
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3082

A Study on The Effects of Block-Based Computing Language on

Algorithmic Problem Solving

Jungin Kwon

Assistant Professor, Department of General Studies, Sangmyung University, Seoul, Korea.

ORCID: 0000-0001-7120-0964

Abstract

With the recent rapid development of the knowledge

information age, SW-oriented creative and convergent talent is

emerging as a keyword of future society. In recent years, SW

education centered on majors has been spreading to non-majors

and computing language and algorithm education for non-

majors have become necessary. However, in the university

where SW education centered on existing major was

implemented, the curriculum, evaluation, and education system

of SW education centering on the non-major is not yet

structured. In this study, the curriculum was designed and

systematically organized in the SW education of the non-

majors, and the curriculum was created and used in the actual

class. The main problem of the SW education of the non-major

is that they have a preconceived notion that the SW education

is difficult. Based on the previous study, the training should be

preceded by a procedural listing of the non-major idea. We

designed and taught curriculum based on block-based

computing language. After that, we conducted a pre-post

evaluation of motivation for learning by non-major. In addition,

the algorithm training focused on sequential experience in

problem solving and conducted pre-post evaluation. The results

show that block-based computing languages have an effect on

procedural listing of problem solving, comprehension of

computing concepts, and expression of algorithms, but do not

affect the choice of efficient algorithms. Based on this research,

we hope to develop various education methods of block-based

computing language for curriculum and educational motivation

for SW education of non-major students.

Keywords: Computational Thinking, Block-based Computing

Language, SW Education, Problem Solving, Algorithm Ability

I. INTRODUCTION

Recently, the importance of SW education and Computational

Thinking is emerging due to the rapid development of

knowledge information age. Wing(2006) suggested a new

paradigm of information society education, arguing that all

people should learn and study Computational Thinking as well

as learning how to read and write[1].

This kind of SW education frenzy is spreading to all academic

and industrial fields, and SW-oriented creativity and fostering

human resources are emerging as key keywords of future social

talents. Therefore, SW education based on Computational

Thinking is emphasizing the importance of SW education for

non-major students[2], as it aims to expand education

opportunities not only for majors in a specific academic field

but also for non-majors.

However, most of the non-major students have not received

systematic SW education at all through the curriculum. In

addition, most of these students’ lack awareness of the need for

SW education or are significantly less interested in SW

education. For non-major students with these characteristics,

the interest in SW education should be given priority over SW

education. Therefore, SW education centered on the non-major

students should provide various education opportunities to

understand and integrate SW in each academic field in order to

stimulate interest and motivation of learning. It should be

composed of education that can understand and utilize SW

from the viewpoint of non-major students[2].

In this study, we developed a SW course based on the concept

and definition of Computational Thinking in order to

understand the principles of computer science for non-major

students and apply it to real life. The developed software course

was conducted in the 2016, the first and the second semester of

SW education for non-major students. Then we investigated the

effect of block-based computing language on the list of

algorithmic problem solving of non-major students.

II. RELATED WORK

II.I. Computational Thinking

The Computational Thinking was first described by Seymour

Papert in an attempt to create a geometric thinking in 1996, and

was more widespread by Wing[1].

Wing(2006, 2008) is a computer scientist’s view of how to

solve problems involving recursive thinking, abstract thinking,

positive thinking, procedural thinking, logical thinking,

concurrent thinking, analytical thinking and strategic thinking

about the use of computer thinking[1],[3]. Therefore, he

defined Computational Thinking as an analytical and

procedural thinking process that must be learned to solve

problems. Phillips(2007) and Perkovic(2010) saw

Computational Thinking as more than just a skill for learners,

but they saw thinking processes that improved people's

intelligence[4],[5]. Thus Computational Thinking is not only a

tool that can enhance the problem solving methods that we are

already aware of and are currently teaching but also a measure

of nurturing knowledge that enables one to view or approach

complex or unstructured problems that could not be solved in

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3083

the past. Therefore, Computational Thinking is defined as a

process of analytical and procedural thinking to creatively

solve problems in various fields.

