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Abstract  

Closed loop multibody systems are strong nonlinear systems. 

In strong nonlinear systems with the same system parameters, 

there may be many different solutions depending on the initial 

conditions. The mechanism is the typical form of closed loop 

multibody systems. The determination of the rotational 

movement of the driving section of the mechanism is an 

interesting problem in machine dynamics. In this paper, the 

equations of motion of closed loop multibody systems are 

formulated as Differential Algebraic Equations (DAE). Then 

the Lagrangian multiplier partitioning method is used to 

transform the differential - algebraic equations into ordinary 

differential equations. In order to study the dependence of the 

motion of the mechanism on the initial conditions, we solve 

the system of differential equations for motion of the 

mechanism with different initial conditions. Numerical 

simulation results using MATLAB® software show the 

influence of initial conditions on the rotational motion of the 

driving section of the robotic mechanism. 

Keywords: Lagrangian equations with multipliers, strong 

nonlinear systems, Differential Algebraic Equations, 

Baumgarte stabilization method, rotational motion. 

 

I. INTRODUCTION  

Dynamics of closed loop multibody systems is a problem that 

is of great interest. In order to set the equations of motion of 

these mechanical models, Lagrangian equations with 

multipliers, Newton-Euler equations, and Kane equations with 

multipliers [1-6] are often used. If we choose the number of 

extrapolating coordinates to determine the position of the 

mechanical system which is greater than the number of 

degrees of freedom of the system, we get the system of 

differential-algebraic equations describing the movement of 

the mechanism in the explicit form. To solve this type of 

motion equation system, there are currently three options: 

-  Direct integral of the system of differential- algebraic 

equations. 

-  Convert the system of differential- algebraic equations to 

the system of ordinary differential equations with the 

number of extrapolating coordinates greater than the 

number of degrees of freedom of the system. Then 

integrate the system of differential equations received. 

-  Convert the system of differential- algebraic equations to 

the system of ordinary differential equations with the 

number of extrapolating coordinates equal to the number 

of degrees of freedom of the system. Then integrate the 

system of differential equations received. 

In this paper, we apply the Lagrangian equations with 

multipliers to set the equation of motion of the slider-crank 

mechanism, then use the second method to solve the system of 

the equations of motion of the mechanism. The differential 

equations describing the motion of the mechanism are strong 

nonlinear differential equations. 

As known in [7-8], the solutions of a strong nonlinear system 

has many different properties from those of the linear systems 

and the weak nonlinear systems. For example, the solutions of 

strong nonlinear systems can be chaotic solutions, sensitively 

depending on the initial conditions. Studying the dependence 

of the rotational movement of the mechanism on the initial 

conditions is the most important part of the paper. Studies that 

simulate the number of motions of the mechanism with 

different initial conditions have shown some new nonlinear 

effects of the motion of the mechanism. 

 

II. THEORY OF DYNAMICS OF CLOSED LOOP 

MULTIBODY SYSTEMS 

This section reiterates some of the necessary knowledge of 

dynamics of closed loop multibody systems. Consider 

holonom closed loop multibody system f with variants. The 

position of the system is determined by the extrapolating 

coordinates n: 

 
1 2
, ,...,

T

n
s s ss                                                   (1) 

Which has the independent extrapolation coordinate f:  

 
1 2

[ , ,..., ]T
f

q q qq                                                  (2) 

and the independent extrapolation coordinate r:  

 
1 2

...
T

r
z z zz                                                 (3) 

So we have the system n f r                                        (4) 

Using Lagrangian equations with multipliers, the differential -

algebraic equations describing the motion of the system have 

the form [1]: 

( ) ( , ) ( ) ( ) ( )T

s
tM s s C s s s g s s                   (5) 

( )f s 0                                                                       (6) 
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Where ( )M s is the extrapolation mass matrix of the system, 

( )t  is the extrapolation force vector corresponding to the 

operating forces without fulcrum, 
1 2
, ,...,

T

r
 is a 

Lagrangian multipliers vector,   
1 2
, ,...,

T

r
f f ff 0  are 

binding conditions, 
s
 is the Jacobi matrix of f  of size r n , 

( )C s, s  is the centrifugal inertia matrix and Coriolis, g(s) is the 

extrapolation force vector corresponding to the operating 

forces with fulcrum. 

