
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1787

Synchronization Method for CGH Generation on Graphic

Processing Unit(GPU)

Joongjin Kook1*

1Assistnat Professor, School of Information Security Engineering, Sangmyung University, Korea.

*Corresponding Author

ORCID: 0000-0002-0033-388X

Abstract

The computation for the generation of the digital hologram

increases exponentially with the size of the point clouds

comprising a 3D model. Thus, recently, the parallel processing

using CUDA or OpenCL libraries based on GPUs, not based on

CPUs can reduce the time required to generate CGH. CUDA

kernel for GPU-based parallel processing needs to organize

threads, blocks, and grids in consideration of the number of

GPU cores and its memory size, and needs to consist of

applications based on multi-threads implementing threads by

core. However, multi-threads-based computation has

concurrency problems, so with the concurrency problems

unsolved, the computational results can not be guaranteed. In

this paper, we propose concurrency problems that may occur in

the CGH generation process and a software architecture to

solve them, and examine the trade-off relationship between

consistency and latency that may occur at this time.

Keywords: Hologram, CGH, GPU, Concurrency,

Synchronization

I. INTRODUCTION

Digital holography technology can be divided into technology

for obtaining holographic images and technology for displaying

the holographic images. There are two methods of acquiring

digital holographic images, which are obtaining 3D

information of a real object and obtaining images from

computer graphics. However, the technique of directly

obtaining holographic images from a real object has technical

limitations because it applies an interference phenomenon.

Recently, due to the rapid development of the computer

hardware specifications and computing technology,

CGH(Computer-Generated Hologram) technology has enabled

to create various hologram contents applicable to digital

holographic displays. The technology for directly obtaining

images from real objects is mainly holographic image

acquisition techniques using Optical Scanning Holography and

Phase Shifting Interferometers [1]. The most basic and essential

in the digital holographic image display technology is

SLM(Spatial Light Modulator), which is capable of expressing

the amplitude or phase of light, and forms a three-dimensional

holographic image as a basic image display device. [2].

CGH allows you to record and to reconstruct the wavelengths

of light for a 3D object. However, the resolution of CGH is the

resolution of wavelength-order, and SLM (Spatial Light

Modulator) having large area and high resolution is required,

which leads to a limitation in developing a digital holography-

based 3D display system. The enormous amounts of

computation required to calculate CGH is also a problem to

overcome.

Due to the developments of GPU, applications have recently

been implemented by utilizing GPU-based CUDA, OpenCL,

etc. in order to reduce the overhead of computations to generate

CGH. However, software based on CUDA or OpenCL

basically consists of multiple threads for the parallel processing,

which inevitably makes a reference to the same resource in the

computation process.

In this paper, we diagnose the concurrency problems that can

occur in the parallel processing to generate CGH based on

CUDA. We examine the impacts of these problems on the

computational results, and consider the synchronization

techniques necessary to overcome these problems, the

limitations of the synchronization, and how to improve them.

In this paper, we modularize the CGH generation process step

by step for GPU-based computation for CGH generation and

construct individual CUDA kernel for modules that are capable

of independent computation. In addition, in order to support

multi-GPUs, in an environment with multiple GPUs, we design

the entire point clouds divided by the number of GPUs and

distributedly allocated to each GPU, enabling computation. We

compare the computational speed between on synchronization

and on non-synchronization in this environment, and the

impacts of non-synchronization on the computation.

II. RELATED WORK

The typical method for digital hologram generation is R-S

Integral (Rayleigh-Sommerfeld Integral), and Fresnel

hologram and Fourier hologram are approximate methods

based on it.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1788

Since 1992, Chiba University in Japan has developed HORN,

a hologram generator based on FPGA. HORN-6, which was

developed in 2008, has four high-performance FPGAs built in

and performs Lookup Table-based hologram generation

computations in order to improve the computational speed.

However, FPGA-based hologram generation has disadvantages:

its implementation process is very complicated and takes a long

time to develop it [3,4].