Computer Science Teachers Association(CSTA)and

International Society for Technology in Education(ISTE)

classify the key concepts of information scientific thinking and

abilities, based on David Barr, John Harrison, & Leslie

Conery’s(2011) study, into Data Collection, Data Analysis,

Data Representation, Problem Decomposition, Abstraction,

Algorithms & Procedures, Automation, Simulation and

Parallelization, and suggest Computational Thinking as a

standard computer science education process of K-

12[6],[7],[9],[10]. The nine key concepts of Computational

Thinking are shown in Table 1.

Table 1 Computational Thinking Main Concepts

[6],[7],[8],[9],[10]

Concept Definition

Data Collection
Problem understanding, analysis and collect data

based on analysis to solve the problem

Data Analysis
Carefully sorting and analyzing the data

collected and data provided in the problem

Data

Representation

Express data in problem using graphs, charts,

words and images

Problem

Decomposition

Dividing and analyzing the problem to solve the

problem

Abstraction
Defining the main concepts to reduce the

complexity of the problem

Algorithm &

Procedures

Expressing the steps required to solve the

problem until now

Automation
Creating an algorithm of the solution procedure

for a computing machine to carry it out

Simulation
Creating an experimental model to solve the

problem

Parallelization
Coming up with a common objective to solve a

problem

II.II. Non-Major Students for SW Education

As SW-oriented society spreads, each university is

strengthening the training of SW talent with problem solving

ability. It also includes SW basic education for non-major

students, and encourages the development of SW curriculum

design and support programs centering on non-major students.

However, it is somewhat unreasonable to think that the

curriculum or the curriculum provided so far is the

development of the curriculum or the curriculum for the non-

major students.

SW education for non-major students should develop an

algorithmic tendency to solve the problem in a given field of

study rather than focus on program development or coding. In

other words, the SW education of non-major students should

focus on improving the problem-solving ability of SW to solve

the problems that can occur in each field of study. Most of the

non-major students are having difficulty in implementing the

problems given to them in SW, and they are afraid of the SW

itself. The reason for non-major students feel difficult is

because most of the curriculum and education forms are

conducted and evaluated in the same way as those of the majors.

Even if the interests and interests of SW subjects are high, the

introduction of the curriculum of the same method as that of the

major and the introduction of the part of the curriculum given

to the major can reduce the interest and interest of the SW

educator. In addition, there is no educational contents in the SW

course based on Computational Thinking, which is recently

recognized as important. Computational Thinking based SW

education for non-specialists focuses on algorithmic

representation of problem solving rather than past coding

education or SW development education.

Therefore, this study aims to design the development of

curriculum for SW education based on Computational

Thinking and to measure the effectiveness of algorithm solving

by non-major students.

II.III. Design of a SW Course using Block-based Computing

Language

The block-based programming language provides the

commands necessary for programming in block form. It is also

possible for a novice learner to easily experience the

programming concept by programming a combination of

necessary commands by selecting blocks[11],[12].

Wang(2015) reported that students who were majoring in

engineering were more likely to achieve high levels of

achievement when they were taught block-based languages

such as App Inventors developed by MIT as the computing

language of the first programming classes[13]. Kolling &

Rosenberg(1996) general beginners use a "line by line"

approach rather than approaching from the big structure aspect

of development in programming courses, and spend less time

in designing and testing code. And that they tend to write

programs with only simple error correction[14].

O'Neillas(2012) stated that students can develop computer-

based thinking skills and problem-solving skills using the

Scratch language and find immediate solutions to problems[15].

Based on the results of the study that block-based computing

language can reduce the fear of inducing excitement and

programming of non-major students, we designed SW courses

using block-based computing language for non-major students.

 The goal of SW courses using block-based computing

language for non-major students is as follows.

