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Abstract  

The (7, 3)-adder based multiplier design is presented in this 

paper. A (m, 3)-adder (4  m  7) accumulates m bits at a time 

and produce 3 output: S, C1, and C2 such that (C2 C1 S) 

represents the number of 1s in the m-bit.  The (7, 3)-adder based 

multiplier uses a (7, 3)-adder as the basic unit and other (m, 3)-

adders as auxiliary units. An algorithm to build a (7, 3)-adder 

based tree, called Y-tree, is presented. The height of Y-tree is 

about half that of the Wallace-tree so that a Y-tree multiplier 

could be faster than a Wallace-tree multiplier depending on the 

speed of (7, 3)-adder. By focusing on delay minimization, (m, 

3)-adder circuits are designed and it is verified that the (7, 3)-

adder based multipliers can be faster than (3, 2)-adder based 

multipliers.  

Keywords: High-Speed multiplier design, Multiplier design, 

Wallace-tree multiplier, (m, 3)-adder design.  

 

I. INTRODUCTION  

The multiplier is an essential element for microprocessors, 

digital signal processors and graphic processors so that it is one 

of the key hardware blocks in most digital signal processing 

systems.  Therefore, various studies have been conducted to 

produce a high speed multiplier [1]-[6].  

The most basic form of multiplication consists of forming the 

product of two unsigned binary numbers. This can be 

accomplished through the traditional technique taught in 

primary school, simplified to base 2. The process to obtain the 

final result is composed of additions of partial products. The 

speed of a multiplier is determined by the method of 

manipulating the partial products. 

The array multiplier [1] adds partial products sequentially with 

carry save addition (CSA) scheme. The Wallace multiplier [2] 

uses parallelism in accumulating all bits in a digit. The Booth 

encoded multiplier [4][5] employs an encoding algorithm 

which can reduce the number of partial products.   

For a 64-bit multiplier, 64-partial products (or 32 for Booth 

multipliers) are produced, and these partial products are added 

by the digit-wise addition for parallelism like Wallace 

multipliers. The number of bits in a digit ranges from 1 to 64, 

and most of digits have tens of bits to be added. Most 

multipliers use a (3, 2)-adder as the basic unit. A (3, 2)-adder, 

called full-adder in general, adds 3 bits at a time and produce a 

sum (S) and a carry (C), so that 3 bits are removed and 2 bits 

are newly included in a digit. Therefore, one parallel addition 

using (3, 2)-adders reduces about 1/3 of the bits in a digit. If 

there is an adder which can reduces more bits than a (3, 2)-

adder, it may afford to increase the speed of multipliers.  

The (7, 3)-adder based multiplier design is proposed in this 

paper. An (m, 3)-adder (4  m  7) adds m bits at a time and 

produces 3 outputs, S (sum), C1 (carry1), and C2 (carry2), such 

that the binary number made by (C2 C1 S) represents the 

number of 1s in the m bits. The (7, 3)-adder based multiplier 

uses a (7, 3)-adder as the basic unit and other (m, 3)-adders as 

auxiliary units. A (7, 3)-adder removes 7 bits but produces 3 

new bits so that parallel additions using (7, 3)-adders can 

reduce 4/7 of bits in a stage. Therefore, the (7, 3)-adder can add 

all bits in a digit with fewer stages than the (3, 2)-adder.   

The disadvantage of (m, 3)-adders is the complexity of their 

circuits. The (m, 3)-adder circuits are more complex than the (3, 

2)-adder circuit so that they are slower, larger, and consumes 

more power than the (3, 2)-adder. However, the (7, 3)-adder 

based multiplier requires much fewer adders and stages than 

the (3, 2)-adder based multiplier. Therefore, the former could 

yeild better performance than the latter depending on the design 

of (m, 3)-adder circuits. 