To conveniently convert equations (5) and (6), we add a 

symbol: 

1 1
( , , ) ( ) ( , ) ( ), ( , , ) nt t tp s s C s s s g s p s s          (7) 

Equation (4) now takes the form: 

1
( ) ( , , )T

s
tM s s s p s s                                          (8) 

Double derivative equations (6) we obtain equations: 

( ) ( )
s

f
f s s s s 0

s
                                              (9) 

( ) ( ) ( )
s s

f s s s s s 0                                           (10) 

Where 
r n

s
.   From (10) we have: 

2
( ) ( , )

s s
s s s p s s                                              (11)  

Equations (8) and (11) can be rewritten as a matrix: 

1

2

T
s

s

=
s pM

p0
                                                     (12) 

When using numerical methods to solve the differential - 

algebraic equations, after each integral step, due to the 

calculation errors, the values ,
k k
s s  no longer satisfy the 

position and velocity constraint equation: 

( ) , ( ) ( 1,2,...)
k k

kf s 0 f s 0                    (13) 

Following the Baumgarte stabilization method [9-10], instead 

of solving the equation: 

0f                                                                          (14) 

We will proceed to solve the equation: 

22 , 0, 0f f f 0                               (15)  

The terms 22 ,f f  play as control terms. By solving 

equation (15) instead of solving equation (14), we will 

gradually or totally eliminate the accumulated errors during 

the integration process. 

Thus, the system of equations (12) is replaced by the 

following equation system: 

1

2

T
s

s

=
s pM

p0
                                                    (16) 

with  

2

2 2
( , ) ( ) 2 ( ) ( ), ( , ) r

s s
p s s s s s s f s p s s   (17) 

When we choose ,  as positive constants, from the system 

of differential equations (15) we get  f 0  when t . 

Then the binding conditions f 0  will be better guaranteed 

at each calculation step. The stability of the solutions of the 

system of equations (15) at each calculation step is guaranteed. 

At first Baumgarte chose 5, 5  and found the result 

to be quite good. Empirically, choose ,  from 1 to 20 or 

Δ Δ
21= , =

t t
 with t  as the integral step. The 

Baumgarte stabilization method is generally simple and highly 

effective. However, at the kinetic unusual values, this new 

method does not produce the desired results. 

To eliminate Lagrangian multipliers, convert the system of 

differential algebraic equations (16) to the system of ordinary 

differential equations with the number of equations equal to 

the residual extrapolation coordinates of the system when 

repeating the content of the orthogonal theorem [1]. 

According to the orthogonal theorem we have the formula: 

s
R 0  hay 

T T

s
R 0                                              (18) 

Where 

1 1 1 1 1 1

1 2 1 2

1 2 1 2

... ...

( ) , ( )

... ...

f r

q z

r r r r r r

f r

f f f f f f

q q q z z z

f f f f f f

q q q z z z

s s  (19) 

 1( )
z q

E
R s                                                 (20) 

with E  is the unit matrix, , ( )f n fE R s  So we have: 

, ,r f r

s q z q z
                          (21) 

The system of equations (16) can be rewritten as follows: 

1
( ) ( ) ( , , )T

s
tM s s s p s s                                    (22) 

2
( ) ( , )
s
s s p s s                                                   (23) 

Multiply the left side of the equation (22) with the matrix 
TR  

and pay attention to the orthogonality (18), the system of 

equations (22), (23) is transformed into the form: 

1

2

( , , )

( , )

( ) ( )
( )

T T

s

tR p s s
s

s s

R s M s
s p

                               (24) 
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If we include symbols: 

1

2

( ( ( , , )
, ( , , )

( , )

( ) ( ) )
( )

T T

s

t
t

R p s s
A s s

s s

R s M s s
p

s p
        (25)  

then the system of equations (24) has the form: 

 ( ) ( , , )tA s s p s s                                                    (26)  

The system of equations (26) is a system of ordinary 

differential equations of residual extrapolation coordinates. 

Thus we have converted the system of differential algebraic 

equations (5), (6) to the system of ordinary differential 

equations (26). System (26) is a system of ordinary 

differential equations. Note that when solving this system of 

equations the first conditions of the dependent extrapolation 

coordinates must satisfy the constraint conditions. The 

calculation of these initial conditions is elaborated in [1]. 

