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Abstract   

The article presents a mathematical model of sediment 

transport and changes in the topography of the Black Sea 

seabed in the Poti region. Wave motions, coastal flows, 

sediment transport and accordingly changes in the topography 

of the seabed are interconnected. Therefore, in solving the 

problem of sediment transport, the data of wave motions and 

their flows are needed. For quantitative and qualitative analysis 

of sediment transport rate, the equation of mass conservation 

for sediments is used. By means of Green’s equation, the mass 

conservation equation is transformed and solved by the finite 

element method. Finite difference schemes are built using 

Courant functions in considered area. In order to apply 

approximate equation for temporal term of the equations, 

instead of the evolutionary problem, we obtain the Cauchy 

problem. To construct temporal approximations associated 

with the solution of the obtained equations, Crank-Nicolson 

schemes are used, that provide the second order of 

approximation in time. As a result of such transformations, the 

initial equations of sediment mass conservation will be reduced 

to a system of algebraic equations, which are solved by the 

upper relaxation method. 

A numerical study was conducted and numerical values of 

sediment transport rate and seabed depth changes were 

obtained.  

The average annual coastal erosion rate is approximately 7-10 

m/year. The shortage of beach-forming material in the south of 

the port is approximately 200,000 - 250,000 m3/year. 

The obtained results in the given article fully coincide with the 

results received using observations and measurements 

conducted by the "Georgian State Hydrographic Service" in 

1990-2018. 

Keywords: Wave Motion, Coastal Erosion, Sediment, 

Numerical Model.   

 

I. INTRODUCTION  

Environmental forcing that are relevant for most coastal CC 

impacts studies are water levels, offshore waves, coastal 

currents, and river flow. Pre-determined water levels are 

usually specified as boundary conditions in coastal impact 

models. Commonly used models to simulate ocean waves at 

regional scale include: WAM [5], SWAN [2], Mike21SW [20], 

and WaveWatch3 [22]. Widely used models to simulate 

regional scale coastal currents include: Delft3D [9], MIKE21 

FM [12], and NEMO-POA [10]. Land surface models (LSMs) 

commonly used to simulate river flow include: SiB variants 

[13], and ISBA [3]. 

Study of beach lithodynamics due to changes in longshore 

sediment transport may be readily simulated with one-line 

models such as LITLINE, UNIBEST-CL, GENESIS and CEM 

[15, 16, 21]. 

As beach changes is governed by both longshore and cross-

shore sediment transport [6, 14], 2004, Harley et al., 2011), a 

fully 3D (or at least Quasi 3D) process based coastal area 

morphodynamic model which resolves the vertically non-

uniform structure of cross-shore currents may be used to 

simulate these phenomena (e.g. Delft3D in 3D mode). However, 

presently available 3D or Quasi 3D coastal area models mostly 

concentrate on simulating bed level changes below MWL and 

do not incorporate the ability to accurately simulate coastline 

change.  

Another approach to simulate beach change is to link a one-line 

coastline change model with a 2DV coastal profile model. This 

approach was adopted by Huxley (2011) where a coastline 

model based on the CERC equation was coupled with Miller 

and Dean's (2004) cross-shore profile model. 

However, the application of the above-mentioned models in 

order to study the litho-dynamics of the Poti region of the Black 

Sea due to the complexity of the bottom relief and coastal zone 

(underwater canyons, port barriers, piers, river run-off, etc.) 

does not give reliable results. 

Black Sea coast of Poti region faces significant impacts from 

the Rioni River. Since 1939, the serious environmental 

problems started in Poti after diversion of the main stream of 

river Rioni at the 7th km to the northeast of Poti. As a result, 

the flooding of the city had stopped, however the reduction of 

water consumption in the old channel caused a decrease of the 

sediments carried away by the river, which leads to coastal 

washing-out (Fig. 1). In order to solve this problem, in 1959 the 

water distribution structure was built on the given river, which 

included a dam-bridge and regulator. Unfortunately, due to the 
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errors made during the design process, given structure unable 

to implement its protection function [4].   

The coastal changes are associated with the movement of 

waves and flows in the coastal part of the sea. 

