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Abstract
In this paper, we first propose a new TVL1 variational model
for restoring images degraded by blurring and impulse noise,
and then we propose two fixed-point-like methods, using
proximal operators, for solving the new proposed TVL1
variational problem. Numerical experiments for several
test images blurred by Gaussian kernel and corrupted by
salt-and-pepper impulse noise are provided to demonstrate
the efficiency and reliability of the fixed-point-like methods.

Keywords: TVL1 variational problems, fixed-point-like
method, impulse noise, salt-and-pepper noise, proximal
operator.

1991 Mathematics Subject Classification: 94A08, 54E05,
49Q20, 35M85.

1 Introduction

Image restoration which is one of the fundamental problems
in image processing is to recover an original image from
a given degraded image. In this paper, we consider the
problem of recovering images degraded mainly by blurring
and impulse noise. Two common types of impulse noise are
salt-and-pepper noise and random-valued noise. Assume that
the dynamic range of an image is [dmin, dmax]. For images
corrupted by salt-and-pepper noise, the noisy pixels can take
only two values dmin and dmax, while for images corrupted
by random-valued noise, the noisy pixels can take any random
value between dmin and dmax.
Without lose of generality, we here assume that the true image
U = (uij) has an N × N square array and uij denotes
the (i, j)-components of the image U . For convenience of
exposition, the image U is represented by a long vector u of
size m = N2 which is defined by u =

(
uT∗1, u

T
∗2, . . . , u

T
∗N
)T

and u∗i = (u1i, u2i, . . . , uNi)
T ∈ RN . In this paper, an

observed (or degraded) image f ∈ Rm can be represented by

f = Ku+ η (1.1)

where K ∈ Rm×m is a blurring operator, u ∈ RN is the
original image, and η ∈ Rm denotes the impulse noise. Our
objective is to restore u from the blurred and noisy image
f as well as possible. The classic TVL1 model generally
performs deblurring and denoising jointly or denoising purely
(where K is an identity operator I) by solving the following
variational problem with the l1-norm data fidelity term and
total variational regularization term

min
u
{‖Ku− f‖1 + ρ‖u‖TV : u ∈ Rm} , (1.2)

where ρ > 0 is a regularization parameter and ‖u‖TV denotes
the total variation (TV) of u. There are two possible definitions
for ‖u‖TV; one is the anisotropic TV, and the other is the
isotropic TV. In this paper, we only consider the isotropic TV
of u ∈ Rm which is defined by

‖u‖TV :=

m∑
i=1

|(Ou)i| =
m∑
i=1

√
|(Oxu)i|2 + |(Oyu)i|2,

(1.3)
where the discrete gradient operator O : Rm → R2m is defined
as follows:

(Ou)i = ((Oxu)i, (Oyu)i) , i = 1, 2, . . . ,m

with

(Oxu)i =

{
0 , if i mod N = 1,

ui − ui−1, if i mod N 6= 1,

and

(Oyu)i =

{
0 , if i ≤ N,

ui − ui−N , if i > N.

In recent years, much work has been done on the TVL1 model.
In the light of the interesting features of the TVL1 model, it
has successful applications in impulse noise removal [8, 10]
and computer vision [3]. A noticeable feature of the model
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is that both the l1-norm data fidelity and regularization terms
are not differentiable. This makes that finding its solutions is a
challenging task both mathematically and numerically. Some
algorithms for solving the TVL1 model have been developed
using the proximal operator [5, 8], the primal-dual formulation
[2, 4], or the augmented Lagrangian function [3].
Recently, Lu et al. [6] proposed a fixed-point algorithm for
solving the following TVL1 variational problem

min
u

{
‖Ku− f‖1 + λ‖u‖22 + ρ‖u‖TV : u ∈ Rm

}
, (1.4)

where λ and ρ are positive numbers. This approach motivates
us to propose the following new TVL1 variational problem

min
u
{‖Ku− f‖1 + λ‖u‖2 + ρ‖u‖TV : u ∈ Rm} . (1.5)