First, it aims to understand the principles of computer science

and recognize the importance of SW by real life and academic

field. It gives the importance and motivation of the SW

education through the past cases which were able to present the

practical problems that can be encountered through the real life

experience to the non-major students and solve it with the

principle of computer science.

Second, we develop a course that focuses on the algorithmic

sequence of the problem solving ability enhancement based on

the Computational Thinking. Sequence of solutions to

problems that may arise in real life or each discipline is listed

in sequence, and a method of sequencing the process of

changing from problem to solving situation is presented.

 Third, we focus on SW education that reflects characteristics

of each major so that non-major students can solve problems in

the major field through SW. We provide motivation for

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3084

learning by presenting problem situation in each field related to

major of students.

Fourth, it aims to improve the sequential problem solving

ability based on Computational Thinking. Consider the

improvement of problem solving ability based on

Computational Thinking by presenting the nine key elements

of problem solving process proposed by CSTA (Computer

Science Teachers Association) and ISTE (International Society

for Technology in Education) do.

Fifth, programming is applied to select algorithm considering

efficiency among various methods of problem solving. It needs

to understand that there are various solutions for problem

solving in the same situation, and to find a way to choose a

more efficient algorithm.

III. METHOD

III.I. Curriculum Development

After the design of SW education based on Computational

Thinking for non-major students, we developed two subjects

such as ‘Computational Thinking and SW Coding' and

'Problem Solving and Algorithm'. The period of these courses

development is from October 10, 2015 to July 1, 2016, and the

overall schedule for the curriculum development is shown in

Table 2.

Table 2. Course Development Schedule

Time Schedule

2015. 10. Course development decision

2015. 11.
First-rate data preparation and expert

opinion hunting

2015. 12.
Conducting expert reviews after preparing

secondary data

2016. 1.
Use it as teaching materials for preparatory

college

2016. 2. After the revision, experts are evaluated.

III.I.I. Curriculum Development

'Computational Thinking and SW coding' is a course to raise

the awareness of the principle of computer science, trend of the

latest IT technology and importance of information society for

non-major students who are new to SW. 'Computational

Thinking and SW coding' is designed to learn the basic

concepts of software through the theoretical education to

understand the importance of computer science and SW

education, and the principles of computer operation in the basic

concept of SW education for non-major students. In the middle

part, it includes the problems solving procedure and application

process based on the concept of Computational Thinking.

In addition, the practical training is aimed at procedural listing

of problem solving through block-based computing language

Entry. A block-based computing language Entry is a block-

based visual programming language similar to Scratch. It is a

software education platform developed by the Institute of Entry

Education. It is composed of easy interface shown in Figures 1.

Fig. 1. Menu of Entry[12]

Entry can create animations, stories, games, etc. in a similar

way to learners' scratches, and they can easily make corrections,

exchanges, and extensions through the sharing of produced

programs. Therefore, it is a computing language that somewhat

supersedes the problems of excessive grammar learning and

error correction in the existing programming language learning

of non-major students. Entry can be more intuitive to

Computational Thinking than traditional programming

languages and focus on solving problems of a given task. The

strength is that it provides much more objects than scratches,

so that users can easily utilize necessary pictures or characters.

The course design is shown in Table 3.

Table 3. Design of Computational Thinking and SW

Coding Course

Key

Concepts

Theoretical

education
Practical training

Understanding

the Principles

of Computer

Science

Computer

science and

SW education

Unplugged activity

Principle of

computer

operation and

data

representation

Introduction and usage of

Entry

The

development

of the latest IT

technology

Entry basic example

Concept of

Computational

Thinking

Sequence / Event / Signal

Example

Concept and

Application of

Computational

Thinking

Solving

problems

based on

Computational

Thinking

Entry Application Example

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3085

Understanding

SW principles
Example of variables and lists

Procedures for

Problem

Solving

Variables and

lists
Operator example

Understanding

Logic

Operations

Selection example

Understanding

the control

statements

Repeat logic example

Understanding

iterative logic
Repeat logic example

Differentiating

the differences

between loops

Function Example

Understanding

the concept of

functions

Sort and Search

Understanding

navigation and

alignment

Advanced Example

III.I. II. Development of ‘Problem Solving and Algorithm’

