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Abstract 

 

    In this paper, a cubic spline solution of nonlinear singularly 

perturbed two-point boundary value problems exhibiting 

boundary layers is presented via initial value method. The 

method is distinguished by the following fact: The original 

problem is approximated asymptomatically by two first order 

unperturbed initial value problems which are, in turn, solved 

using polynomial cubic spline approximation method. Error 

estimate and numerical results are presented to assess the 

accuracy and the performance of the method. It is observed 

that the present method approximates the exact solution very 

well overall the problem entire domain.  

 

Keywords: Two point boundary layer problems; Initial value 

methods; Cubic spline. 

 

 

I. INTRODUCTION 

 

Singularly perturbed boundary value problems (SPBVPs) 

arise frequently in various areas of applied science and 

engineering such as fluid mechanics, fluid dynamics, heat 

transfer, optimal control, chemical reactions, elasticity, etc. 

These problems are stiff and exhibit solutions with boundary 

or interior layers. Due to the stiffness and the layers’ behavior, 

applying any standard numerical method on these problems 

yields poor solution with unacceptable oscillations. Moreover, 

as the perturbation parameter tends to zero the stiffness ratio 

increases and consequently more and significant 

computational difficulties are arising. Thus more efficient and 

adaptable computational techniques are required to solve 

SPBVPs. A large number of fitted mesh methods, fitted 

operator methods and special-purpose methods reflected the 

qualitative behavior of the solution layers have been recently 

proposed to provide accurate numerical solutions for SPBVPs 

(cf. [1–34]). However, most of these methods are developed 

for linear SPBVPs and for nonlinear ones quasilinearization 

technique is used. One of the most recent effective and 

attractive methods for solving SPBVPs is spline 

approximation method [19-34]. Spline approximation 

possesses attractive properties: piecewise smooth, compact 

support, differentiability, linear combination, which leads to 

linear algebraic systems that are easier to be solved.  In this 

paper, we are interested in solving nonlinear two-point 

SPBVPs using cubic spline approximation via initial value 

method. The method is distinguished by the following fact: 

The original problem is approximated asymptomatically by 

two first order unperturbed initial value problems which are, 

in turn, solved using polynomial cubic spline method. Error 

estimate and numerical results are presented to assess the 

accuracy and the performance of the method. It is observed 

that the present method approximates the exact solution very 

well.  

 

 

II. DESCRIPTION OF THE METHOD 

 

Consider the nonlinear SPBVP    
 

2

2
( , ) ( , ) ( ) [0,1],

d y dyp x y q x y h x x
dxdx

     ,         (1) 

 

with boundary conditions 
 

(0) , (1)y y    ,                              (2) 

 

where 0 1 ,  and   are given 

constants, ( , )p x y , ( , )q x y and ( )h x are assumed to be 

sufficiently continuously differentiable functions, and 

( , ) 0p x y M   for [0,1]x  where M is some positive 

constant. Under these assumptions, SPBVP (1)-(2) has a 

solution which, in general, displays a boundary layer of width 

( )O  at 0x  . The SPBVP (1)-(2) is approximated 

asymptomatically by two first order unperturbed initial value 

problems (IVPs) using the following theorem. 

 

Theorem 1. [14]. The solution ( )y x of the nonlinear SPBVP 

(1)-(2) can be approximated asymptotically by: 

( ) ( ) ( ) ( ),
xy x u x v t O t


    ,                 (3) 

where ( )u x and ( )v t are the solutions of the outer and inner 

region problems given, respectively, by: 
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( , ) ( , ) ( ),

(1) ,

dup x u q x u h x
dx

u 


 


 

                    (4) 

and 

(0, (0) ( ) ) (0, (0))

(0) (0)

dv f u v t f u
dt
v u


  


  

 ,                (5) 

where  

               (0, (0) ( ) ) (0, (0) ( ) )f u v t p u v t dv    

Thus, in order to obtain a smooth approximate solution of the 

SPBVP (1)-(2), we only need to obtain smooth approximate 

solutions for the two first-order unperturbed IVPs (4)-(5). 