 

Fig. 1. Master Plan of Poti region: 1 - Water distribution structure 

on the Rioni River; 2 - new river flow (1939); 3 - old river bed; 4 - 

city port; 5 - the island formed after the diversion of the stream; 6 - 

washout area after flow diversion 

 

Sediment transport in the coastal zone of the sea causes changes 

in the topography of the seabed. For quantitative and qualitative 

analysis of the sediment transport rate we will use a model that 

is largely similar to the well-known models [1,7]. The 

difference lies in the method of finding an approximate solution 

of the investigated equations. 

 

II. MATHEMATICAL MODEL 

As it is known from the mass conservation equation for 

sediments, the changes in water depth h can be written as 

follows [7]: 

𝜕ℎ

𝜕𝑡
=

𝜕𝑞𝑥 

𝜕𝑥
+
𝜕𝑞𝑦 

𝜕𝑦
                              (1) 

where 𝑥  and 𝑦  are horizontal coordinates, 𝑞𝑥  and 𝑞𝑦  - 

sediment transport rate within the element in direction x and  𝑦. 

Volumetric transport rates (𝑞𝑥 , 𝑞𝑦) expressed in terms of the 

effective volume of sediment transmitted by the vertical cross 

section of the element per unit of time.  

Horikawa (1988) proposed the following equation for 

determining the rate of sediment transport:  

(𝑞𝑥 , 𝑞𝑦) = (𝑞𝑐𝑥 , 𝑞𝑐𝑦) + (𝑞𝑤𝑥 , 𝑞𝑤𝑦)               (2)  

here (𝑞𝑐𝑥 , 𝑞𝑐𝑦)  are sediment transport caused by the averaged 

flows,  (𝑞𝑤𝑥 , 𝑞𝑤𝑦)  - sediment transport caused by waves. 

Sediment transport caused by average flows is determined by 

the equations:    

𝑞𝑐𝑥 = 𝑄𝑐𝑈,  𝑞𝑦 = 𝑄𝑐𝑉,   𝑄𝑐 = 𝐴𝑐(𝜏𝑚 − 𝜏𝑐𝑟)/𝜌𝑔           (3) 

where 𝑈 and  𝑉 are averaged flow rates in the direction 𝑥 and 

𝑦 , 𝐴𝑐 - dimensionless ratio of the order of  0,1-1, 𝜏𝑚 - the  

maximum value of seabed shear stress under the mutual action 

of waves and flow 𝜏𝑚 =
1

2
𝜌𝑓𝑐𝑤𝑢̂𝑏

2 , 𝑢̂𝑏
2 - near-seabed orbital 

velocity amplitude, 𝑓𝑐𝑤- seabed friction ratio, 𝜏𝑐𝑟- critical shear 

stress of the seabed at the beginning of movement of sediment. 

If 𝜏 ≤ 𝜏𝑐𝑟 , 𝑄𝑐 = 0. Equations (3) are based on the concept of a 

force model, i.e. sediment volume𝑄𝑐  is proportional to the 

combined shear stress. 

Wave transport of sediments is caused by asymmetry of the 

seabed wave velocity and is more complicated because requires 

consideration of factors such as refraction, diffraction, 

reflection and collapse of waves, as well as the slope of the 

seabed. The equations for determining transport rate of 

sediments caused by wave motion looks like [4]: 

𝑞𝑤𝑥 = 𝐹𝑑𝑄𝑤𝑢̂𝑏cos𝛼 ,𝑞𝑤𝑦 = 𝐹𝑑𝑄𝑤𝑢̂𝑏sin𝛼 ,              (4) 

𝑄𝑤 = 𝐴𝑤(𝜏𝑚 − 𝜏𝑐𝑟)/𝜌𝑔 

where  𝐴𝑤   is dimensionless ratio, 𝑢̂𝑏 - near-seabed orbital 

velocity amplitude,  𝛼- angle between the direction of wave 

propagation and the axis x. Dimensionless ratio 𝐴𝑤    is equal 

to: 

      𝐴𝑤 = 𝐵𝑤
𝑤0

(1−𝜆𝑣)𝑠√𝑠𝑔𝑑
√
𝑓𝑤

2
,      (5)  