In 2007, Nvidia released a new GPU architecture called CUDA,

and SDK (Software Development Kit), and have studied many

ways to accelerate computations based on GPUs.

CUDA supports the parallel processing of data based on SIMT

(Single Instruction Multiple Threads). As for CUDA, a set of

threads to be processed in the parallelism is composed of grids.

As shown in Fig. 2, a grid consists of a number of blocks, and

a block consists of threads. The core of CUDA is parallelized

in processing individual thread by core.

CUDASW ++ has proposed a library to accelerate the

computational speed based on CUDA even in the low-spec

GPU environment [5]. In this paper, we compared the

performance of the database search performance based on the

Smith-Waterman algorithm by using multiple-spec GPUs, a

single GPU, and multiple GPUs.

For task-based and data-based parallel computing, which was

released in 2008, the research for OPCL-based hologram

generation has been conducted [6].

When GPUs are used to generate CGH, the design of memory

structures for the parallelization of computations is required. As

shown in Fig. 1, CUDA is composed of grids, blocks, and

threads hierarchically, and is parallelly processed. The proper

parallelism should be performed for the optimal computation

considering warp units indicating the number of threads that

can be processed simultaneously.

Fig 1. Structures of grids, blocks, and threads of CUDA

The formula for calculating CGH for a 3D object consisting of

N points can be expressed as follows.

𝐼(𝑥ℎ , 𝑦ℎ) = ∑ 𝐴𝑖
𝑁
𝑖 cos (

2𝜋

𝜆
(

(𝑝𝑥ℎ−𝑝𝑥𝑖)2+(𝑝𝑦ℎ−𝑝𝑦𝑖)2

2𝑧𝑖
)) (1)

In Equation (1), 𝐼(𝑥ℎ , 𝑦ℎ) is the intensity of light in CGH, and

(𝑥ℎ , 𝑦ℎ) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) represent the coordinates of CGH

and 3D object. 𝐴𝑖 represents the intensity of light for the 3D

object, 𝜆 represents the wavelength of the reference light

source, and in 𝑝𝑖 = 𝜋𝑝2 ∕ (𝜆𝑧𝑖) , p represents a sampling

interval in the CGH plane. The computational complexity of

Equation (1) expressed in Big-O notation is O(𝑁𝑁𝑥𝑁𝑦) ,

where 𝑁𝑥𝑁𝑦 represents the number of samples in x axis/ y axis

in CGH [7].

Coherent Holographic Stereogram is one of the digital

hologram generation algorithms, of which computational speed

is much faster than that of R-S Integral-based algorithm. The

main features for the computational acceleration are as follows.

·Divide the digital hologram plane into smaller segments.

·Reduce the amount of computations of the spatial frequency

calculation process for each segment in the hologram plane

from each point composing of a 3D object.

·Record the complex amplitude distribution for each point in

the frequency plane of the divided hologram and process each

divided hologram frequency plane as FFT.

Fig 2. CGH computation process for hologram generation

CS-based hologram generation algorithms include PAS (Phase-

added stereograms), CPAS (Compensated phase-added

stereogram), APAS (Accurate phase-added stereogram),

ACPAS (Accurate compensated phase-added stereogram), and

FPAS (Fast phase-added stereogram) [8] [9].

ACPAS is an approximate algorithm that combines the

characteristics of APAS and CPAS, but its accuracy and the

quality of the reconstructed image are very similar to the R-S

based reconstructed images. Thus, it is suitable for a

holographic display device with high-speed and high-definition.

As the CS-based hologram generation algorithm has been

developed in various ways, the computational speed has been

improved compared to the conventional R-S method. However,

the faster computational speed must be supported for the digital

hologram generation that requires high-definition and real-time.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1789

III. DIGITAL HOLOGRAM GENERATION SCHEME

III.I CGH Computation

The configuration and the computational process of the point

clouds for CGH generation can be shown in Fig 3.

Fig 3. Point clouds and CGH computation procedure

The accumulation computations in the two-dimensional

complex plane are performed repeatedly by grouping each

point of the point clouds into segment, by operating the

equation (1) for each point included in each segment, and by

calculating the interference pattern.

