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Abstract 

Time-series methods have become of interest in damage 

detection, particularly for automated and continuous structural 

health monitoring due to having no requirement for modal 

analysis or details of physical structural properties. Despite 

the success of the sensor clustering concept in improving the 

ability of time-series methods to detect, locate and quantify 

structural damage, most of the applications rely on free 

vibration response that can be obtained directly by impact 

testing, which is difficult to obtain for in-service structures, or 

indirectly by transforming the ambient vibration response. 

Therefore, the present study extends the use of sensor 

clustering for damage detection under ambient vibration by 

directly using the measured response. In this study, nonlinear 

autoregressive with exogenous inputs (NARX) system was 

modelled using artificial neural network for different sensor 

clusters using the acceleration response of the structure. The 

differences of the NARX neural network prediction errors are 

used as damage sensitive features to infer damage existence, 

location and severity. The applicability of the method is 

demonstrated using a numerical model of a two-span concrete 

slab under varying excitation conditions to simulate ambient 

vibration. The method performed successfully for single and 

multiple damage cases. 

Keywords:Ambient vibration, Artificial neural network, 

Vibration-based damage detection, Sensor clustering, Time-

series response 

 

I. INTRODUCTION 

Civil engineering infrastructures are subjected to deterioration 

owing to long term fatigue, environmental factors and severe 

loading events such as earthquakes. Early detection of 

structural damage is necessary for preventing catastrophic 

failure that leads to fatal consequences and tremendous 

economic losses. In this regard, structural health monitoring 

(SHM) has been intensively developed and progressed during 

the last few decades, particularly in using vibrational 

parameters to detect, locate, and quantify damage in a 

structure. 

Vibration-based damage detection can be classified into 

frequency domain and time domain approaches. In frequency 

domain methods, damage can be detected by examining the 

feature changes extracted from frequency response functions 

(FRF) [1,2] or modal data (i.e., natural frequencies, mode 

shapes and derivatives) [3–5]. On the other hand, damage 

sensitive features (DSFs) in time domain methods are derived 

directly from the measured time-history responses (i.e., 

displacement, velocity and acceleration) [6,7]. 

Among time-domain methods, time-series analysis has gained 

attention recently due to high potential in automated SHM as 

it can directly process the large amount of continuous data 

acquired from multiple sensors. It is based on a methodology 

that aims to fit the measured responses into time-series models 

(i.e., autoregressive (AR) model, autoregressive with 

exogenous inputs (ARX) model, autoregressive moving 

average (ARMA) model, autoregressive moving average with 

exogenous input (ARMAX) model) and then damage 

detection is attempted using the extracted DSF formulated 

based on model coefficients [8–10] or residual errors [11–13]. 

Although the applications of time-series based techniques 

have shown great success at Level 1 damage identification 

[14], most of them are unable to provide further information 

about the damage, such as location (Level 2) and severity 

(Level 3).  

Therefore, Gul and Catbas [15] introduced the sensor 

clustering concept to time-series analysis methodology to 

extend its applicability up to Level 3 damage identification. In 

their study, two DSFs based on the ARX model coefficient 

and fit ratio were extracted from data obtained from an impact 

test. Farahani and Penumadu [16] also applied the concept to a 

full-scale five-girder bridge using a drop-source test. To allow 

the sensor clustering applicable to ambient vibration, Gul and 

Catbas [17] improved the method by incorporating a random 

decrement (RD) to obtain pseudo-free response data while 

Mei and Gül [18] directly applied sensor clustering on 

ambient vibration data and used ARMAX model coefficients 

to identify damage. 

In the above-mentioned studies, the methods are based on 

linear time-series models with free vibration response. Despite 

their good damage detection results, free response data is 

difficult to collect as impact vibration testing requires 

suspension of normal structure operation. Therefore, the 

present study made good use of artificial neural network 

(ANN) ability in learning linear and nonlinear systems to 

model nonlinear ARX (NARX) in conjunction with sensor 
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clustering using output-only data, which is the acceleration 

response. The numerical structure of a two-span concrete slab 

was used to demonstrate the applicability of the proposed 

method under ambient vibration. To simulate a better 

representation of the actual ambient vibration tests, the 

amplitude, frequency and location of load excitation were 

randomised during the sampling duration. 