 

II.I. Polynomial Cubic Spline method for IVPs 

 

In this subsection we describe polynomial cubic spline 

approximation method for solving IVPs in the general form: 
  

0 0( , ) ( ),
d r r
dr


     .                           (6) 

 

Let us consider a uniform mesh nodal points ir  on 
0[ , ]Nr r  

such that , 0,1,2,..,ir ih i N  , 0Nr r
h

N


 and N is the 

number of subintervals. The cubic spline interpolate function 

( )S r  in 
1i ir r r   in terms of its first 

derivatives ( )i iS r m  is given by [20,23,25,27] 

 
2 2 2

1 1 1

2 2

2 2

1 1 1

3 3

( ) ( ) ( ) ( )
( )

( ) [2( ) ] ( ) [2( ) ]

i i i i i i

i i i i i i

m r r r r m r r r rS r
h h

r r r r h r r r r h
h h

 

  

  

   
 

     
 

.  (7) 

Differentiating (7) with respect to r and simplifying, we have 

 

1 1

2

1 1 1 1

2 3

( )(2 3 )
( )

( )( 2 3 ) 6( )( )( )

i i i i

i i i i i i i i

m r r r r rS r
h

m r r r r r r r r r
h h

 

 

   

  
 

     
 

.             

(8) 

Again, differentiating (8) with respect to r , we have 

 

1 1 1

2 2

1 1

3

2 ( 2 3 ) 2 (2 3 )
( )

6( )( 2 )

i i i i i i

i i i i

m r r r m r r rS r
h h

r r r
h

 

  

 

    
  

  


 ,     (9) 

 which gives 

1 1

1 2

2 4 6( )
( ) .i i i i

i
m m S SS r
h h h

 




                   (10) 

 

Differentiating (6) with respect to r  and using (10) we get 
 

1 1 1

2

1 1 1 1 1 1 0 0

2 ( , ) 4 ( , ) 6( )

( , ) ( , ) ( , ) 0,1,2,.., ,,

i i i i i i

r i i i i i i

r S r S S S
h h h

r S r S r S i N S

 

   

  

     


  

  

,    

(11) 

from which 
1iS 

 can be computed to get the cubic spline 

solution ( )S r with bounded error given by the following 

theorem. 
 

Theorem2. [20,23,25,27].  If  4

0( ) [ , ]Nr C r r   , and h is a 

sequence of partitions on
0[ , ]Nr r  with lim 0

N
h


 , then we 

have for the interpolate cubic spline ( )S r , uniformly 

for
0 Nr r r   

4( ) ( )r S r Ch                                     (12) 

 

Applying the described cubic spline approximation method on 

the two IVPs (4)-(5) results in a smooth approximate solution 

of the original SPBVP (1). 

 

II.II. Error analysis 

 

The error of the present method has two sources: one from the 

asymptotic approximation and the other from the cubic 

interpolation. Let oh  and inh  be the mesh spacing on the non-

boundary layer and the boundary layer domain respectively. 

Then we have the following bounded errors. 

 

II.II.I. Error on the outer region domain 

 

Let ( )y x  be the exact solution of the original problem (1)-

(2), ( )u x  be the exact solution of the reduced problem (4), 

and ( )oS x  be the cubic spline solution of (4). Then on the 

non-boundary layer domain, the error is 

 

4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

o o

o

y x S x y x u x u x S x

O O h

     

 
.      (13) 

 

In more times, the exact solution of the reduced problem can 

be easily obtained and the second term of the above 

error inequality is vanished. 