 

III. MOTION EQUATION OF TWO-LINK ROBOT 

ARM WITH PROGRAM CONSTRAINTS 

Investigate the arm movement in the vertical plane as shown 

in Figure 1. The arm consists of 3 movable sections with mass 

1,2,3
i
m i  and inertia moment 1,2

i
I i . The 

dimensions of the length and position of the center are, 
1
l , 

2
l , 

1 1
OC a ,

2 2
AC a  respectively. The machine arm moves 

under the force of torque with torque M  on section 1 and the 

horizontal force F  acting on object C 

 

 

Fig. 1. Two-link robot arm 

 

This is a closed loop multibody system with degrees of 

freedom of structure 1f . Select 3 extrapolation coordinates 

1 2 3

T

q q qq  to determine the position of the structure. 

Where 
1 2 3

, ,
C

q q q x .  . From the figure, it is easy 

to set up the constraint equations: 

1 1 1 2 1 2 3
cos cos 0f l q l q q qq             (27)  

2 1 1 2 1 2
sin sin 0f l q l q qq                      (28) 

Kinetic energy of the mechanical arm: 
1 2 3

T T T T  

Where: 2 2

1 1 1 1 1

1
,

2
T I m a q    

2

2 2

2 2 2 2

1 1

2 2C
T m v I  

2 2 2 2 2

2 2 1 1 2 2 1 2 1 2 1 2 2 2

1 1
2 cos

2 2
T m l q a q l a q q q q I q  

2 2

3 3 3 3 3

1 1

2 2
T m v m q  

From that the kinetic equation takes the form 

2 2 2 2 2 2

1 1 1 2 1 1 2 2 2 2 3 3

2 1 2 1 2 1 2

1 1 1

2 2 2
cos

T I m a m l q I m a q m q

m l a q q q q
  

Potential energy of structure: 

 
1 1 1 2 1 1 2 2 2

sin sin sinm ga q m gl q m ga q   

Virtual work of forces without potential energy: 

1 3
A M q F q   

The extrapolation force of the forces without potential energy: 

 
* * *

1 2 3
, 0,Q M Q Q F  

Replace the kinetic equation, potential energy, extrapolation 

and associated equations into the Lagrangian equations with 

multipliers. 

2

1

,i
k i

ik k k

fd T T
Q

dt q q q
 1,2,3k  

We infer the system of movemenet equations of the structure: 

2 2

1 1 1 2 1 1 2 1 2 2 1 2

2

2 1 2 2 1 2 1 1 2 1 1

1 1 1 2 1 2

2 1 1 2 1 2

cos

sin cos

sin sin

cos cos

I m a m l q m l a q q q

m l a q q q m a m l g q

M l q l q q

l q l q q

        (29) 

2

2 1 2 1 1 2 2 2 2 2

2

2 1 2 1 1 2 2 2 2

1 2 1 2 2 2 1 2

cos

sin cos

sin cos

m l a q q q I m a q

m l a q q q m ga q

l q q l q q

                     (30) 

 
3 3 1
m q F                                                         (31) 

 

The differential equations (29), (30), (31) and nonlinear 

algebraic equations (27), (28) form the system of Differential 

Algebraic Equations describing the motion of a two-link robot 

arm with program constraints. 
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IV. NUMERICAL SIMULATION 

The differential - algebraic equations (27) to (31) we can 

rewrite in matrix form (12). From there, eliminate the 

Lagrangian multipliers to obtain a system of 3 nonlinear 

differential equations (26). Then use MATLAB software to 

solve the system of non-linear differential equations of the 

system. To study numerical simulation, we choose the 

parameters of geometry and mass of machine arm according 

to the document [2] and record in Table 1. 

 

Table 1. Geometric and mass parameters of a robot arm 

Section 
length 

i
 

[m] 

Centering 

block 

position 
i
a  

[m] 

Mass [kg] Inertia Moment of 

the mass opposite 

Centering block 

[kgm2] 

1 2 0 200 450 

2 3.5 1.75 35 35 

3   25  

 

Besides, [2] 

- Active torque:  

41,450 0.01sin( ) , 2 radM t Nm
s

 

- The force exerted F is a function of the velocity and position 

of the last section C: 

+ When 0
C
x ,   

282,857
62,857 1.5 5

6

110,000 1 sin2 5.25 5 5.5

C

C

C C

if x
xF

x if x

  

+ When 0
C
x  then 0F . 

Next, we present a number of numerical simulation research 

results, using MATLAB software. 