Notice that the TVL1 problem (1.4) has a unique solution
since its objective function is strictly convex, while the TVL1
problem (1.5) may not have a unique solution since its
objective function is just convex, not strictly convex.
This paper is organized as follows. In Section 2, we
provide some definitions and useful properties which we need
to describe numerical algorithms for the TVL1 variational
problems. In Section 3, we briefly review the fixed-point
method for the TVL1 problem (1.4) proposed by Lu et
al. [6]. In Section 4, we propose two fixed-point-like
algorithms, using proximal operators, for solving the new
proposed TVL1 variational problem (1.5). In Section 5, we
provide numerical experiments for several test images blurred
by Gaussian kernel and corrupted by salt-and-pepper impulse
noise in order to demonstrate the efficiency and reliability
of the fixed-point-like methods. Lastly we provide some
concluding remarks.

2 Preliminaries

In this section, we provide some definitions and useful results
which we need to develop algorithms for solving the TVL1
variational problems (1.4) and (1.5). We first provide the
proximal operator introduced by Moreau [9].

Definition 2.1. Let ψ : Rm → R∪{+∞} be a proper, convex
and lower semi-continuous (l.s.c) function. The proximal
operator of ψ at v ∈ Rm is defined by

proxψ(v) = arg min
u

{
1

2
‖ u− v ‖22 +ψ(u) : u ∈ Rm

}
.

(2.1)

Definition 2.2. Let ψ : Rm → R∪{+∞} be a proper, convex
and l.s.c function. The subdifferential of ψ at v ∈ Rm is
defined by

∂ψ(v) = {y ∈ Rm : ψ(z) ≥ ψ(v)+ < y, z − v >, ∀z ∈ Rm} .
(2.2)

Elements in ∂ψ(v) are called subgradeients.

It is well-known that subdifferential of a convex function ψ is a
set-valued mapping from Rm into a nonempty convex compact
set in Rm (see, e.g., [1]). We now present four examples for
which we can explicitly calculate the proximal operators. Note

that new fixed-point-like algorithms for the TVL1 variational
problem (1.5) use these proximal operators. The first example
concerns the proximal operator of the absolute valued function
on R, that is, ψ = 1

λ | · |, where λ > 0.

Example 2.3. If λ > 0 and v ∈ R, then

prox 1
λ |·|

(v) = max

{
|v| − 1

λ
, 0

}
sign(v).

We remark that prox 1
λ |·|

is the well-known soft thresholding
operator with 1

λ as the threshold, see, for example, [1]. The
second example is a direct extension of the first example to
Rm.

Example 2.4. If λ > 0 and v ∈ Rm, then

prox 1
λ‖·‖1

(v) = max

{
|v| − 1

λ
, 0

}
. ∗ sign(v)

where |v| denotes elementwise absolute value of the vector v
and .∗ denotes the elementwise multiplication.

The third example gives the proximal operator of the l2-norm
on Rm, that is, ψ = 1

λ || · ||2, where λ > 0.

Example 2.5. If λ > 0 and v ∈ Rm, then

prox 1
λ‖·‖2

(v) = max

{
‖v‖2 −

1

λ
, 0

}
v

‖v‖2
.

Notice that the isotropic TV of u ∈ Rm defined by (1.3) can
be expressed as

‖u‖TV = (ϕ ◦B)(u), (2.3)

where ϕ : R2m → R is a convex function defined by

ϕ(v) =

m∑
i=1

∥∥∥∥( vi
vm+i

)∥∥∥∥
2

for each v = (vi) ∈ R2m

and B is a d ×m matrix which represents a discrete gradient
operator O with m = N2 and d = 2m. The last example gives
the proximal operator of the convex function ϕ on R2m which
is called the generalized shrinkage formula, that is, ψ = 1

λϕ,
where λ > 0.

Example 2.6. If λ > 0 and v = (vi) ∈ R2m, then

prox 1
λϕ

(v) =

m∏
i=1

(
prox 1

λ‖·‖2

(
vi

vm+i

))
,

where
∏

denotes Cartesian product of vector spaces.

The following theorem outlines a relationship between the
proximal operator and the subdifferential of a convex function.