 

II.II.II. Error on the inner region domain 

 

Let ( )w x  be the exact solution of boundary layer problem 

(5), and ( )inS x  be the cubic spline solution of (5). Then on 

the boundary layer domain, the error is 
 

4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

in in

in

y x S x y x w x w x S x

O O h

     

 
,       (14) 

 

III. NUMERICAL RESULTS 

To demonstrate the applicability and the accuracy of the 

method, some SPBVPs are solved and numerical results are 

presented in tables and figures. These SPBVPs are widely 

discussed in the literature and their uniformly valid 

approximate solutions are available for comparison. 

 

Example 1. Consider the SPBVP from Bender and Orszag [1] 

given by 
( )( ) 2 ( ) 0y xy x y x e     ,                         (15) 
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with (0) 0, (1) 0y y  . The problem (15) has a uniformly 

valid approximation [1] for comparison, 

                               
2 /( ) ln(2 / (1 )) (ln 2) ( )xy x x e O     . 

 

The outer and inner region problems are given by 

 
( ) (1) 0

2 ( ) 0, (0) (0

2 ( ,

.

) 0

)

u x u
dv v t v u
dt

u x e 



  

  




                  (16) 

 

The computational results are presented in Tables 1 and 2 at 

0.2o inh h  for 2 3,10 10   , respectively. 

 

Table 1. Results for Example 1 at 0.2o inh h  , 210   . 

x  Present method Solution in[1] Error 

0.0010 ..764242121.0 ..76567452114 5.2111 e-04 

0.0110 ..2.54.42421. ..2.01164010. 4.2216 e-03 

0.0210 ..22701.40051 ..2221.4.1751 4.1222 e-03 

0.0300 0.66673285673 0.66187023823 1262.4  e-03 

0.1000 ..501121...15 ..50112200026 ..0..0 e-11 

0.2000 ..57.16526212 ..57.16526212 ..0..0 e-14 

0.3000 ..42.116072.0 ..42.116072.0 ..0..0 e-16 

0.4000 ..25221404202 ..25221404202 ..0..0 e-16 

0.5000 ..611216.1645 ..611216.1645 ..0..0 e-16 

0.6000 274255727..66  ..66274255727 ..0..0 e-16 

0.7000 ..72657106040 ..72657106040 ..0..0 e-16 

0.8000 ..7.522.57525 ..7.522.57525 ..0..0 e-16 

0.9000 ...5760260421 ...5760260421 ..0..0 e-16 

1.0000 ............. ............. ..0..0 e-16 

 

  Table 2. Results for Example 1, 0.2o inh h  , 310   

x  Present method Solution in[1] Error 

0.0001 ..76554261646 ..7652..01526 6.4560 e-04 

0.0011 ..2756441112. ..27524477726 2.0066 e-04 

0.0021 ..21.25564.21 ..21772451751 4.1022 e-04 

0.0031 ..21124561756 ..21074.45205 4.0571 e-04 

0.0040 ..21046.721.1 ..21106622427 5102.4  e-04 

0.1000 ..501121...15 ..501121...15 ..0..0 e-16 

0.2000 ..57.16526212 ..57.16526212 ..0..0 e-16 

0.3000 ..42.116072.0 ..42.116072.0 ..0..0 e-16 

0.4000 ..25221404202 ..25221404202 ..0..0 e-16 

0.5000 ..611216.1645 ..611216.1645 ..0..0 e-16 

0.6000 ..66274255727 ..66274255727 ..0..0 e-16 

0.7000 ..72657106040 ..72657106040 ..0..0 e-16 

0.8000 ..7.522.57525 ..7.522.57525 ..0..0 e-16 

0.9000 ...5760260421 ...5760260421 ..0..0 e-16 

1.0000 ............. ............. ..0..0 e-16 
 

 

Example 2. Consider the nonlinear SPP from O'Malley [2] 

given by 

( ) 2 ( )( ) ( ) sin( ) 0
2 2

y x y xxy x e y x e 
      ,       (17) 

with   (0) 0y  and (1) 0y  .The problem has a uniformly 

valid approximation for comparison[2]   
   

/2( ) ln (1 cos( / 2))(1 0.5 ) ( )xy x x e O        . 