II. METHODOLOGY 

As illustrated in Fig. 1, the proposed approach for damage 

detection using NARX neural networks in this study involved 

three stages, (i) sensor clustering, (ii) NARX neural network 

training, (iii) damage detection. 

 

 

Fig. 1: Damage detection using NARX neural network with sensor clustering 

 

II.I Sensor clustering 

Sensor clustering enhances the ability and reduces the 

complexity of time series approaches for damage detection. In 

sensor clustering, the structure is addressed as multiple 

systems rather than a single system. Each system is defined as 

a cluster where each cluster is monitored by a set of sensors 

with one assigned as the reference sensor and all the others are 

classified as neighbour sensors. The acceleration response of 

the reference sensor will be predicted by the neighbour 

sensors, which provide input to the NARX neural network. By 

this means, the reference sensor has two data sets that are 

predicted from the baseline network and actual measured 

response. By manipulating these two data sets, DSF can be 

obtained. 

 

II.II Nonlinear autoregressive with exogenous inputs (NARX) 

neural network 

The concept of neighbour sensors and one reference sensor 

refers to a multi-input single-output (MISO) system that can 

be defined through a NARX model. The NARX model is 

based on the linear ARX model, which is generally used to 

model a sequence of data points that are observed in time. It 

made use of the combination of its past output values and 

those of the input to describe a discrete nonlinear system. The 

defining equation for the NARX model is: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … . , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡

− 1), 𝑢(𝑡 − 2), … . , 𝑢(𝑡 − 𝑛𝑢)) (1) 

in which 𝑦(𝑡) denotes the reference sensor response at time 

step 𝑡, 𝑓 refers to the nonlinear function of the sensor cluster, 

𝑢(𝑡) is the neighbour sensors response at time step 𝑡, and 𝑛𝑦 

and 𝑛𝑢 are the order of output and input, respectively. 

ANNs can be used for function approximation, not only for 

nonlinear systems but also linear systems. Therefore, in this 

study, the approximation of function 𝑓 in Equation (1) was 

implemented in a black-box manner using ANN, henceforth 

known as NARX neural network. 
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In this study, series-parallel NARX architecture was adopted 

since it offers two advantages. The first is that the true output 

is available during network training and using it as the input to 

the feedforward network is more accurate. The second is that 

the resulting network has a purely feedforward architecture 

and static backpropagation can be used for training. An 

example schematic representation of the general architecture 

of a series-parallel NARX neural network for sensor 

clustering, which is a kind of MISO system, is shown in Fig. 

2. It has an input layer with tapped delay lines (TDL), one 

hidden layer with sigmoid transfer functions and one output 

layer with a linear transfer function.  

 

 

Fig. 2 NARX neural network with two inputs, one output and 

three hidden neurons 

 

II.III Damage sensitive feature 

After time-series models for all sensor clusters under baseline 

conditions were developed, the same models were used to 

predict the response under different conditions for the same 

sensor cluster. The difference between the measured response 

(𝑦𝑚(𝑡)) and the prediction (𝑦𝑝(𝑡)) was then computed and 

used to extract DSF. For clarity of notation, let the prediction 

error of the baseline condition that is known to be undamaged 

be denoted by 𝑒𝑈(𝑡) and the prediction error of an unknown 

condition that can be undamaged or damaged be represented 

by 𝑒𝐷(𝑡). If damage has occurred, the trained networks will 

no longer give similar prediction performance, where 𝑒𝐷(𝑡) is 

expected to have larger statistical distributions than 𝑒𝑈(𝑡). As 

DSF has great consequences on damage detection, three 

different DSFs correspond to the fit ratio [15], the standard 

deviation of residual error and the root mean square of 

residual error, as defined in Equation (2) to (5), are considered 

in this study. From this point onward, damage features 

extracted based on standard deviation, fit ratio and root mean 

square are denoted as DSFSD, DSFFR and DSFRMS, 

respectively. The notation 𝑦𝑚̅̅ ̅̅  in Equation (2) is the mean of 

the measured response and 𝜎 in Equation (4) refers to the 

standard deviation function. Each sensor cluster has its own 

DSF and by assembling the computed DSF of all clusters, 

damage can be inferred.  