A design of high-speed multiplier with (m, 3)-adders is 

presented in this paper. The advantages of a (7, 3)-adder based 

multiplier design are described in Section II. The algorithm for 

building a tree with (m, 3)-adders is presented in Section III, 

and the (m, 3)-adder circuits designed for high speed 

applications are presented in Section IV. The speed of these 

circuits are evaluated in Section V, and Section VI concludes 

this paper. 

 

II. (7, 3)-ADDER BASED MULTIPLIER DESIGN  

Multiplication of two N-bit numbers P=YX can be viewed as 

forming N partial  products of N bits each, and then summing 

the appropriately shifted  partial products to produce an 2N-bit 

result P.  For example, the multiplication of two 6-bit binary 

numbers is performed as in Fig. 1. The pi is obtained by adding 

all bits in the column and the carries produced from pi-1 column. 

For a 64-bit multiplier, hundreds of bits should be added to 

obtain a pi.  

Those bits are added by many layers (or stages) of adder.  All 

adders  that belong to a layer  can operate  simultaneously,  but  
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Fig. 1. Partial products 

 

adders in different layers must operate in different time. Adders 

in a layer require the results of adders in the lower layer so that 

each layer should operate sequentially. A kind of carry 

propagation adder (CPA) of which inputs are the outputs of the 

last layer is necessary to obtain the final result P.  

An N-bit array multiplier adds the bits in a digit serially by N 

layers. Although a regular structure is its an advantage, many 

layers increase the delay especially for a large N. Parallelism is 

employed to reduce the number of layers. The Wallace-tree 

multiplier adds all bits in a digit in parallel with multiple adders 

as in Fig. 2. Fig. 2 shows the addition process to obtain p15 for 

a 16-bit Wallace-tree multiplier. It needs only 6 layers and a 

CPA while a 16-bit array multiplier requires 15 layers and a 

CPA. The number of layers is often called as the height of the 

tree. Since the layers operate sequentially, the height of tree is 

an important factor affecting the delay of multipliers. 

Most of multipliers use (3, 2)-adder as the basic adder and (2, 

2)-adder as the auxiliary adder. The (3, 2)-adder which is called 

full adder conventionally adds 3 bits of the same weight and 

produce 2 outputs: S (sum) and C (carry).  While S has the same 

weight with the input, the weight of C has 2 times greater than 

that of inputs. The (2, 2)-adder, usually called half-adder, 

produce S and C as well, but it can add only two bits of the 

same weight. For a 64-bit multiplier, 64 partial products are 

produced so that maximum 64 bits in a digit should be added to 

obtain the results. In the Wallace-tree multiplier, those bits are 

added by many (3, 2)-adders in parallel. Each (3, 2)-adder takes 

3 bits in a same digit and then produces S and C. S is left in the 

same digit  while C is passed to the next digit.  As the result, 3 

bits per adder are removed from a digit but two new bits (one 

bit from the adder, and one bit from the lower digit) enter to the 

digit. Therefore, about 1/3 of bits in a digit are reduced by a (3, 

2)-adder layer.  Due to this reduction ratio of  the full-adder, the 

height of 64-bit Wallace-tree multiplier becomes 10. Although 

it is much smaller than the height of array multipliers, it is still 

high. To increase the speed of a multiplier, it is necessary to 

reduce the height of tree.  

Two approaches are possible for lowering the height of a tree.  

One is reducing the number of partial products like the Booth 

encoded multiplier. Radix-4 Booth encoded multiplier can 

reduce a half of partial products, but the height of tree decreases 

only 1.  The other is increasing the reduction ratio of a layer 

which is effective in reducing the height of tree. 

(7, 3)-adder based multiplier intended to make a fast multiplier 

circuit by lowering the height of tree. An (m, 3)-adder (4  m  

7) adds m bits of the same weight (digit) and produces 3 outputs:  

 

Fig. 2. Addition process of a 16-bit Wallace-tree multiplier 

 

 

Fig. 3. Addition process of a 16-bit (7, 3)-adder based  

multiplier 

 

 S (sum), C1 (carry-1), and C2 (carry-2).  S has the same weight 

with the inputs while the weights of C1 and C2 are 2 and 4 

times greater than that of inputs respectively. Each adder in a 

(7, 3)-adder layer removes 7 bits in a digit but 3 new bits enter 

the digit so that 4/7 of bits in a digit are removed by a layer. 