Course
The course of ‘Problems Solving and Algorithm’ is aimed at

improving efficiency in sequential listing if ‘Computational

Thinking and SW coding’ are aimed at increasing interest in

SW education of non-major learners and sequential list of

problem solving. ‘Problem Solving and Algorithm’ are

designed to help students choose the efficiency of the process

of solving problems based on their athlete knowledge,

experience, and thinking to solve the problems presented in the

story rather than simply coding the program to solve the

problem Education.

To solve the disadvantages of block-based computing language,

problem solving and algorithmic training were conducted using

python, a text-based language. The course design is shown in

Table 4.

Table 4. Design of Problem Solving and Algorithm Course

Key Concepts
Theoretical

education
Practical training

Procedures for

Problem

Solving

Necessity and

process of

problem solving

Concept of Physical

Computing

Step-by-step

procedure for

problem solving

Use of physical computer

Concept and

purpose of data

structure

Python data entry

Various

Problem

Solving

Methods

Solution

Techniques for

Puzzle Problems

Python Data Handling

Techniques for

solving logical

problems

Program flow control

Solution

Techniques for

Information

Science

Problems

Working with graphics

Choosing

Efficient

Problem

Solving

Methods

Data sorting

technique
Program flow control

Data search

technique
Writing functions

Brute Force

Algorithm
Sorting technique

Divide and

Conquer

Algorithm

Object-Oriented Program

Concepts

III.II. Subjects and Characteristics of Research

This study was conducted to investigate the satisfaction of the

subjects of 546 students in the ‘Computational Thinking and

SW Coding' and 'Problem Solving and Algorithm' subjects of

the non-major students. The specific characteristics of the

respondents are shown in Table 5.

Table 5. Characteristics of Study Subjects (n=546)

Item Division
Number

(persons)

Ratio

(%)

Sex

Male 245 44.9

Female 301 55.1

Major

Department of Humanities &

Social
364 26.1

Department of Social &

Science
182 8.7

The questionnaire survey was conducted on a total of 20

questionnaires on a scale of 6 points. The contents of

questionnaires were self-assessed on the satisfaction of the

teaching plan, the satisfaction of contents composition, and the

improvement of Computational Thinking after learning. The

aggregation of the questionnaire was very similar, yes, slightly

negative, positive, not at all, not so, slightly negative. The

results of the questionnaire are shown in Table 6.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3086

Table 6. Survey Results for Positive Responses (n=546)

Survey contents

Computational

Thinking &

SW Coding

(%)

Problem

Solving &

Algorithm

(%)

Understanding the

Principles of Computer

Science

61.4 71.8

Concept and Application of

Computational Thinking
85.0 78.3

Procedures for Problem

Solving
63.3 76.7

Various Problem Solving

Methods
71.7 82.9

Choosing Efficient Problem

Solving
60.0 81.0

The results of the survey showed that most of the students were

satisfied with the developed textbooks and that they understood

the importance of the information society through the textbooks

of this class and recognized the importance of problem solving

ability based on Computational Thinking.

III. III. Experimental Design

The experimental design of the study verified the effectiveness

of the block-based computing language on the algorithmic

expression through the learner’s dictionary and post-test.

Q1 X Q2

Q1 : Pre-test

X : Conduct Block-based Computing Language

 Education

Q2 : Post-test

In order to measure the effectiveness of the algorithmic

expression on the problem solving, a total of 40 questionnaires

were used and 4 factors were measured using the 22nd

questionnaire. As a result of the factor analysis, the factor of

the algorithm expression was composed of procedural listing of

problem solving, understanding of computing concept,

expression of algorithm, and factors of selection of efficient

algorithm.