𝐹𝑅 = 1 −
|𝑦𝑚 − 𝑦𝑝|

|𝑦𝑚 − 𝑦𝑚̅̅ ̅̅ |
 (2) 

𝐷𝑆𝐹𝐹𝑅 =
𝐹𝑅𝑈 − 𝐹𝑅𝐷

𝐹𝑅𝑈
 (3) 

𝐷𝑆𝐹𝑆𝐷 =
𝜎(𝑒𝐷) − 𝜎(𝑒𝑈)

𝜎(𝑒𝑈)
 (4) 

𝐷𝑆𝐹𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑒𝐷

2

𝑛

𝑡=1

− √
1

𝑛
∑ 𝑒𝑈

2

𝑛

𝑡=1

 (5) 

 

III. NUMERICAL EXAMPLE 

To demonstrate the effectiveness of the proposed NARX 

neural network with sensor clustering approach, numerical 

model of a two-span concrete slab was used. The slab was 

modelled using the Structural Dynamics Toolbox in the 

MATLAB platform. A 4.2 m long, 0.65 m wide and 0.12 m 

thick slab, as depicted in Fig. 3, was used in this study. The 

slab was simply supported at 100 mm from each end and the 

middle span. The presumed material and geometrical 

properties of the slab were Young’s modulus 𝐸 = 31 GPa, 

mass density 𝐷 = 2300 kg/m3 and Poisson’s ratio 𝜌 = 0.2. The 

finite element modelling of the slab as shown in Fig. 4 was 

based on four-node quadrilateral shell elements and comprised 

of a mesh with 105 nodes and 80 elements. The first three 

frequencies of the simulated slab were 50.95 Hz, 80.51 Hz 

and 215.8 Hz. A 3% damping ratio was assumed for all 

modes. 

 

 

 

Fig. 3 Two-span slab 
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Fig. 4 Finite element model with sensor and load locations 

 

For time response simulation, 16 sensors were assumed to be 

placed on the centreline of the slab, as given in Fig. 4. To 

represent ambient excitation, load forces were randomly 

applied to several points with random magnitude and 

frequency. The responses of the sensors were computed using 

Newmark’s time integration method. Acceleration data in the 

vertical direction were recorded by sensors at 500 Hz 

sampling frequency for a total duration of 110 seconds. 

However, the first 10 seconds data were ignored to avoid 

transient effects from start-up [19], whereas the rest of the 100 

seconds data were used for damage detection. For damage 

detection purposes, the slab was divided into 15 equal 

segments as shown in Fig. 5. Damage was simulated by 

reducing the 𝐸 value at selected elements and the damage 

severity was defined in terms of percentage of this reduction. 

 

 

Fig. 5 Considered segments for the slab 

 

III.I Sensor clustering  

As described earlier, the concrete slab model with 16 sensors 

installed along the centreline of the slab was considered. For 

better representation, these sensors were labelled as in Fig. 6. 

From this sensor network, 16 different sensor clusters were 

defined, as given in Table 1. Each cluster was monitored by 

one reference sensor. Cluster 1 incorporates Sensors 1 and 2, 

where the first sensor was selected as the reference sensor. 

Three sensors were included in Clusters 2 through 15, where 

the reference sensor is the middle one of each cluster. For 

Cluster 16, Sensors 15 and 16 were incorporated, with the 

second sensor being the reference sensor. 