Therefore, the reduction ratio of (7, 3)-adder is almost double 

that of (3, 2) –adder.  

The (7, 3)-adder based multiplier design uses a (7, 3)-adder as 

the basic unit and other (m, 3)-adders, (3, 2)-adder and (2, 2)-

adder, as auxiliary units. Fig. 3 shows the addition process for 

a 16-bit (7, 3)-adder based multiplier. Generally, the last layer 

is composed of (3, 2)-adders because less than or equal to 3 bits 

are left in each digit. The first layer of (2, 2)-adder is used to 

trim the number of bits as 2k-1. A separate layer is necessary 

for trimming up to 16-bit multipliers, but adders for the 

trimming can be merged to the first (7, 3)-adder layer so that it 

can be removed from 32-bit multiplier (see the next section).  

Compared to Fig. 2, a 16-bit Wallace-tree multiplier has 6 while 

the new design has 4 layers. 

Assuming that the last (3, 2)-layer and the CPA of both 

multipliers have the same delays, let us except them in 

comparison. Then, the number of (7, 3)-adder layers is less than 

a half of that of the Wallace-tree multiplier. In general,                 

if the number of partial products is 2k,   the (7, 3)-adder based
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// The adder-allocation algorithm for Y-tree multiplier    

//  This algorithm is valid for NN (N=2m) multiplier  // beginning of adder- allocation for each layer 

//  with the constraint that the maximum number of bits  for (i = bottom_layer ;   ; i++)  {    

//  to be added in a digit (Pmax) is Pmax < 2h+4  (h  m)     Pmax= MAX(p[0], …, p[2n-1]) ; 

      Clear_All ( c[.] )  ; 

ADDER_ASSIGNEMENT (N, p[.] )        if (Pmax == 2 ) { arrange a Carry Propagation Adder; Exit ;} 

   p[j] ;                 // The number of bits in the j-th digit   (0 j 2N-1)       else if (Pmax == 3 )   { 

   adder[i][j][k] ;  //  the number of k-input adders           for (j=0; j < 2N   ; j++)  {     

                            //  arranged to the j-th digit in the layer i              if (p[j] + c[j] ==3)  { 

   c[j] ;                  //  the number of carry-bits enterring                     adder [i][j][p[i]] = adder [i][j][p[i]]  + 1 ; 

                             //  to the  j-th digit  in the next layer                    c[j+1] = 1 ; 

                     p[j] = 1   ;  } 

Begin              p[j]= p[j] + c[j]  ;   } 

Clear_All ( adder[.][.][.] )  ;       else if (Pmax < 8)  { 

Clear_All ( c[.] )  ;          for (j=0; j < 2N   ; j++)   {  

Load (p[.] )              if (p[j] + c[j]  > 3)  { 

bottom_layer = 0 ;                    adder [i][j][p[i]] = adder [i][j][p[i]]  + 1 ; 

Pmax= MAX(p[0], …, p[2n-1]) ;                    c[j+1] = c[j+1] +1 ; 

                     if( p[j]  > 3)  c[j+2] = c[j+2] +1 ; 

//  Trimming step - the adders in this layer can be operated                     p[j]= 1  ;   } 

//  in parallel with the next layer  if  h >4                p[j]= p[j] + c[j]  ;  } 

       else  { 

Find_Integer (h)   //  h satisfying   Pmax < 2h + 4  and  h m          for (j=0 ;  j < 2N   ; j++)   {  

if ( Pmax > 2h -1 )             L =  p[j]  / 8   ;  R = p[j] - 8  L :  

      for (j=0; j < 2N   ; j++)  {    // assign adders  for the j-th  digit              adder [i][j][7] = L   ; 