 

The outer and inner region problems are given by 
 

( ) 2 ( )

(0) ( ) (0)

( ) sin( / 2) 0 (1) 0

, (0) (0)

,

.

2

u x u x

u v t u

u u

dv

e x x e

e
dt

e v u







 


   










      (18) 

 

The computational results are presented in Tables 3 and 4 at 

0.2o inh h  for 2 3,10 10   , respectively. 

 

 Table 3. Results for Example 2 at 0.2o inh h  , 210  . 

x  Present method Solution in[2] Error 

0.0001 -...4127101.11 - 05.....41510  2.1.27 e-05 

0.0011 -..25616104102 -..25610724257 2.2205e-05 

0.0021 -..5..54.0171. -..5..14624255 6..721e-04 

0.0031 -..51.22276127 -..51.1562621. 2.125.e-04 

0.0041 -..2655112701. -..2627124011. 5.0111e-04 

0.0051 -..25717102614 -..256545.6470 21.62. e-04 

0.0060 -0.66675410455 -0.66571707895 21.7.. e-03 

0.1000 -..21201626526 -..21250122425 2.2141e-03 

0.2000 -..221217.60.1 -..22124126115 6.61..e-05 

0.3000 -..2217.062010 -..2217.0.1214 7.5605e-07 

0.4000 -..5061122..17 -..50611250021 7..2.2e-09 

0.5000 -..52410000212 -..52410000212 2.044.e-12 

0.6000 -..42624.76676 -..42624.76676 4.2215e-14 

0.7000 -..21427714567 -..21427714567 2.22.1e-16 

0.8000 -..62061242055 -..62061242055 ..0..0e-16 

0.9000 -..74524752445 -..74524752445 ..0..0e-16 

1.0000 .............  .............  ..0..0e-16 
         

   Table 4. Results for Example 2 at 0.2o inh h  , 310   

x  Present method Solution in[2] Error 

0.0001 -...41271507  -...41510051  2.1222e-05 

0.0011 - 2561.714..  -..2561.6522  2.0467e-07 

0.0021 -..5..17.60  -..5..177025  7.21.2e-06 

0.0031 -..51.052.5  -..51.052274  2.5224e-06 

0.0041 -..2622.425  -..26227.766  5.1215e-06 

0.0051 -..2522.111  -..252275116  1.7.14e-06 

0.0061 -..2207500.  -..22071.4.5  5.57.. e-05 

0.0071 -..21124026  -..211226556  7.6062e-05 

0.0081 -..21425125  -..2142161.4  7.5241e-05 

0.0090 -0.68754476  -0.687527233  5607.1 e-05 

0.1000 -..21201626  -..212016265  ..0..0e-11 

0.2000 -..221217.6  -..221217.60  ..0..0e-13 

0.3000 - 2..2217.06   -..2217.0620  ..0..0e-15 

0.4000 -..5061122.  -..5061122..  ..0..0e-16 

0.5000 -..52410000  -..524100002  ..0..0e-16 

0.6000 -..42624.766  -..42624.766  ..0..0e-16 

0.7000 -..214277145  -..214277145  ..0..0e-16 

0.8000 -..620612420  -..620612420  ..0..0e-16 

0.9000 -..745247524  -..745247524  ..0..0e-16 

1.0000 ...........   ...........   ..0..0e-16 

 

Example 3. Consider the nonlinear SPP from Johnson [3] 

 

 ( ) ( ) ( ) ( )y x x y y x x x y          ,   (19) 
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 with boundary conditions (0) 0 (1) 5 / 2y and y  . The 

solution is approximated in [3] as                     
2

( ) 2tanh( / ) ( )
2

xy x x O    . 