 

Fig. 6 Sensor numbers for the slab 
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Table 1: Sensor clustering for a slab with 16 sensors 

Cluster 
Reference 

sensor 

Neighbour 

sensor 
Cluster 

Reference 

sensor 

Neighbour 

sensor 

1 1 2 9 9 8, 10 

2 2 1, 3 10 10 9, 11 

3 3 2, 4 11 11 10, 12 

4 4 3, 5 12 12 11, 13 

5 5 4, 6 13 13 12, 14 

6 6 5, 7 14 14 13,15 

7 7 6, 8 15 15 14, 16 

8 8 7, 9 16 16 15 

 

III.II NARX neural network training 

After defining all the sensor clusters, NARX neural networks 

were constructed for each sensor cluster. The 100 s 

acceleration responses subjected to ambient vibration obtained 

from the undamaged structure were used in the network 

training and served as the baseline condition. Before network 

training, the acceleration response of each sensor was 

normalised to the [-1 1] range. The normalisation was 

necessary to not only limit the range of data but also to 

prevent larger values overriding smaller ones and to avoid the 

premature saturation of hidden neurons that slows down 

network training [20]. To apply an early stopping method, the 

normalised data were randomly partitioned into 70% training, 

20% validation and 10% testing sets. The networks were 

trained using a series-parallel NARX neural network with one 

hidden layer architecture, the Levenberg-Marquardt algorithm 

as the learning function, tan-sigmoid as the transfer function 

in the hidden layer and a linear transfer function in the output 

layer. In this study, 6th order input and output and 8th order 

hidden neurons were applied to all sensor cluster networks.  

 

Fig. 7 Sample response of reference sensors and network 

predictions of the numerical slab at the baseline condition 

Fig. 7 shows a 1 s sample of the response estimated using the 

developed NARX neural networks, which is plotted on top of 

the acceleration response obtained from the measurement. It is 

clearly seen that the measured and estimated response match 

almost perfectly, which indicates that the NARX neural 

networks fitted the data very well, hence adequately 

representing the undamaged structural response. 

 

III.III Damage detection  

After the NARX neural networks were developed, the 

acceleration responses from new structural conditions were 

fed to the network for damage identification response 

prediction. The concept behind the proposed method in this 

study is that when damage occurs, the NARX neural network 

is no longer able to characterise the structural response as the 

networks are developed based on the undamaged response; 

hence, the prediction error will be large. By deploying the 

network prediction error, damage indicators can be extracted 

and used for damage detection. For implementing the 

proposed approach, different damage cases, which include 

single damage as well as multiple damages, were considered. 

It should be mentioned that the data used in this paper is a 

noise-free response.  

 

III.III.I Damage at single location  

To investigate the sensitivity of the proposed method to 

damage location, two different damage cases were considered. 

Each case comprises a single damage site with 30% severity 

at Segment 4 or 14. Fig. 8 and Fig. 9 depict the obtained DSFs 

against sensor location for the two damage cases. 

Fig. 8 corresponds to the case in which damage is located in 

the middle of the first span of the slab (Segment 4). Results 

based on DSFSD (Fig. 8(a)) show that damage is located near 

Sensors 4 and 5 since the associated DSF at these locations is 

relatively high compared to other locations. Similar results 

were also obtained using DSFFR (Fig. 8(b)) and DSFRMS (Fig. 

8(c)), which suggest that the three DSFs can provide good 

indicators for damage presence. Although some false positives 

appeared at other locations, the highest DSF matched well 

with the actual simulated damage location. For damage 

located at Segment 14 (Fig. 9), the detection results showed 

by the three DSFs follow the same distribution along the slab, 

where the magnitude is concentrated near Sensor 15 and 

followed by Sensor 14. 

The results presented here demonstrate that the proposed 

approach based on NARX neural network is sensitive to 

damage existence. Introducing damage to the slab, resulted in 

increases in the extracted DSF. The three employed DSFs 

worked equally well for predicting single damage in the slab. 

The closer the sensor to the simulated damage location, the 

higher the predicted value of the corresponding DSF. 