            T =  p[j] + c[j] - ( 2h -1)             c[j+1] = c[j+1] + L ; 

           if (T > 0 )  {             c[j+2] = c[j+2] + L ; 

                   adder[0][j][ T+1 ] = 1 ;             p[j] = 2  L  ; 

                   p[j] = p[j] - T + 1 ;             if (R + (c[j] -2L)  > 3)  { 

                   c[j+1] = c[j+1] + 1 ;                    adder [i][j][R] = adder [i][j][R]  + 1 ; 

                   if( T > 2 )    c[j+2] = c[j+2] + 1 ;                    c[j+1] = c[j+1] +1 ; 

                   }                    if( R > 3)  c[j+2] = c[j+2] +1 ; 

            p[j] = p[j] + c[j]  ;                    p[j] = p[j] +1  ;  } 

            if (h < 5 )  bottom_layer = 1 ;            p[j]= p[j] + c[j]  ;   } 

           }         } 

//  End of trimming End 

Fig. 4.  The pseudo-algorithms for building Y-tree 

 

multiplier consists of k-2 of (7, 3)-layers and one (3, 2)-layer 

while the Wallace-tree multiplier has 2(k-1) of  (3,2)-layers. 

Therefore, the height of (7, 3)-adder based multiplier is half  

that of the Wallace-tree multiplier. 

 

III. An ADDER ARRANGEMENT ALGORITHM FOR 

THE (7, 3)-ADDER BASED MULTIPLIER DESIGN  

For the (7, 3)-adder based multiplier design, 5 other adders, (2, 

2), (3, 2), (4, 3) (5, 3), and (6, 3) adder can be used as auxiliary 

units. Since the number of bits to be added in a digit is different 

digit by digit, the type and the number of adders required to add 

these bits must be different digit by digit. Therefore, an 

algorithm is necessary that decides the efficient number and the 

type of adders for a given number of bits. A pseudo-algorithm 

for adder-allocation is suggested as in Fig. 4.  Based on the 

number of bits in a digit, the algorithm determines the type and 

the number of adders for each layer of the tree.  

The algorithm presented in Fig. 4 is valid only for design of  

NN multiplier with N = 2m bits.  For the multiplication of two 

N -bit binary numbers, N partial products are produced as in Fig. 

1. The number of bits to be added in a digit varies from 1 to N 

along the position of a digit. Let pi represent the number of bits 

to be added in i-th digit. The maximum value of pi (pimax) is N 

for usual multiplier design. Many multipliers employ Booth 

encoding algorithm to reduce the number of partial products. 

For radix-2r Booth-encoded multipliers, the number of partial 

products can be reduced to N/r  1.  

For any design, the adder allocation algorithm in Fig. 4 can be 

applied when the number of partial products is less than 2k + 4.  

The first step of the algorithm is trimming pimax to  2k – 1 with  
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Fig. 5. Dot-diagram of a 16-bit Y-tree multiplier 

 

several adders when the number of partial products is greater 

than or equal to 2k. If  pimax  becomes 2k –1, it is decreased to 2k-

1–1 by 2k-3  of  (7, 3)-adders.  In this way, pimax can be reduced  

down to 3 by using k-2 layers of (7, 3)-adder.  If pimax reaches 

3, no more (m, 3)-adders are needed, so that it is terminated by 

a (3,2)-adder layer followed by a kind of CPA.  

If k > 4,  the trimming steps can be performed simultaneously 

with the first (7, 3)-adder layer, so that it does not need count 

the trimming step as a separate layer. However, it is impossible 

to merge trimming step into another layer if k  4 so that it 

should be counted as a separate layer as in Fig. 3.  

The tree generation by the algorithm is called Y-tree to 

distinguish it from the Wallace-tree which is based on (3, 2)-

adder.  Fig. 5 is the dot diagram for a 16-bit unsigned integer 

Y-tree multiplier which shows how the number of bits changes 

by operation of the layers.  

