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Abstract 

In this paper, an adaptive step-size nonlinear explicit 

integration algorithm for solving ordinary differential 

equations is present. The algorithm is based on a new high 

order nonlinear explicit integration scheme. The order of 

convergence and stability properties are investigated and 

shown to be of fifth-order and large stability region. Several 

test problems are solved and the numerical results are 

presented. The results confirm that the algorithm is effective 

and appropriate for solving stiff and singularly perturbed 

ordinary differential equations.  

 

Keywords: Numerical integration; Nonlinear schemes, 

Adaptive techniques, Stiff and singularly perturbed ODEs. 

 

I. INTRODUCTION      

Ordinary differential equations (ODE) are widely used to 

describe continuous time physical problems. In most of the 

cases, these problems are too complicated to solve 

analytically. Alternatively, the numerical methods can provide 

approximate solutions rather than the analytic solution of 

problems. Stiff and singularly perturbed differential equations 

are ones of the most interesting ODEs which frequently arise 

in applied science and engineering [1-12]. Applying classical 

numerical methods for solving these types of problems 

requires very small step-size to overcome stability restriction 

while applying standard implicit methods requires a large 

number of iterations for convergence within each time step. In 

this paper, an adaptive step-size nonlinear explicit integration 

algorithm for solving ordinary differential equations is 

present. The algorithm is based on a new high order nonlinear 

explicit integration scheme. The order of convergence and 

stability properties are investigated and shown to be of fifth-

order and large stability region. Several test problems are 

solved and the numerical results are presented. The results 

confirm that the algorithm is effective and appropriate for 

solving stiff and singularly perturbed ordinary differential 

equations.  

II. NONLINEAR EXPLICIT SCHEME 

 Consider the IVP 

0( , ), ( )y x y y a y   , , ( , )y x y  ,                     (1) 

where   is assumed to satisfy all the requirements in order 

that (1) has a unique solution. The interval [ , ]a b is divided into 

a number of subintervals 1[ , ]j jx x   with 
0x a  and 0jx x jh  ,  

where h  is the step size , 1,2,....j  . , and jx b  . Following 

the idea presented in [8, 10, 11] we consider Taylor’s 

expansions of 1 1andj jy y   about jx as follows 
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j j j j j j j j j
h h h h hy y hy y y y y y O h 

              (2) 
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               (3)  

where k is a positive constant which will be determined later 

from the stability analysis. 

From Eq. (2) and Eq. (3) we have 

2 3 4 5 6
(4) (5) (6) 7

1 1 ( )
2 6 24 120 720

j j j j j j j j j
h h h h hhy y y y y y O h 

 
            

 
 

then 

 
 
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       
  (4) 

where 

 
2

1 jy  ,  
2

2 4 3j j jy y y     ,  
2

(5) (4)

3 6 15 10j j j j jy y y y y       . 

From (4) the numerical scheme is readily obtained, which 

may be written in the form 

 
 

2 4

1 2 3

1 2 3 (4) 4 (5) 5 (6)
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j j

j j j j j j
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  


 
 

      
     (5) 

where ( , )j j jy x y   and the higher derivatives can be obtained 

mailto:er.elzahar@psau.edu.sa


International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 3151-3155 

© International Research Publication House.  http://www.irphouse.com 

3152 

from (1) by successive differentiation as follows 

( , ) ( , ) ( , )j j j j j j j jy x y x y x y y
x y
 


 

    
 

,  

( , ) ( , ) ( , )j j j j j j j jy x y x y x y y
x y
 


  

    
 

  ,  …… …… , 

(6) (6) ( , )j j jy x y . 

 

II.I. STABILITY ANALYSIS  

In order to examine the present method for the stability, let us 

consider the differential equation, 

 

.y y                                                    (6) 

where  is a complex constant and ( ) 0Re   .For this equation, 

Eq.(5) can be rewritten as 

 

2 3 4 5

1 2 3 4 5
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j j

h h h h k hy y
h h h h k h
    

    


     


    
 

 

Setting   z y in the above equation, the amplification factor 

is therefore 

2 3 4 5

2 3 4 5

720 360 120 30 6 (2 )
( )

720 360 120 30 6

z z z z k zR z
z z z z kz

     


    
          (7) 

 

For 2k  , we have  

       
2 3 4

2 3 4 5

720 360 120 30 6
( )