Therefore, the highest DSF reflects the location of damage. 
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Fig. 8 Prediction of the NARX neural network for damage at Segment 4 

 

 

Fig. 9 Prediction of the NARX neural network for damage at Segment 14 

 

III.III.II Effect of damage severity 

To investigate the effect of damage severity on the proposed 

method, the damage case at the first mid-span, as used in the 

previous section, was considered along with four different 

damage severities. The reduction of the 𝐸 value at Segment 4 

was varied from 10% to 50% in 10% increments. Fig. 10 

shows the results obtained using DSFSD, DSFFR and DSFRMS 

for different damage severities. The maximum DSFSD was 

found near Sensors 4 and 5 for all damage severities, 

indicating damage was present in that region. Another 

observation is that the maximum DSFSD increased gradually 

with the increase of damage severity. The variation of DSFFR 

and DSFRMS were also in good agreement with damage 

severity but for a high damage severity (50%), there was a 

false detection at Sensor 2, where the value was comparable to 

that predicted at Sensor 4. Nonetheless, the predicted DSF 

values were still satisfactory to distinguish the damage 

location. The results in this section are evidence that the 

developed NARX neural network is good enough in 

correlating single damage severity with the maximum DSF, 

hence can be used to relatively quantify the damage severity. 

 

 
(a) DSFSD 

 
(b) DSFFR 

 
(c) DSFRMS 

 

 

 
(a) DSFSD 

 
(b) DSFFR 

 
(c) DSFRMS 
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Fig. 10 Variation of DSF with damage severity 

 

III.III.III Damage at multiple locations 

The efficiency of the NARX neural network was further 

assessed for damage in multiple locations. To achieve this 

aim, the value of E at Segment 2, 7 and 12 was reduced by 

20%, 40% and 30%, respectively. Fig. 11 shows the predicted 

DSFSD, DSFFR and DSFRMS with sensor location. From the 

figure, one can observe that each DSF resulted in high values 

at different locations. In decreasing order of rank, the first 

three large values identified by DSFSD were at Sensor 13, 2 

and 8, while those by DSFFR and DSFRMS were sensor 2, 8 and 

13 and 8, 2 and 13, respectively. This observation shows that 

locations of multiple damage case were successfully detected 

by the DSFs. However, it has failed to relate the severity of 

multiple damages with DSF level. 

 

Fig. 11 Prediction of the NARX neural network for multiple 

damage case 

 

IV. CONCLUSION 

In this paper, a time-series approach for damage detection was 

presented using noise-free data from numerical model of a 

two-span concrete slab. The approach is an output-only and 

non-model damage detection where it solely based on the 

measured acceleration responses without any need of 

excitation information or details of physical structural 

properties. The proposed approach makes use the concept of 

sensor clustering where the acceleration response of the 

reference sensor in each cluster at baseline condition is 

predicted by time-series model. The time series model, 

namely NARX, was considered and modelled through ANN. 

If the condition of the structure is no longer the same as the 

baseline condition, the NARX neural network will result in 

high prediction error. Based on the prediction error, three 

DSFs were extracted for damage identification. 

The results showed that the proposed time-series approach 

based on NARX neural networks provides satisfactorily 

damage detection for single damage and multiple damage 

cases under ambient vibration. The three employed DSFs 

were sensitive to damage presence and have approximately 

the same efficiency in identifying damage. The location of 

damage can be identified by the highest DSF values. The 

 

 
(a) DSFSD 

 

 
(b) DSFFR 

 

 
(c) DSFRMS 
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employed DSFs increase with the severity of single damage. 

However, in case of multiple damages with different 

intensities, DSF magnitudes fail to relate to damage severities. 

Since the numerical study has proven the applicability of the 

proposed NARX neural network with sensor clustering 

approach under noise-free response, future studies should 

explore the potential of the proposed approach using noisy 

data since measurement noise is inevitable in real practice. It 

is also recommended to apply the proposed method using real 

data obtained from different types of structures and various 

types of structural damage.  
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