𝑆 = (𝜌𝑠 − 𝜌)/𝜌,  𝜏𝑚- maximum shear stress due to waves and  

flows, 𝜆𝑣- seabed porosity, 𝑓𝑤- wave friction ratio. The value 

of 𝑓𝑤 depends on the amplitude and period, orbital velocity and 

characteristics of the seabed. For example, if the seabed is 

formed from sand 𝑑 = 0.2  mm, 𝑤𝑤0 = 2.4Cm/s,  𝜆𝑣 = 0.4 , 

𝑠 = 1.65 , 𝐵𝑤 = 7  and    𝑓𝑤 = 0.01~0.2 , then according to 

equation (5), the values of 𝐴𝑤 vary within the  range 0.2~0.9. 
In calculations, the coefficient 𝐴𝑤   is assumed as constant. In 

the equations (4) 𝐹𝑑  is equal to: 

𝐹𝑑 = tanH (
Π𝑐−Π

Π𝑐
), Π = 𝜓′

ℎ

𝐿0
=

𝑢𝑏
2

𝑠𝑔𝑑

ℎ

𝐿0
,        (6) 

where Π𝑐 is the critical value of Π  at zero point (where the 

transverse sediment transport is 0). The values of Π𝑐are values 

of the order of one and specified in the calculation process. The 

parameter Π  value is specified, if 𝜓′ replaced by the Shields 

parameter (𝜓𝑚 = 𝜏𝑚/(𝜌𝑠 − 𝜌)/𝜌)𝑔𝑑).       

Formulas (3, 4) depend on seabed friction (critical shear stress), 

the values of which must be determined. Critical condition of 

sediment movement under the waves and flows influence is 

determined by critical volume of Shields parameter:    

𝜓𝑐 = 𝜏𝑐𝑟/(𝜌𝑠 − 𝜌)𝑔𝑑                 (7) 

According to Watanabe et al., [1986], the value of the critical 

Shields parameter for fine sand (𝑑 = 0.1~0.4) is equal to 0.11 

for coarse sand – 0.06. 

In the equations for determining (𝑞𝑥 , 𝑞𝑦)the seabed slope effect 

was not taken into account. The following equations were 

introduced to account for the slope of the seabed: 

𝑞′𝑥 = 𝑞𝑥 + 𝜀𝑠|𝑞𝑥|
𝜕ℎ

𝜕𝑥
,    𝑞′𝑦 = 𝑞𝑦 + 𝜀𝑠|𝑞𝑦|

𝜕ℎ

𝜕𝑦
   ,      (8) 
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and instead of equation (1) we obtain: 

𝜕ℎ

𝜕𝑡
=

𝜕𝑞′𝑥 

𝜕𝑥
+
𝜕𝑞′𝑦 

𝜕𝑦
.                             (9)  

 

II.I. Solution algorithm  

In equation (9) were introduced notations: 

𝐴 = 𝑞𝑥,  𝐵 = 𝜀𝑠|𝑞𝑥| ,   𝐶 = 𝑞𝑦,       𝐷 = 𝜀𝑠|𝑦|          
and were rewritten as: 

𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐴 + 𝐵

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐶 + 𝐷

𝜕ℎ

𝜕𝑦
)                    (10) 

Let's formulate a generalized statement of the problem. If we 

denote the generalized solution of problem (9) with the 

function ℎ ∈ 𝑊̃2
(1)

 ( 𝑊̃2
(1)

- Sobolev space) the following 

equation would be satisfied: 

∬
𝜕ℎ

𝜕𝑡
𝜔𝑖,𝑗𝑑𝑆 =

S

 ∬
𝜕

𝜕𝑥
(𝐴 + 𝐵

𝜕ℎ

𝜕𝑥
)𝜔𝑖,𝑗𝑑𝑆

S

+∬
𝜕

𝜕𝑥
(𝐶 + 𝐷

𝜕ℎ

𝜕𝑥
)𝜔𝑖,𝑗𝑑𝑆

S

 
(11) 

For any 𝜔𝑖,𝑗 ∈ 𝑊̃2
0(1)
.  Here 𝑊̃2

0(1)
 is the space of square-

integrals functions, together with their first derivatives, equal 

to zero on the boundary 𝐵  and taking arbitrary fixed values 

within the area  𝑆 [23].  