720 360 120 30 6 2

z z z zR z
z z z z z

   


    
                  (8) 

 

which has larger stability region as shown in Figure 1 

 

 

Figure 1. Stability regions for 1k  (left) and 2k  (right) 

 

From (8) , the two-term recurrence relation (5) becomes 

 
 
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 ,     (9) 

 

III. LOCAL TRUNCATION ERROR  

The local truncation error   is readily obtained from 

subtracting Eq. (9) from Taylor series Eq. (2), which may be 

written in the form  

6

6 7( ).
720

jy
h O h

 
   
 

                             (10) 

This means that the method described in Eq. (2) through Eq. 

(10) has a fifth order of accuracy. Consequently the numerical 

integration of the initial-value problem (1) is L-stable and 

convergent with order 5.   

 

Remark. The local truncation error of the method can be 

written as a function of the constant k  as follows 

6

6 7
( 1)

( )
720

jk y
h O h

 
   
 

  ,                               (11) 

which means that the method is A-stable and has at least six 

order of accuracy at 1k  . In this case the local truncation 

error can be written as 

 

7 6 5 (4) 2

7 8
4 28 56 35( )

( ).
20160

j j j j j j j

j

y y y y y y y
h O h

y


     
  
  

,            (12) 

IV. ADAPTIVE STEP-SIZE ALGORITHM 

 

The discrete solution of the IVP (1) is obtained using the fifth 

order method over a non uniform step size by involving a 

monitor function based on the estimated error in Eq. (10). 

Assume that the results by present method in discrete solution 

with a specific error toleranceTol .  

1 1( )j jy x y Tol     ,                                 (13) 

 

From Eq. (13) and Eq. (10) we have an optimum step size 

1j j jh x x   verifies  

6

6

720

j
j

y
h Tol

 
  

 

  ,                                      (14) 

Thus 

  

1/6

6

720
j

j

Tolh
y

 
  
 
 

    .                                  (15) 

It is possible that for certain combination of the values 

appearing in the denominator in (9), this denominator 

vanishes. In that case, it is necessary to modify slightly the 

step size on this step and take j jh mh  instead of jh , where the 

factor m  is taken nearly unity, say m  0.9. The same case 

may appears in the denominator in (15). In that case, we take 

maxjh h  , where maxh  is the maximum allowed step size. In our 

algorithm we set max 0.02h   
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 These details will be combined in the following algorithm: 

Algorithm steps: 

Step I:  input  
max, , ( ), , ( )a b y a Tol h max allowed step size  

            Set  
0 0 0 0, 1, ( ), (1) ,x a index y y a Y y x a      

Step II: obtain the successive 
derivatives (6)( , ), ( , ),......., ( , )x y x y x y     

Step III: ,while x b compute  

(i)   
0 0 0( ) ( , )y x x y  ;       

(ii)  (6) (6)

0 0 0 0 0 0 0 0 0( ) ( , ), ( ) ( , ),......., ( ) ( , )y x x y y x x y y x x y         

(iii) 
1/6

(6)

0

720
,

( )

Tolh
y x

 
  
 

 

(IV) 
0x x h   

(V)  
0 max 0 max, , ( ) ,if x b set x b and if x x h set x x h           

(VI) Compute 
1jy 
 from Equation (9) 

(VII) 1 0 0 1( 1) , ( 1) , ;j jY index y X index x x x y y       , 

(VIII) 1index index   

Step IV: plot the solution 

   (i) Plot (X, verses Y) 

 

The algorithm is easily adaptable on computer; we present it 

in MATLAB environment as given in Appendix A  

 

V. NUMERICAL RESULTS 

In this section, numerical results are presented for stiff and 

singularly perturbed test problems. 

  

V.I. A stiff equation 

Stiff differential equations involve rapidly increasing or 

decaying transient solution, which results in a difficulty for 

most of the numerical integrators. The algorithm was tested 

on the stiff problem taken from [6] 

 

2( ) 100 ( ) 99 , (0) 0xy x y x e y                         (16) 

 

which has exact solution 

 2 10033
( ) ,

34

x xy x e e    

The numerical and exact solutions are shown are shown in 

Fig.2 while the numerical solution error is shown in Fig.3. 