The outer and inner region problems are given by 

 

 

2 2

(1) 5 / 2

( (0) ( )) 0.5( (0) ( )) 0.5( (0)

( ) ( )

) ,

(0 0 .

0 ,

) ( )

u
dv x u v t u v t

x u u

u
d

x x

t
v u





    

 










  (20) 

 

The computational results are presented in Tables 5 and 6 at 

0.2o inh h  for
2 3,10 10   , respectively. 

 

Table 5. Results for Example 3 at 0.2o inh h  , 210   . 

x  Present method Solution in[3] Error 

0.0001 ..70022241064  ..700217.1447  2.242. e-04 

0.0011 7.2.7.5154256  7.2.217241414  6.2510 e-03 

0.0021 7.04776421266  7.04647217626  7.6062 e-03 

0.0030 7.00.11446125  7.00.5505.121  6406.2  e-04 

0.1000 6...5........  6...400000715  8.2446e-09 

0.2000 6..6.........  6..6.........  ..0..0 e-14 

0.3000 ........6..45   6..45........  ..0..0 e-16 

0.4000 6..1.........  6..1.........  ..0..0 e-16 

0.5000 6.765........  6.765........  ..0..0 e-16 

0.6000 6.71.........  6.71.........  ..0..0 e-16 

0.7000 6.645........  6.645........  ..0..0 e-16 

0.8000 ..6.26.......   6.26.........  ..0..0 e-16 

0.9000 6.4.5........  6.4.5........  ..0..0 e-16 

1.0000 6.5..........  6.5..........  ..0..0 e-16 

 

Table 6. Results for Example 3 at 0.2o inh h  , 310  . 

x  Present method Solution in[3] Error 

0.0001 ..70022500464  ..7005112.124  6.5727 e-04 

0.0011 7.2..00124156  7.2.767100126  6.6.25 e-04 

0.0021 7.04.0.2.1166  7.047.74741.6  7..1.1 e-04 

0.0031 7.0070.256244  7.00702214512  2..266 e-04 

0.0040 7.00121252201  .001222500417   0215.7  e-05 

0.1000 6...5........  6...5........  ..0..0 e-15 

0.2000 6..6.........  6..6.........  ..0..0 e-16 

0.3000 6..45........  6..45........  ..0..0 e-16 

0.4000 6..1.........  6..1.........  ..0..0 e-16 

0.5000 6.765........  ......6.765..   ..0..0 e-16 

0.6000 6.71.........  6.71.........  ..0..0 e-16 

0.7000 6.645........  6.645........  ..0..0 e-16 

0.8000 6.26.........  6.26.........  ..0..0 e-16 

0.9000 6.4.5........  6.4.5........  ..0..0 e-16 

1.0000 6.5..........  6.5..........  ..0..0 e-16 

 

By considering the given problems solutions as our exact 

solution, the numerical solution errors are provided for all 

examples through tables 1-6. The results indicate that the 

proposed method approximates the solution very well overall 

the entire domain.  

 

 

IV. CONCLUSIONS 

      

 We have presented a cubic spline solution of nonlinear 

singularly perturbed two-point boundary value problems 

exhibiting boundary layers via initial value method. The 

original problem is approximated asymptomatically by two 

first order unperturbed initial value problems namely outer 

and inner region problems. The solution of the original 

problem is a combination of the outer and inner region 

solutions. A polynomial cubic spline approximate method is 

employed to solve these IVPs to get a smooth approximate 

solution of the original problem. The sources of the error and 

the error estimate are presented. The method has the ability in 

solving the considered problem with no need to linearization 

techniques to convert the problem into a sequence of linear 

ones to be solved iteratively. We have implemented the 

method on three nonlinear examples taking different values 

of  and have tabulated the results at non-nodal grid points to 

be compared with solutions presented in literature. The 

numerical results indicate that the present method can handles 

the considered problem effectively and approximates the exact 

solution very well overall the entire domain.  
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