In order to perform CGH computation based on CPU, iterative

computations must be performed for each point of the point

clouds as shown in Fig 4.

Fig 4. CPU-based CGH generation procedure

On the other hand, in case of the parallelism based on GPU, as

shown in Fig. 5, CUDA-based parallel processing should be

performed by designating threads and blocks for each point and

by forming a grid.

Fig 5. GPU-based CGH generation procedure

The CUDA-based parallelism requires data exchange between

the system memory and GPU memory. After dividing the point

clouds into segments and loading it into system memory, this

data must be transferred to the GPU's memory for the parallel

processing. As for CUDA, the computation is performed by the

kernel for the parallel processing, and the computational result

is sent back to the system memory. Fig 6 shows the basic data

exchange process between the system memory and GPU

memory.

Fig 6. Data transfer and computation process between the

system memory and GPU memory

III.II Parallelization of GPU Computation

To accelerate hologram generation based on multiple GPUs,

conceptually you should divide the point clouds into sections

as many as the number of GPUs, and make each GPU

responsible for the divided sections, enabling parallel

computation, as shown in Fig 7. At this time, each GPU

performs the computation in its own memory individually, but

a procedure for merging the computational results performed in

each GPU is eventually needed.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1790

Fig 7. Partitioning computation and Merging for GPU-based

CGH Generation

This parallelism requires merging individual memory

allocations for each GPU and the final results of computations

performed on each GPU, thereby the number of memory

references is increased in proportion to the number of GPUs.

Multiple thread-based parallelism using GPUs causes a race

condition among multiple threads along with an increase in the

number of memory references. As shown in Fig. 8, the spatial

frequency, phase and compensation computations for each

point can be performed independently. But, the process of

sequentially recording the real valuse/ imaginary values in the

memory for the two-dimensional plane and the process of

accumulating the results of FFT computation are performed in

global memory, making it impossible the parallel process.

Therefore, the computational results performed in each thread

are accumulated in global memory as shown in Fig 8.

Fig 8. Global memory reference for a single GPU-based CGH

computation

If simultaneous access by multiple threads is attempted while

the computational results performed on the GPU is cumulative

addition in global memory, the data corruption may occur and

the final result may be inconsistent. Thus, additional methods

such as semaphores, mutexes, or memory barriers should be

used to ensure the mutual exclusion for global memory.

However, these memory protection measures may result in a

decrease in the computational speed.

III.III Concurrency and Synchronization

Semaphores, mutexes, atomic variables, etc. may be used to

solve the concurrency problems, and different methods are

applied depending on the types of concurrency problems. These

methods of solving the concurrency problems commonly set up

a critical section that should not be referenced at the same time,

and perform lock /unlock operations before/ after this area. The

lock operation is used to check whether there is a thread already

entering the critical section before entering the section, and, if

available, is used to obtain the right to enter the section. If a

thread has already entered, the thread requesting the lock

operation is blocked. The unlock operation, on the other hand,

is used as a means to notify blocked threads that the lock has

been released before the thread entering the critical section has

left the section after the computation.

Fig 9. Global memory reference for multi-GPU based CGH

computations

Fig 9 shows the race condition that threads face in entering the

critical section. Threads winning the race acquire a key and

enter a critical section to perform computations based on shared

resources, while threads that fail to acquire a key are blocked

and wait until a key is obtained again.

After all, the critical section is an exclusive access section,

which reduces the performance of the parallelism. Therefore,

in order to maximize the advantages of parallelism, the

computations should be performed when the critical section

does not exist if possible. Or, even if the critical section exists,

the computations should be performed in this area only for a

very short time.

In this paper, the kernel function was implemented to perform

atomic operation for double precision type of mistakes in order

to guarantee mutually exclusive computation and to solve the

concurrency problems in CUDA environment.