Moreover, the maximum absolute error E and the required 

number of grid points N for achieving specific tolerance 

Tol are presented in Table 1. 
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Fig.2. The exact solution (solid line) and the numerical one 

(circled) of problem (16) at 310Tol   

 

Table 1. Maximum error E and number of grid points N for 

problem (16) 

 310Tol   410Tol   510Tol   610Tol   710Tol   

E  1.8e-003 4.8e-004 9.5e-005 1.6e-005 2.6e-006 

N  28 30 33 39 47 
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Fig.3. The numerical solution error of problem (16) at 
710Tol   

 

V.II. A stiff system 

The above algorithm may be also applied to a system of 

equations. If we have , ( , ) my x y  in (1), we have just to 

consider the formula in (9) for every component and take the 

minimum step size resulted from (15). Let be the stiff system 
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taken from [4,11,12]. 

 

1 1 2 1

2 1 2 2

( ) 2 ( ) ( ) 2sin( ), (0) 2,

( ) 998 ( ) 999 ( ) 999(cos( ) sin( )), (0) 3,

y x y x y x t y
y x y x y x t t y
    

     
  (17) 

 

The exact solution is 

1 2( ) 2 sin( ), ( ) 2 cos( )t ty x e t y x e t      

 

The numerical (dotted line) and exact (solid line) solutions are 

shown are shown in Fig.4 while the numerical solution error is 

shown in Fig.5. Moreover, the maximum absolute error E and 

the required number of grid points N for achieving the specific 

tolerance Tol are presented in Table 2. It is clear that the 

problem is solved using maximum allowed step size in the 

algorithm. 
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Fig.4. The exact solutions and the numerical solutions of 

problem (17) at 310Tol   
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Fig.5. The numerical solution errors of problem (17) at 
710Tol   

 

 

Table 2. Maximum error E and number of grid points N  for 

two components of problem (17) 

E  310Tol   410Tol   510Tol   610Tol   710Tol   

1( )y x  4.0e-014 4.0e-014 2.3e-014 4.9e-014 1.5e-014 

2 ( )y x  3.4e-016 3.4e-016 2.9e-016 1.6e-016 7.3e-016 

N  501 502 505 603 804 

  

V.III. singularly-perturbed problems 

Now we consider the first nonlinear singularly perturbed IVP 

given by [8] 

 ( )
1

( ) ( ) 20 , (0) 1
8

y x y x y x y      ,                           (18) 

The exact solution is 

( /4 )
( )

20

1 19 xy x
e 




 

 

This problem exhibits an initial layer near 0x  . Table 3 

shows the maximum errors E  and the required number of grid 

points N  obtained with our algorithm when the integration is 

performed on the interval [0, 1] for a small value of the 

perturbation parameter 610   .  

 

Table 3. Error E and grid points N  for problem (18) at 610   

 310Tol   410Tol   510Tol   610Tol   710Tol   

E  4.9e-003 5.4e-004 5.9e-005 7.6e-006 9.6e-007 

N  67 74 83 96 117 

 

The second nonlinear singularly perturbed IVP given by [13] 

2 2
( ) 0 , (0) 1y x y x y y      ,                        (19) 

 

The exact solution is 

/

2 2 / 2( 2 2 ) (1 2 )

x

x
e

x x e



  



   
 

 

Table 5 shows the numerical results obtained over the interval 

[0, 1] for 610  . In Fig. 6 the errors are shown when 
610  .We note that even near 0x  , the algorithm performs 

very well, even with the presence of the initial layer. 
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VI. CONCLUSIONS 

In this article we have developed an adaptive step-size 

nonlinear explicit integration algorithm for solving ordinary 

differential equations. The algorithm is based on a new fifth 

order nonlinear explicit integration scheme. The scheme has 

larger stability region than classical Rung-Kutta method. 

Several test problems are solved and the numerical results are 

presented in tables and figures. The results confirm that the 

algorithm is effective and appropriate for solving stiff and 

singularly perturbed ordinary differential equations.  
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Fig.6. The numerical solution error for problem (19), at 
610  , 710Tol  . 

 

Table 5. Error E and grid points N  for problem (19) at 
610   

 310Tol   410Tol   510Tol   610Tol   max .02h   

E  4.0e-004 7.1e-005 1.1e-005 1.9e-006 2.9e-007 

N  71 74 79 85 95 
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