in Fig.

1. The number of bits to be added in a digit varies from 1 to N

along the position of a digit. Let pi represent the number of bits

to be added in i-th digit. The maximum value of pi (pimax) is N

for usual multiplier design. Many multipliers employ Booth

encoding algorithm to reduce the number of partial products.

For radix-2r Booth-encoded multipliers, the number of partial

products can be reduced to N/r  1.

For any design, the adder allocation algorithm in Fig. 4 can be

applied when the number of partial products is less than 2k + 4.

The first step of the algorithm is trimming pimax to 2k – 1 with

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1760

Fig. 5. Dot-diagram of a 16-bit Y-tree multiplier

several adders when the number of partial products is greater

than or equal to 2k. If pimax becomes 2k –1, it is decreased to 2k-

1–1 by 2k-3 of (7, 3)-adders. In this way, pimax can be reduced

down to 3 by using k-2 layers of (7, 3)-adder. If pimax reaches

3, no more (m, 3)-adders are needed, so that it is terminated by

a (3,2)-adder layer followed by a kind of CPA.

If k > 4, the trimming steps can be performed simultaneously

with the first (7, 3)-adder layer, so that it does not need count

the trimming step as a separate layer. However, it is impossible

to merge trimming step into another layer if k  4 so that it

should be counted as a separate layer as in Fig. 3.

The tree generation by the algorithm is called Y-tree to

distinguish it from the Wallace-tree which is based on (3, 2)-

adder. Fig. 5 is the dot diagram for a 16-bit unsigned integer

Y-tree multiplier which shows how the number of bits changes

by operation of the layers.

IV. (m, 3)-ADDER CIRCUIT DESIGN

The height of Y-tree multiplier is less than half that of Wallace-

tree multiplier. However, the delay per layer is longer since the

Table 1. Comparison of the Wallace-tree and the Y-tree

for unsigned number multiplier.

 16-bit 32-bit

 W-Tree Y-Tree W-Tree Y-Tree

of

adders

(2, 2) 34 7 51 15

(3 ,2) 188 30 909 46

(4, 3) - 6 - 13

(5 ,3) - 6 - 29

(6, 3) - 6 - 40

(7, 3) - 33 - 164

CPA 1 1 1 1

of

layers

(2,2) 1 0

(7, 3) - 2 3

(3 ,2) 6 1 8 1

CPA 1 1 1 1

delay of a (7, 3)-adder is longer than a full-adder. Generally,

delay, size and power of an adder increase rapidly with the

number of inputs. Therefore, the design of fast and simple (m,

3)-adder circuits is the most important requirement for Y-tree

multipliers.

Some comparisons between the Wallace-tree multiplier and the

Y-tree multiplier for unsigned numbers are presented in Table

1. Inducing from the Table 1 to a 2k bit multiplier, the height

of Wallace-tree multiplier is 2(k-1) except a CPA, and that of

Y-tree is k-1 if k > 4. Among the k-1 layers of Y-tree multiplier,

one layer is always (3,2)-adder layer. If t3, t7, and tcpa is the

delay of (3, 2)-adder, (7, 3)-adder, and CPA respectively, the

delay of the Wallace tree can be roughly estimated by

3 ,2(1)W cpa WT k t t   (1)

and the delay of the Y-tree multiplier is

7 3 ,(2)Y cpa YT k t t t    (2)

By assuming that the delay of CPAs is the same (tcpa,W = tcpa.Y),

the Y-tree multiplier has the speed benefit against Wallace–tree

multiplier when

 7 3

1
(2)

2
t t

k
 


 (3)

Therefore, Eq. 3 could be the speed limit of (m, 3)-adder3

circuit design.

Other important features for circuit design are power and size

of the circuits. As in Table 1, the number of (7, 3)-adders to

build a Y-tree multiplier is about 1/5~1/4 of the number of (3,

2)-adders required to build a Wallace-tree multiplier. The speed

and area overheads of (4, 3) and (5, 3)-adder are relatively small

compared to (6, 3) and (7, 3)-adder. Therefore, if we count the

number of (6, 3) and (7, 3)-adders only, the following ratio is

obtained

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1761

Fig. 6. A circuit of t (3, 2)-adder (full-adder)

Fig. 7. The (4, 3)-adder circuit design

Fig. 8. The (5, 3)-adder circuit design

1

Fig. 9. The (6, 3)-adder circuit design

3, 3,

7, 6,

4.0 ~ 4.2
W Y

Y Y

N N

N N






From this ratio, we can roughly obtain the power and size limits

for (7, 3)-adder circuit design.

7 34P P (4)

7 3Area 4Area (5)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1762

Fig. 10. The (7, 3)-adder circuit design

The Eq. 3, 4, and 5 are the conditions that the Y-tree multiplier

can be a more efficient design than the Wallace-tree multiplier.