V. EXPERIMENTS AND RESULTS

In this paper, in order to verify the consistency problem of

computational results due to concurrency problems and the

degradation of performance due to the device for

synchronization in the process of generating GPU-based CGH,

we compared their computational speed and their degree of

corruption of the computational results among the point clouds

consisting of 100, 1000, 10000, 40000, 100000, and 150000.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1791

The configuration of the experiment environment is shown in

Table 1.

Table 1. Experimental environments

H/W Model Quantity

CPU Intel Core i7 6700HQ 2.6GHz 1

Memory DDR4 8G PC4-21300 2(16GB)

GPU Nvidia GTX960M 1

We compared the computational time for point clouds

consisting of 100-160,000 on synchronization and on non-

synchronization. The results are shown in Fig 10.

Fig 10. CGH Generation Time (ms)

On non-synchronization, the CGH generation time is shorter,

but when CGH is generated for the same point cloud, the results

are different each time as shown in Fig. 11.

Fig 11. CGH Generation Result of Non-synchronization

The time required for synchronization increases as the number

of points increases. From 10,000 points, about 20% of the CGH

generation time is spent on the synchronization, as shown in

Fig. 12.

Fig 12. Synchronization Overhead for CGH Generation

VI. CONCLUSION

In this paper, we diagnosed the concurrency problem that

occurs when GPU-based parallel processing is performed for

CGH generation, and applied atomic operation for the purpose

of the synchronization to guarantee the consistent

computational results. However, we confirmed that as the size

of the point cloud increases, the time required for

synchronization increases by more than 20%. Therefore, there

is a need for a new method to reduce the synchronization

overhead in order to obtain high-quality real-time CGH.

REFERENCES

[1] Peter, W.M.T, Ting-Chung, P., 2016, “Review on the

State-of-the-Art Technologies for Acquisition and

Display of Digital Holograms,”IEEE Transactions on

Industrial Informatics, 12(3), pp.886-901.

[2] Yongjun, L., Jinwoong, K., 2018,“Digital Holography

Researches and Technologies for VR, AR, and MR,”

Institute for Information & communication Technology

Planning & evaluation, Weekly Technology Trend-AR,

VR, MR, pp. 1-13.

[3] Tomoyoshi, S., Nobuyuki, M., Takashige, S., Satoru, H.,

Shinobu, T., Tomoyoshi, I., 2000,“Special-purpose

computer for holography HORN-3 with PLD

technology,”Computer Physics Communications,

130(1–2), pp. 75-82.

[4] Yasuyuki, I., Hirotaka, N., Tomoyoshi, I., Nobuyuki, M.,

Tomoyoshi, S., Atsushi, S, Takashige, S., 2009,

“HORN-6 special-purpose clustered computing system

for electroholography,” Optics Express, 17(16), pp.

13895-13903.

http://prod.danawa.com/info/?pcode=2600690&cate=1131480

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 10 (2019), pp. 1787-1792

© International Research Publication House. http://www.irphouse.com

1792

[5] Yongchao, L., Douglas, L.M., Bertil, S. “CUDASW++:

optimizing Smith-Waterman sequence database

searches for CUDA-enabled graphics processing units,”

BMC Research Notes, BioMed Central, May 2009,

[6] Tomoyoshi, S., Tomoyoshi, I., Nobuyuki, M., Yasuyuki,

I., Naoki, T. 2010,“Fast calculation of computer-

generated-hologram on AMD HD5000 series GPU and

OpenCL,”Optics Express 9955, 18(10), pp. 9955-9960.

[7] Toyohiko, Y., 1976,“Stereoscopic approach to 3-D

display using computer-generated holograms,” Applied

Optics, 15, pp. 2722-2729.

[8] Masahiro, Y., Hideshi, H., Toshio, H., Nagaaki, O.,

1993,“Phase-added stereogram: calculation of hologram

using computer graphic technique,” Proceedings

Volume 1914, Practical Holography VII: Imaging and

Materials, pp. 25-33.

[9] Hoonjong, K., Elena, S., Hiroshi, Y., 2016,“Fast phase-

added stereogram algorithm for generation of

photorealistic 3D content,” Applied Optics, 55(3), pp.

A135-A143.