Applying in equation (11) Green’s formula we obtain:  

∬
𝜕ℎ

𝜕𝑡
𝜔𝑖,𝑗𝑑𝑆 =

S

 −∬(𝐴 + 𝐵
𝜕ℎ

𝜕𝑥
)
𝜕𝜔𝑖,𝑗𝑑𝑆

𝜕𝑥
S

−∬(𝐶 + 𝐷
𝜕ℎ

𝜕𝑦
)
𝜕𝜔𝑖,𝑗

𝜕𝑦
𝑑𝑆

S

. 
(12) 

Afterwards, let's proceed to the construction of the 

approximating scheme. In the  𝑆  area we construct a grid 

rectangular area the 𝑆𝑛  with a step the 𝑎 = ∆𝑥  and  𝑏 = ∆𝑦.  

Triangulate the area by separating the rectangles of the grid 

with diagonals of positive direction. The projection-difference 

scheme will be built as following: to each node of the grid of   

(𝑥𝑖 , 𝑦𝑗) of 𝑆𝑛 area we put in accordance with Courant function 

𝜔𝑖,𝑗, which is equal to 1 in this node and equal  to 0 in all other 

nodes of the grid:  

𝜔𝑚,𝑛(𝑥𝑖 , 𝑦𝑗) = {
1, (𝑖, 𝑗) = (𝑚, 𝑛)
0, (𝑖, 𝑗) ≠ (𝑚, 𝑛)

 .                        (13) 

The functions 𝜔𝑚,𝑛(𝑥𝑖 , 𝑦𝑗) have a hexagon carrier represented  

in Fig. 2. 

 
  Fig. 2. Finite element 
Interpolation functions of 𝜔𝑖,𝑗 are defined as following: 

(𝑥, 𝑦) =

{
  
 

  
 
(𝑥𝑖+1,𝑗 − 𝑥)/𝑎, ………………… …  at(𝑥, 𝑦) ∈ ∆1;
(𝑦𝑖+1,𝑗 − 𝑦)/𝑏, ………………… … at(𝑥, 𝑦) ∈ ∆2;

(𝑥 − 𝑥𝑖,𝑗)/𝑎 + (𝑦𝑖,𝑗+1 − 𝑦)/𝑏, ……  at(𝑥, 𝑦) ∈ ∆3
(𝑥 − 𝑥𝑖−1,𝑗)/𝑎, ………………… …  at(𝑥, 𝑦) ∈ ∆4;

(𝑦 − 𝑦𝑖,𝑗−1)/𝑏, ……………………  at(𝑥, 𝑦) ∈ ∆5;

;

(𝑥𝑖+1,𝑗 − 𝑥)/𝑎 + (𝑦𝑖,𝑗+1 − 𝑦)/𝑏, …  at(𝑥, 𝑦) ∈ ∆6.

     (14) 

 

The values of the derivatives of 𝜔𝑖,𝑗  functions on the base 

triangles will be constant. They are presented in the Table 1.  

 

Table 1. Derivatives of base functions 

       Triangles 

 Functions ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 

𝜕𝜔𝑖,𝑗

𝜕𝑥
 −

1

𝑎
 0 

1

𝑎
 

1

𝑎
 0 −

1

𝑎
 

𝜕𝜔𝑖,𝑗

𝜕𝑦
 0 −

1

𝑏
 −

1

𝑏
 0 

1

𝑏
 

1

𝑏
 

 

The approximate solution of equation (12) may be presented in 

the following form: 

ℎ = ∑ ℎ𝑖,𝑗(𝑡)𝜔𝑖,𝑗(𝑥, 𝑦)𝑖,𝑗∈𝑆𝑛                 (15) 

The function 𝜔𝑖,𝑗(𝑥, 𝑦)  is non-zero only in six triangles of the 

area adjacent to the angle𝜔𝑖,𝑗(𝑥𝑖 , 𝑦𝑗). Therefore, the integration 

in equation (12) was carried out only by combination of these 

triangles. The function ℎ𝑖,𝑗(𝑥, 𝑦) looks like (decomposing into 

a Taylor series in the neighborhood of point (𝑖, 𝑗)  and keeping 

the first two terms):  

ℎ𝑖,𝑗(𝑥, 𝑦) =

{
  
 

  
 
ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦(𝑦 − 𝑦𝑖,𝑗), −   in ∆1;

ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦(𝑦 − 𝑦𝑖,𝑗), − in ∆2;

ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥̅(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦(𝑦 − 𝑦𝑖,𝑗), − in ∆3;

ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥̅(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦̅(𝑦 − 𝑦𝑖,𝑗), − in ∆4;

ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥̅(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦̅(𝑦 − 𝑦𝑖,𝑗), − in ∆5;

ℎ𝑖,𝑗 + ℎ(𝑖,𝑗)𝑥(𝑥 − 𝑥𝑖,𝑗) + ℎ(𝑖,𝑗)𝑦̅(𝑦 − 𝑦𝑖,𝑗), − in ∆6.

   (16) 

Derivatives ℎ𝑖,𝑗   on the triangles of area 𝑆𝑛  are shown in the 

Table 2.   

 

Table 2. Derivative functions hi,j   

                Triangles 

Functions 

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 

𝜕ℎ𝑖,𝑗

𝜕𝑥
 

ℎ𝑖+1,𝑗 − ℎ𝑖,𝑗

𝑎
 

ℎ𝑖+1,𝑗+1 − ℎ𝑖,𝑗+1

𝑎
 
ℎ𝑖,𝑗 − ℎ𝑖−1,𝑗

𝑎
 

ℎ𝑖,𝑗 − ℎ𝑖−1,𝑗

𝑎
 

ℎ𝑖,𝑗−1 − ℎ𝑖−1,𝑗−1

𝑎
 
ℎ𝑖+1,𝑗 − ℎ𝑖,𝑗

𝑎
 

𝜕ℎ𝑖,𝑗

𝜕𝑦
 

ℎ𝑖+1,𝑗+1 − ℎ𝑖,𝑗+1

𝑏
 

ℎ𝑖,𝑗+1 − ℎ𝑖,𝑗

𝑏
 

ℎ𝑖,𝑗+1 − ℎ𝑖,𝑗

𝑏
 
ℎ𝑖−1,𝑗−1 − ℎ𝑖−1,𝑗

𝑏
 

ℎ𝑖,𝑗 − ℎ𝑖,𝑗−1

𝑏
 

ℎ𝑖,𝑗 − ℎ𝑖,𝑗−1

𝑏
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To find coefficients of  ℎ𝑖,𝑗(𝑡) using a quadrature formula to 

calculate the evolutionary term, equation (12) was written as: 

(∬
𝜕ℎ

𝜕𝑡
𝜔𝑖,𝑗𝑑𝑆

S

)
𝑑ℎ𝑖,𝑗

𝑑𝑡
+∬(𝐴 + 𝐵

𝜕ℎ

𝜕𝑥
)
𝜕𝜔𝑖,𝑗

𝜕𝑥
𝑑𝑆 

S

 

+∬(𝐶 + 𝐷
𝜕ℎ

𝜕𝑦
)
𝜕𝜔𝑖,𝑗

𝜕𝑦
𝑑𝑆 = 0.

S

 

(17) 

Substituting into (17) the expression (15), we get: 

𝜃
𝜕ℎ⃗⃗ 

𝜕𝑡
+ 𝐸ℎ⃗ = 0,  ℎ⃗ (0) = ℎ⃗ 0,  𝜃 = ∆𝑥𝑦 = 𝑎𝑏          (18)      

It should be noted that approximate equations were used for 

approximations of the temporal term: 

    (ℎ⃗ ̇, 𝜔𝑖,𝑗) = 𝜃ℎ⃗ ̇ 𝑖,𝑗                       (19)  

This allows us to consider the Cauchy problem instead of 

general evolutionary problem with the averaging operator at a 

temporal term and allows to simplify calculations. As it is 

known, the approximation properties do not change [11].  