 

IV. (m, 3)-ADDER CIRCUIT DESIGN  

The height of Y-tree multiplier is less than half that of Wallace-

tree multiplier. However, the delay per layer is longer since the  

Table 1. Comparison of the Wallace-tree and the Y-tree 

for unsigned number multiplier. 

    16-bit 32-bit 

  W-Tree Y-Tree W-Tree Y-Tree 

# of 

adders 

(2, 2) 34 7 51 15 

(3 ,2) 188 30 909 46 

(4, 3) - 6 - 13 

(5 ,3) - 6 - 29 

(6, 3) - 6 - 40 

(7, 3) - 33 - 164 

CPA 1 1 1 1 

# of 

layers 

(2,2)   1   0 

(7, 3) -  2   3 

(3 ,2) 6 1 8 1 

CPA 1 1 1 1 

 

delay of a (7, 3)-adder is longer than a full-adder. Generally, 

delay, size and power of an adder increase rapidly with the 

number of inputs. Therefore, the design of fast and simple (m, 

3)-adder circuits is the most important requirement for Y-tree 

multipliers. 

Some comparisons between the Wallace-tree multiplier and the 

Y-tree multiplier for unsigned numbers are presented in Table 

1.  Inducing from the Table 1 to a 2k bit multiplier, the height   

of Wallace-tree multiplier is 2(k-1) except a CPA, and that of 

Y-tree is k-1 if k > 4. Among the k-1 layers of Y-tree multiplier, 

one layer is always (3,2)-adder layer. If t3, t7, and  tcpa  is the 

delay of (3, 2)-adder, (7, 3)-adder, and CPA respectively, the 

delay of the Wallace tree can be roughly estimated by 

3 ,2( 1)W cpa WT k t t                      (1) 

and the delay of the Y-tree multiplier is  

7 3 ,( 2)Y cpa YT k t t t                       (2) 

By assuming that the delay of CPAs is the same (tcpa,W = tcpa.Y), 

the Y-tree multiplier has the speed benefit against Wallace–tree 

multiplier when  

                       7 3

1
(2 )

2
t t

k
 


                                    (3) 

Therefore, Eq. 3 could be the speed limit of (m, 3)-adder3 

circuit design.  

Other important features for circuit design are power and size 

of the circuits. As in Table 1, the number of (7, 3)-adders to 

build a Y-tree multiplier is about 1/5~1/4 of the number of (3, 

2)-adders required to build a Wallace-tree multiplier. The speed 

and area overheads of (4, 3) and (5, 3)-adder are relatively small 

compared to (6, 3) and (7, 3)-adder. Therefore, if we count the 

number of (6, 3) and (7, 3)-adders only, the following ratio is 

obtained 
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Fig. 6.  A circuit of t (3, 2)-adder (full-adder)  

 

Fig. 7.  The (4, 3)-adder circuit design 

 

 

Fig. 8.  The (5, 3)-adder circuit design 

1  

 

 

 

Fig. 9. The (6, 3)-adder circuit design 

 

3, 3,

7, 6,

4.0 ~ 4.2
W Y

Y Y

N N

N N





                    

From this ratio, we can roughly obtain the power and size limits 

for (7, 3)-adder circuit design.  

7 34P P                    (4) 

7 3Area 4Area                    (5) 
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Fig. 10.  The (7, 3)-adder circuit design 

 

The Eq. 3, 4, and  5  are the conditions that the Y-tree multiplier 

can be a more efficient design than the Wallace-tree multiplier.   

Various types of (m, 3)-adder circuit have been devised and 

their speeds, powers and sizes checked,  but it is found that the 

design of a (7, 3)-adder meeting the Eq. 4 and 5 is a very 

challenging problem so far.   It is easy to design (4, 3) and          

(5, 3)-adder which satisfy Eq. 3, 4, and 5, but it could not find  

Table 2. The worst case delay of (m, 3)-adders 

  Ref. (m, 3)-adder 

  (3, 2) (4, 3) (5, 3) (6, 3) (7, 3) 

Delay, tm (ps) 280 315 381 422 528 

tm/tref 1.00 1.13 1.36 1.51 1.89 

 

a (7, 3)-adder satisfying Eq, 4 and 5 so far. However, it is 

possible to design a (7, 3)-adder which satisfies Eq. 3. Until 

now, therefore, the Y-tree multiplier is a multiplier suitable for 

speed oriented applications which can take power and area 

overheads. 