Various types of (m, 3)-adder circuit have been devised and

their speeds, powers and sizes checked, but it is found that the

design of a (7, 3)-adder meeting the Eq. 4 and 5 is a very

challenging problem so far. It is easy to design (4, 3) and

(5, 3)-adder which satisfy Eq. 3, 4, and 5, but it could not find

Table 2. The worst case delay of (m, 3)-adders

 Ref. (m, 3)-adder

 (3, 2) (4, 3) (5, 3) (6, 3) (7, 3)

Delay, tm (ps) 280 315 381 422 528

tm/tref 1.00 1.13 1.36 1.51 1.89

a (7, 3)-adder satisfying Eq, 4 and 5 so far. However, it is

possible to design a (7, 3)-adder which satisfies Eq. 3. Until

now, therefore, the Y-tree multiplier is a multiplier suitable for

speed oriented applications which can take power and area

overheads.

The circuit of (m, 3)-adder is depicted in Fig. 7~Fig. 10. Fig. 6

is the circuit diagram of the full-adder [7] used as the reference

(3, 2)-adder.

The (4, 3)-adder and (5, 3)-adder circuits can be designed easily

to satisfy Eq, 3, 4, and 5, but design of an efficient (6, 3)-adder

and a (7, 3)-adder is very difficult. Since the complexity of an

adder circuit is exponentially increase with the number of

inputs, the design of (m, 3)-adder is focused on the (7, 3)-adder

circuit design.

V. SPEED EVALUATION

The speed of newly designed adder is estimated immediately to

check whether it satisfies Eq. 3. Delay simulations are

performed by HSPICE with IBM’s “1.2V-0.13m 8RF-LM”

model parameter.

The worst case delay of newly designed (m, 3)-adder circuits is

listed in Table 2. The delay of an adder is measured by

cascading ten identical adders (fanout=1). The delays are

measured for various combination of input changes and the

largest delay is selected.

Generally in the circuits in Fig. 7~10, the worst case delay of

S-circuit is smaller than that of C1 and C2 circuits for those

designs. Because C2 is used as one of inputs for C1-circuit, the

C1-circuit is slower than the C2-circuit so that the worst case

delay of the (m, 3)-adders occurs from the C1-circuits.

The design of the (4, 3)-adder and the (5, 3)-adder is relatively

easy because their speed overhead is small. As in Table 2, the

delays of a (4, 3)-adder and a (5, 3)-adder are about 13% and

36% longer than that of the full-adder. The (7, 3)-adder is

designed by modifying the CVSL logic. For a conventional

CVSL-type design, there is a big mismatch between the rising

delay and the falling delay of the circuit. By the modification

like in Fig. 10, the mismatch can be reduced. Its delay is about

1.89 times longer than that of the full-adder which satisfies Eq.

3.

It shows that the design of a (7, 3)-adder which satisfies the Eq.

3 is possible so that the (7, 3)-adder based multiplier can

operate faster than the full-adder based multiplier.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1757-1763

© International Research Publication House. http://www.irphouse.com

1763

V. CONCLUSION

A new method for multiplier design is suggested in this paper.

Unlike previously developed multipliers which use a full-adder

as the basic building unit, the newly suggested multiplier uses

a (7, 3)-adder as the basic unit, with other (m, 3)-adders (m =4,

5, 6) as auxiliary units.

Similarly to the Wallace-tree of full-adders, a tree of (m, 3)-

adders, called Y-tree can be used to make a multiplier. An

algorithm making the Y-tree is presented. The (7, 3)-adder

based multiplier design requires much fewer number of adders

and lower height of tree. The height of Y-tree is about half that

of the Wallace-tree so that a Y-tree multiplier can be faster than

its Wallace-tree counterpart if the delay of (7, 3)-adder is less

than 2 times of the delay of the full-adder. A set of (m, 3)-adder

circuits are designed and verified by simulations such that their

speeds satisfy the condition.

Unfortunately, the newly designed (7, 3)-adder circuit is much

bulkier than the full-adder so that the Y-tree multiplier has

disadvantages in size and power. So far, the (7, 3)-adder based

multiplier is recommended only for speed-oriented applications.

However, the limitation could be removed by developing an

efficient (7, 3)-adder circuit. Out next research goal is to

develop the design of a smaller and faster (7, 3)-adder circuit.

REFERENCES

[1] M. C. Park, B. W. Lee, G. M. Kim, and D. H. Kim, 1993,

“Compact and Fast Multiplier Using Dual Array Tree

Structure”, IEEE Int. Symp. on Circuit and Systems,

Chigago, vol. 3, pp. 1817-1820.

[2] C. S. Wallace, 1964, “A Suggestion for a Fast

Multiplier”, IEEE Trans. Electron. Compt., vol. 13, no.

1, pp. 14-17.

[3] L. Dadda, 1965. Some Schemes for Parallel Multipliers,

Alta Frequenza.

[4] A. D. Booth, 1951, “A Signed Binary Multiplication

Technique,” Jour. of Mech. Appl. Math., vol. 4, pp. 236-

240.

[5] W. C. Yeh and C. W. Jen, 2000, “High-Speed Booth

Encoded Parallel Multiplier Design”,IEEE Trans. on

Compt., vol. 49, no. 7, pp. 692-701.

[6] P. Mehta, D. Gawali, 2009, “Conventional versus Vedic

mathematical method for Hardware implementation of a

multiplier”, IEEE Int. Conf. on Advances in Computing,

Control, and Telecommun. Technologies, pp. 640-642.

[7] Neil H.E. Weste, and David M. Harris, 2010, Kamran,

Principles of CMOS VLSI Design: A systems

perspective, Pearson, Fourth Edition.