In eq.18, the coefficients are equal to: 

𝐸1 =
𝑏

6𝑎
(4𝐵𝑖,𝑗 + 2𝐵𝑖+1,𝑗 +𝐵𝑖+1,𝑗+1 +𝐵𝑖,𝑗+1 + 2𝐵𝑖−1,𝑗 +𝐵𝑖,𝑗−1) 

+
𝑎

6𝑏
(𝐷𝑖+1,𝑗+1 + 2𝐷𝑖,𝑗+1 + 𝐷𝑖−1,𝑗 +𝐷𝑖−1,𝑗−1 + 2𝐷𝑖,𝑗−1 + 𝐷𝑖+1,𝑗); 

𝐸2 =
𝑏

6𝑎
(2𝐵𝑖,𝑗 + 2𝐵𝑖+1,𝑗 + 𝐵𝑖+1,𝑗+1 + 𝐵𝑖,𝑗−1) 

𝐸3 =
𝑎

6𝑏
(2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗+1 + 2𝐷𝑖,𝑗 + 𝐷𝑖−1,𝑗)          

𝐸4 =
𝑏

6𝑎
(2𝐵𝑖,𝑗 + 𝐵𝑖,𝑗+1 + 2𝐵𝑖−1,𝑗 + 𝐵𝑖−1,𝑗−1) 

𝐸5 =
𝑎

6𝑏
(2𝐷𝑖,𝑗 + 𝐷𝑖−1,𝑗−1 + 2𝐷𝑖,𝑗−1 + 𝐷𝑖+1,𝑗) 

𝐹 =
𝑏

6
(𝐴𝑖+1,𝑗 + 𝐴𝑖+1,𝑗+1 − 𝐴𝑖,𝑗+1 − 𝐴𝑖−1,𝑗 − 𝐴𝑖−1,𝑗−1 + 𝐴𝑖,𝑗−1) 

+
𝑎

6
(𝐶𝑖+1,𝑗+1 + 2𝐶𝑖,𝑗+1 − 𝐶𝑖−1,𝑗 − 𝐶𝑖−1,𝑗−1 − 2𝐶𝑖,𝑗−1 − 𝐶𝑖+1,𝑗). 

(20) 

 

To construct temporal approximations associated with solving 

equations (20), Crank-Nicholson schemes can be used, which 

provide a second order of approximation of time [11]. We 

approximate problem (20) as follows: 

   ℎ𝑖,𝑗
𝑚+1 [

𝑎𝑏

∆𝑡
+
𝐸1

2
] − ℎ𝑖+1,𝑗

𝑚+1 𝐸2

2
− ℎ𝑖,𝑗+1

𝑚+1 𝐸3

2
− ℎ𝑖−1,𝑗

𝑚+1 𝐸4

2
− ℎ𝑖,𝑗−1

𝑚+1 𝐸5

2
= 

= ℎ𝑖,𝑗
𝑚 [

𝑎𝑏

∆𝑡
−

𝐸1

2
] + ℎ𝑖+1,𝑗

𝑚 𝐸2

2
+ ℎ𝑖,𝑗+1

𝑚 𝐸3

2
+ ℎ𝑖−1,𝑗

𝑚 𝐸4

2
+ ℎ𝑖,𝑗−1

𝑚 𝐸5

2
+ 𝐹.     (21) 

Eq.(21) under the corresponding boundary, the conditions and 

initial data are effectively solved by the upper block relaxation 

method. 

Solving the problem of changing the topography of the bottom 

requires wave and coastal current data, that were calculated in 

[7].  According to the equations (8) determining the velocity of 

sediment transport we get: 

𝑞𝑥 = 𝐹𝑑𝑄𝑤𝑢̂𝑏cos𝛼 + 𝑄𝑐𝑈;  𝑞𝑦 = 𝐹𝑑𝑄𝑤𝑢̂𝑏sin𝛼 + 𝑄𝑐𝑈     (22) 

where    

𝑄𝑐 = 𝐴𝑐(𝜏𝑚 − 𝜏𝑐𝑟)/𝜌𝑔,  𝑄𝑤 = 𝐴𝑤(𝜏𝑚 − 𝜏𝑐𝑟)/𝜌𝑔,     

𝐹𝑑 = tanh (𝑘𝑚𝑑
Π𝑐 − Π

Π𝑐
) ; 

𝑈  and 𝑉  are averaged flow rates; 𝑢̂𝑏 near-seabed orbital 

velocity amplitude; 𝛼_ wave propagation angle relative to the x-

axis; 𝐴𝑤
_ coefficient, which values are in the range of 0.2 − 0.9; 