The circuit of (m, 3)-adder is depicted in Fig. 7~Fig. 10. Fig. 6 

is the circuit diagram of the full-adder [7] used as the reference 

(3, 2)-adder.  

The (4, 3)-adder and (5, 3)-adder circuits can be designed easily 

to satisfy Eq, 3, 4, and 5, but design of an efficient (6, 3)-adder 

and a (7, 3)-adder is very difficult. Since the complexity of an 

adder circuit is exponentially increase with the number of 

inputs, the design of (m, 3)-adder is focused on the (7, 3)-adder 

circuit design.  

 

V. SPEED EVALUATION 

The speed of newly designed adder is estimated immediately to 

check whether it satisfies Eq. 3. Delay simulations are 

performed by HSPICE with IBM’s “1.2V-0.13m 8RF-LM” 

model parameter. 

The worst case delay of newly designed (m, 3)-adder circuits is 

listed in Table 2. The delay of an adder is measured by 

cascading ten identical adders (fanout=1). The delays are 

measured for various combination of input changes and the 

largest delay is selected.   

Generally in the circuits in Fig. 7~10, the worst case delay of 

S-circuit is smaller than that of C1 and C2 circuits for those 

designs. Because C2 is used as one of inputs for C1-circuit, the 

C1-circuit is slower than the C2-circuit so that the worst case 

delay of the (m, 3)-adders occurs from the C1-circuits.  

The design of the (4, 3)-adder and the (5, 3)-adder is relatively 

easy because their speed overhead is small.  As in Table 2, the 

delays of a (4, 3)-adder and a (5, 3)-adder are about 13% and 

36% longer than that of the full-adder. The (7, 3)-adder is 

designed by modifying the CVSL logic. For a conventional 

CVSL-type design, there is a big mismatch between the rising 

delay and the falling delay of the circuit. By the modification 

like in Fig. 10, the mismatch can be reduced. Its delay is about 

1.89 times longer than that of the full-adder which satisfies Eq. 

3.  

It shows that the design of a (7, 3)-adder which satisfies the Eq. 

3 is possible so that the (7, 3)-adder based multiplier can 

operate faster than the full-adder based multiplier.  
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V. CONCLUSION  

A new method for multiplier design is suggested in this paper. 

Unlike previously developed multipliers which use a full-adder 

as the basic building unit, the newly suggested multiplier uses 

a (7, 3)-adder as the basic unit, with other (m, 3)-adders (m =4, 

5, 6) as auxiliary units.  

Similarly to the Wallace-tree of full-adders, a tree of (m, 3)-

adders, called Y-tree can be used to make a multiplier.  An 

algorithm making the Y-tree is presented. The (7, 3)-adder 

based multiplier design requires much fewer number of adders 

and lower height of tree. The height of Y-tree is about  half that 

of the Wallace-tree so that a Y-tree multiplier can be faster than 

its Wallace-tree counterpart if the delay of (7, 3)-adder is less 

than 2 times of the delay of the full-adder. A set of (m, 3)-adder 

circuits are designed and verified by simulations such that their 

speeds satisfy the condition.  

Unfortunately, the newly designed (7, 3)-adder circuit is much 

bulkier than the full-adder so that the Y-tree multiplier has 

disadvantages in size and power. So far, the (7, 3)-adder based 

multiplier is recommended only for speed-oriented applications. 

However, the limitation could be removed by developing an 

efficient (7, 3)-adder circuit. Out next research goal is to 

develop the design of a smaller and faster (7, 3)-adder circuit.  
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