Case 1: 
0 0

, 1 radrad
s

 

Using the constraint equations (27) and (28) we determine the 

initial conditions of the dependent coordinates 

(0), (0), (0), (0).
C C
x x  The numerical simulation results 

using MATLAB software are presented in Figures 3 and 4. In 

which Figure 3 is the graph of the ( )t  rotation angle of the 

driving section AB, the ( )t  swing angle of the connection 

section BC and the angular velocity of ( ), ( )t t . Figure 4 

shows the rule of motion and velocity of slider C. From 

Figure 3, we see that the driving section AB of the mechanism 

does not rotate the whole circle. 

 

 

Fig. 3. Motion chart of the sections 

 

 

Fig. 4. Motion chart of the slider 

 

 

Fig. 5. Constraint equation 

 

Figure 5 shows the accuracy of the result calculated using the 

graph of equation 

 
2 2

1 2
f f f                                                  (32) 

Case 2: 
0 0

, 1
2

radrad
s

  

The numerical simulation is similar to the case 1. Using the 

constraint equations (27) and (28) we determine the initial 

conditions of dependent coordinates 

(0), (0), (0), (0).
C C
x x  The numerical simulation results 

using MATLAB software are presented in Figures 6 and 7. 

Where Figure 6 is a graph of the rotation angle ( )t  of the 

driving section AB, the swing angle ( )t  of the connection 

section BC and their angular velocity ( ), ( )t t . Figure 7 

shows the laws of motion and the velocity of slider C. From 

Figure 6, we can see that the driving section AB rotates the 

whole circle. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2185-2190 

© International Research Publication House.  http://www.irphouse.com 

2189 

 

Fig. 6.. Motion chart of the sections 

 

 

Fig. 7. Movement graph of the slider 

 

Fig. 8. Constrain t equations 

 

Figure 8 shows the accuracy of the results calculated using the 

graph of the quadratic standard of the two constraint equations 

calculated according to formula (32). 

Case 3 : 
0 0

, 0.5 radrad
s

 

The numerical simulation is similar to the case 1. Using the 

constraint equations (27) and (28) we determine the initial 

conditions of the dependent coordinates 

(0), (0), (0), (0).
C C
x x . The numerical simulation results 

by MATLAB software are presented in Figures 9 and 10. 

Where Figure 9 is a graph of the rotation angle ( )t  of the 

driving section AB, the swing angle ( )t  of the connection 

section BC and their angular velocity ( ), ( )t t . Figure 10 

shows the laws of motion and velocity of slider C. From 

Figure 9, we can see that the driving section AB of the device 

does not rotate the whole circle 

 

Fig. 9. Motion chart of the sections 

 

Fig. 10. Movement graph of the slider 

 

 

Fig. 11. Constraint equation 

 

Figure 11 shows the accuracy of the results calculated using 

the graph of the quadratic standard of the two constraint 

equations calculated according to formula (32). 

Case 4: 
0 0

, 1.5 radrad
s

  

The numerical simulation is similar to the case 1. Using the 

constraint equations (27) and (28) we determine the initial 

conditions of the dependent coordinates 

(0), (0), (0), (0).
C C
x x . The numerical simulation results 

by MATLAB software are presented in Figures 12 and 13. 

Where Figure 12 is a graph of the rotation angle ( )t  of the 

driving section AB, the swing angle ( )t  of the connection 

section BC and their angular velocity ( ), ( )t t . Figure 13 

shows the laws of motion and velocity of slider C. From 

Figure 12, we can see that the driving section AB of the 

device rotates the whole circle. 

 

Fig. 12. Motion diagram of the sections 

 

Fig. 13. Movement graph of the slider 
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Fig.14. Constraint equation 

 

Figure 14 shows the accuracy of the results calculated using 

the graph of the quadratic standard of the two constraint 

equations calculated according to formula (32). 

 

V. CONCLUSION 

The differential equations that describe the motion of the 

robotic arm with a program constraint are generally strong 

nonlinear differential equations. As known in nonlinear 

dynamics, the solutions of these equations depend on the 

catchment basin. In this paper, thanks to numerical simulation 

techniques, we see the dependence of the movement patterns 

of the two-link robot manipulator on the initial conditions. 

The motion of the links are very different, depending on the 

initial conditions: the active link can rotate the full circle or 

just oscillate.  
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