𝐴𝑐
_ dimensionless coefficient of the order, about 0.1 − 1; 𝜏𝑚 

_ 

the maximum seabed shear stress is equal to 𝜏𝑚 =
1

2
𝜌𝑓𝑐𝑤𝑢̂𝑏

2 ; 

𝑓𝑐𝑤
_ coefficient of seabed friction together with the waves and 

flows and is equal to 𝑓𝑐𝑤 = 0.07 − 0.1; _ critical seabed shear 

stress to start sediment movement: 

 in the surf zone  𝜏𝑐𝑟 = 0 , out of the surf zone     

𝜏𝑐𝑟  = 𝜓𝑐  (𝜌𝑠 − 𝜌)𝑔𝑟𝑎𝑑tanh
2(𝑘𝑐𝑥𝑏/𝑋𝑏)             (23) 

𝜓𝑐    is the critical value of the Shields parameter which is equal 

to: 

        𝜓𝑐 = {
0,11  _  if  𝑑/𝛿𝐿 < 1/6.5
0,06  _  if  𝑑/𝛿𝐿 > 1/4

 ,                (24) 

𝑑 is characteristic diameter of beach-forming sediment (sand); 

𝛿𝐿 = √𝑣𝑇/𝜋  _ the thickness of the near-seabed layer; 𝑣 _ 

kinematic viscosity and 𝑣 = 1.306 ∙ 10−6𝑚2/𝑆, at 𝑡 = 10°; 

Π  calculated by the eq.6.  Π𝑐  is is a critical value of Π at the 

zero point (where transverse sediment transport is zero). Values 

of Π𝑐   the order of unity are determined by the calibration 

calculations (𝑆 = (𝜌𝑠 − 𝜌)/𝜌). 

The five-point eq.20 

−ℎ𝑖−1,𝑗
𝑚+1𝐸4 + ℎ𝑖,𝑗

𝑚+1 [
2𝑎𝑏

∆𝑡
+ 𝐸1] − ℎ𝑖+1,𝑗

𝑚+1𝐸2 = ℎ𝑖,𝑗+1
𝑚+1𝐸3 − ℎ𝑖,𝑗−1

𝑚+1𝐸5 + 

+ℎ𝑖,𝑗
𝑚 [

2𝑎𝑏

∆𝑡
− 𝐸1] + ℎ𝑖+1,𝑗

𝑚 𝐸2 + ℎ𝑖,𝑗+1
𝑚 𝐸3 + ℎ𝑖−1,𝑗

𝑚 𝐸4 + ℎ𝑖,𝑗−1
𝑚 𝐸5 + 2𝐹. (25) 

 

II.II. Computing Experiments 

Equation (25) is solved by upper relaxation method [11]. The 

solution requires to determine the size of the computation area, 

the grid interval and time increments that depends on the 

modelling area.  Topographic maps of the investigated area are 

used as an initial condition. For the purpose of calibrating the 

model or adjusting various coefficients, bathymetric 

observations at various stages of the past are very significant. 

The offshore border was taken at such a distance from the coast, 

where it is known in advance that changes in the topography of 

the seabed will be negligible. For the Poti coast such a border 

is at a depth of 10-15 m [19].     

The existing model of sediment transport and seabed 

topography changes includes seven coefficients𝐴𝑐 ,,𝐴𝑤, 𝜏𝑐𝑟 , 𝑘𝑐 , 
Π𝑐 , 𝑘𝑑, 𝜀𝑠. The variables for different areas of the coastal zone 

are different and determined by computational experiments. 

Coefficients 𝐴𝑐  and 𝐴𝑤 in transport of sediments equations are 

taken respectively 0.1 and 1.  The values of   𝐴𝑐  and 𝐴𝑤 should 
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be calibrated by comparing the calculated results of the coastal 

changes with measurements in the areas, where the solution is 

known in advance. The critical share stress 𝜏𝑐𝑟  is determined 

from equations (23)-(24), where 𝑘𝑐   is taken on the order of 

unity. The value of the coefficient Π𝑐  is assumed to be 0,16 and  

𝑘𝑑 = 2 , they should be further clarified by calibration 

calculations. Calibration calculations are also required for the 

coefficient 𝜀𝑠,  which controls the effect of slope of the seabed. 

This coefficient has the additional effect of suppressing not 

only physical, but also numerical computational disorders. 