According to Nunnally(1978), Van de Van & Ferry(1980)

reported that the reliability of the measurement tool was not

problematic when the exploratory research field was 0.6 or

more. Therefore, in this study, Cronbach alpha coefficient was

used to measure the internal consistency reliability of each

factor. The measurement reference value was set to 0.6 or

more[16],[17]. The results of the analysis of reliability are

shown in Table7.

Table 7. Reliability Verification Results

Concept

Variable
Question

Pre-test

Cronbach α

Post-test

Cronbach α

Procedural

Listing

Q_2

0.794 0.808

Q_3

Q_5

Q_6

Q_9

Understanding

Computing

Concepts

Q_11

0.649 0.716

Q_14

Q_15

Q_17

Q_18

Q_19

Representation of

Algorithms

Q_21

0.863 0.961

Q_23

Q_25

Q_26

Q_29

Q_30

Choosing

Efficient

Algorithms

Q_31

0.890 0.881

Q_37

Q_38

Q_39

Q_40

IV. Results

In order to investigate the effect of block-based computing

language on algorithmic problem solving, pre-post t-test was

performed on four factors.

Table 8 shows the results of verifying the preliminary results of

procedural listing. The mean value increased from 3.84 to 3.97

and the significance probability was also smaller than 0.05,

which was statistically significant.

Block-based computing language has been shown to affect

procedural ordering.

Table 8. Procedural Listing

 M n SD t df p

Pre-test 3.84 546 0.34

6.789 545 .000
Post-

test
3.97 546 0.50

p<0.05

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3087

Table 9 shows that the mean value increased from 3.15 to 4.01

and the significance probability was also less than 0.05 as a

result of preliminary examination of the reflection of the

Computational Thinking concept, so there was a statistically

significant difference.

Block-based computing language has an effect on

understanding of Computational Thinking concept.

Table 9. Understanding Computational Thinking Concepts

 M n SD t df p

Pre-test 3.15 546 0.56

2.876 545 .001 Post-

test
4.01 546 0.23

p<0.05

Table 10 shows the result of verifying the pre & post-test of the

algorithmic expression. The mean value increased from 2.79 to

3.01, and the significance was also less than 0.05, which was

statistically significant.

In other words, it is shown that block-based computing

language affects algorithmic representation.

Table 10. Algorithmic Representation

 M n SD t df p

Pre-

test
2.79 546 0.43

3.862 545 .012
Post-

test
3.01 546 0.33

p<0.05

Table 11 shows the result of the preliminary examination of the

selection of efficient algorithms. The mean value increased

from 3.57 to 3.69, but there was no statistically significant

difference because the significance probability was greater than

0.05.

 In other words, the block-based computing language does not

affect the selection of efficient algorithms.

Table 11. Selection of Efficient Algorithm

 M n SD t df p

Pre-

test
3.57 546 0.32

1.796 545 .055
Post-

test
3.69 546 0.97

p<0.05

As a result of verifying that the block-based computing

language has effects on procedural listing of problem solving,

understanding of computer concept, expression of algorithm,

and selection of efficient algorithm, which are factors of

algorithmic problem solving, The procedural listing of the

solution, the understanding of the computer concept, and the

expression of the algorithm, but does not affect the choice of

the efficient algorithm.

 Thus, it was concluded that block-based computing language

is effective as a language of basic education that can attract

interest and interest in SW education of non- major.

V. CONCLUSION

Recently, the rapid development of the future knowledge-

based society has been focused on the improvement of problem

solving ability based on the SW. As the necessity of SW

education and training course is claimed, attention is focused

on software education and supply and demand of SW talent is

urgent. However, at the universities where SW education

centered on existing majors focused on, the curriculum,

evaluation, and education system of SW education centering on

the non-specialized ones have not yet been systematized.