Initial values of   are taken in the range 1–10. 

While solving equation (25), we consider the coastal area, 

which is located at the southern mole of the port of Poti. The 

location of the grid is shown in Fig.3. The x-axis is 

perpendicular to the shore and the y-axis is parallel. The 

intervals of the grid partition are equal to  𝑎 = ∆𝑥 = 5𝑚,  𝑏 =
∆𝑦 = 50𝑚. On the x-axis is 141 points, and on the y-axis - 13, 

total of 1833 points. 

In the first step, the initial topography of the coast and the 

geometry of the structures are given as input parameters. Then, 

the coastal wave field for the prescribed conditions of the initial 

wave is calculated. The calculated wave field is used to 

estimate the spatial distribution of radiation and near-seabed 

orbital velocities. The calculation of coastal flows follows the 

wave field [18]. Coastal wave and current fields are used in a 

sub-model of sediment transport and coastal topography 

changes. 

 

Fig. 3. Scheme of the modelling area 

Let us consider an example when sea waves are caused by 

western waves with a height of 1 m, a period of 4 seconds and 

a length of 25 m. The diameter of the sand grains is taken in the 

range of 0.2 - 0.3 mm. 

The results of the numerical solution are shown in Fig. 4-6. 

Model time is 180 minutes; time step is 0.001 seconds. When 

calculating the average elevation of sea level, the initial value 

was 0.1 m, which corresponds to real conditions. Changes in 

sediment transport rates in the transverse direction to the coast 

and along the coast are shown in Fig. 4-6. 

 

Fig. 4. Sediment transport rates  qx[m2/s], at   i=1-141,  j=5 

 

Fig. 5. Sediment transport rates  qy[m2/s] at i=1-141, j=5 

 

 
Fig. 6. Changing the seabed topography ∆h[m] at  i=1-141, 

j=5 

 

III. CONCLUSION 

Wave motion, coastal flows and changes in coastal topography 

are interrelated. To include this interaction in the model, an 

additional iteration of the wave calculations, the flow and the 

change in the topography of the bottom with a rather short time 

interval is required. However, the computation time for the sub-

models is not enough to allow a multiple number of nested 

iterations. Practically, time interval for performing iterations 

should be determined by considering the expected accuracy of 

the solution, as well as the required calculation time. 

 From Fig. 4 it is clear that, when the sediment transport 

velocity 𝑞𝑥  is disturbed at water depths of 10-15 m, it is almost 

zero. They become significant only at depths of 8-10 meters at 

𝑖 = 50– 141 ; 𝑗 = 1– 13 . In the case of western waves, the 

sediment transport rate 𝑞𝑥 is directed against the x-axis, their 

maximum values vary in the range of 0.0015-0.0022 m2/s. The 

sediment transport rate along y-axis in this case is insignificant. 

It manifests itself at points 𝑖 = 20– 40;    𝑗 = 1– 12, which is 

caused by the flow of water in the direction of the y-axis (Fig. 

5). The maximum values of sediment transport rates 𝑞𝑦are in 

the range of 0.00001-0.000013 m2/s [4]. 

Calculation results of the changes in the topography of the 

seabed in the coastal zone are presented in the Fig. 6. A 

negative value of  ∆ℎ  corresponds to coastal erosion and a 

positive value corresponds to accumulation and  ∆ℎ   varies 

from 0,29 to 0,26 m. In the surf zone at  𝑖 = 120– 141; 𝑗 =
1– 9, costal erosion is observed. After calibration of the model, 

additional numerical calculations were carried out for Poti on 

the Black Sea coast in the areas north and south of the runoff of 

the “city channel” on the old river-bed of Rioni River (Fig. 1). 

As a result, we get: 

 From the place of runoff of the “city canal” of the old 

riverbed of the Rioni River (Fig. 1; 3) to the protective 

breakwater (Fig. 1; 4), the average annual costal erosion 

rate is approximately 7–8 m/year; 

 South of the runoff of the “city canal” of the old riverbed 

of the Rioni River (Figs. 1, 3), the average annual erosion 

rate is approximately 8–10 m/year; 
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 The shortage of beach-forming material in this area of the 

coast is approximately 200,000 - 250,000 m3/year. 
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