In this study, the curriculum was designed for systematization

of the SW education of non-major and opened the curriculum,

and then the lesson was written and used in the actual class. The

main problem of SW education of non-major is that they have

a preconceived notion that SW education is vaguely difficult

and based on the previous study, As a result of the training after

designing, it was concluded that block-based language is

effective in procedural listing of problem solving,

comprehension of Computational Thinking concept, and

expression of algorithm. However, the effectiveness of the

algorithm was not influenced by the education using the block-

based language. It is more effective to motivate learning by

using block-based language and to construct curriculum using

Computing Language when SW education is conducted to non-

major.

Based on this research, we hope to develop various education

methods of block-based language for curriculum and

educational motivation for SW education of untrained person.

This not only allowed us to recognize the necessity of SW

education in each major field, but it also can provide an

opportunity to develop various talent fields and SW skills. I

hope that the SW education model will be presented in order to

suggest a new direction to the SW education of the non-major.

REFRENCES

[1] J. M. Wing, Computational Thinking. Communications

of the ACM, Vol. 49, No. 3, 2006, pp. 33-35.

[2] Jungin Kwon & Jaehyoun Kim, A Study of SW

Curriculum based on Computational Thinking for non-

majors. Korean Society for Internet Information, Vol. 17,

No. 1, 2016, pp. 247-248.

[3] J. M. Wing, Computational Thinking and Thinking

about Computing. Philosophical Transactions of the

Royal Society, Vol. 366, 2008, pp. 3717-3725.

[4] P. Phillips, Computational Thinking: A Problem-

Solving Tool for Every Classroom. in NECC,

 http://www.cs.cmu.edu/~CompThink/resources/ct_pat_

phillips.pdf, 2007.

http://www.cs.cmu.edu/~CompThink/

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3082-3088

© International Research Publication House. http://www.irphouse.com

3088

[5] L. PerKovic, A. Settel, S. Hwang and J. Jones, A

Framework for Computational Thinking across the

curriculum, Proc. of International Conference on

ITiCSE, 2010.

[6] Computer Science Teachers Association &

International Society for Technology in Education,

Computational Thinking Teacher Resources,

http://csta.acm.org/Curriculum/

sub/CompThinking.html, 2011.

[7] D. Bar, J. Harrison and L. Conery, Computational

thinking: A Digital Age Skill for Everyone. Learning &

Learning with Technology, Vol. 38, NO. 6, 2011, pp. 20-

23.

[8] Jungin Kwon, A Study on the Effectiveness of

Computational Thinking based Teaching and Learning

on Students Creative Problem Solving Skills, Ph.D.

Dissertation, Sungkyunkwan University, 2014.

[9] http://www.iste.org/docs/learning -and-leading-

docs/march-2011-computational-Thinking-ll386.pdf

[10] http://csta.acm.org/Curriculum/sub/CurrFiles

 /472.11CTTeacherResources_2ed-SP-vF.pdf

[11] Scratch: https://scratch.mit.edu

[12] Entry: https://playentry.org

[13] Wang, K.. Enhancing the teaching of CS 1 by

programming mobile apps in MIT App. age, Vol. 2, No.

1, 2015, pp. 26.671.1-26.671.9.

[14] Kolling, M. & Rosenberg, J. Blue- ALanguage for

Teaching Object-Oriented Programming, Proc. of the

27th SIGCSE Technical Symposium on Computer

Science Education, 1996, pp. 190-194.

[15] Ornelas Marques, F., Marques, M.T. No Problem? No

Research, little Learning ... Big Problem!. Systemic,

Cybernetics and Informatics, Vol.10, No. 3, 2012, pp. 60-

62.

[16] Nunnally, J. C., Psychometric Theory, New York, NY:

McGraw-Hill, 1978.

[17] Van de Ven, A. H. & Ferry, D. L., Measuring and

Assessing Organizations, John Wiley & Sons, Inc. 1980.

http://csta.acm.org/Curriculum/%20sub/
http://csta.acm.org/Curriculum/%20sub/
http://www.iste.org/docs/learning-and-leadin