Theorem 2.7 ([6, 9]). If ψ is a proper, convex and l.s.c.
function on Rm and v ∈ Rm, then

y ∈ ∂ψ(v) ⇔ v = proxψ(v + y). (2.4)
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3 Review of Fixed-point algorithm for (1.4)

In this section, we briefly review the fixed-point method
proposed in [6] for solving the TVL1 problem (1.4) which can
be expressed as

min
u

{
‖Ku− f‖1 +

λ

2
‖u‖22 + ρ(ϕ ◦B)(u) : u ∈ Rm

}
,

(3.1)
where λ and ρ are positive numbers, K is an m×m matrix, ϕ
and B are defined the same as in (2.3).
Using Fermat rule in convex analysis for model (3.1) and
relation ∂(ϕ ◦B) = BT ◦ (∂ϕ) ◦B, we have

0 ∈ KT (∂‖ · ‖1)(Ku− f) + ρBT (∂ϕ)(Bu) + λu, (3.2)

or equivalently

0 ∈ KT

(
∂

1

λ
‖ · ‖1

)
(Ku− f) + ρBT

(
∂

1

λ
ϕ

)
(Bu) + u.

(3.3)
From relation (3.3), for any α and β > 0 we can choose a
vector a ∈ ∂( 1

αλ‖·‖1)(Ku−f) and a vector b ∈ ∂( 1
βλϕ)(Bu)

satisfying
αKTa+ ρβBT b+ u = 0. (3.4)

Using Theorem 2.7 and Equation (3.4), one obtains the
following equations

a =
(
I − prox 1

αλ‖·‖1

)
(Ku− f + a) , (3.5)

b =
(
I − prox 1

βλϕ

)
(Bu+ b) , (3.6)

u = −
(
αKTa+ ρβBT b

)
. (3.7)

From Equations (3.5)-(3.7), one can obtain Algorithm 1
which is similar to the fixed-point algorithm proposed in [6].
Actually, Lu et al. [6] derived the fixed-point method from
relation (3.2). Numerical experiments show that Algorithm 1
using relation (3.3) performs better than the fixed-point method
[6] using relation (3.2).

Algorithm 1 Fixed-point algorithm for TVL1 problem (1.4)

1: Given degraded image f , choose positive parameters
α, β, λ, ρ

2: Initialization : u0 = 0, a0 = 0 and b0 = 0

3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

αλ‖·‖1

) (
Kuk − f + ak

)
5: bk+1 =

(
I − prox 1

βλϕ

) (
Buk + bk

)
6: uk+1 = −

(
αKTak+1 + ρβBT bk+1

)
7: if ‖u

k+1−uk‖2
‖uk+1‖2 < tol then

8: Stop
9: end if

10: end for

For all algorithms considered in this paper, maxit denotes the
maximum number of iterations and tol denotes the tolerance
value of the stopping criterion.

4 Fixed-point-like algorithms for TVL1
problem (1.5)

In this section, we propose two fixed-point-like algorithms,
based on the proximal operators, for solving the new proposed
TVL1 variational problem (1.5). Equation (1.5) can be
expressed as

min
u
{‖Ku− f‖1 + λ‖u‖2 + ρ(ϕ ◦B)(u) : u ∈ Rm} ,

(4.1)
where λ and ρ are positive numbers, ϕ and B are defined
the same as in (2.3). Using Theorem 2.7, we can obtain
the following property for the solution of TVL1 variational
problem (4.1)

Theorem 4.1. Assume that problem (4.1) has a nonzero
solution u. If ϕ is a real-valued convex function on Rd, B
is an d×m matrix, K is an m×m matrix, and u is a nonzero
solution of problem (4.1), then for any α, β > 0 there exist
vectors a ∈ Rm and b ∈ Rd such that

a =
(
I − prox 1

α‖·‖1

)
(Ku− f + a) , (4.2)

b =
(
I − prox ρ

βϕ

)
(Bu+ b) , (4.3)

u = −‖u‖2
λ

(
αKTa+ βBT b

)
. (4.4)

Conversely, if there exist α, β > 0, a ∈ Rm, b ∈ Rd, and
u ∈ Rm satisfying Equations (4.2)-(4.4), then u is a nonzero
solution of TVL1 problem (4.1).

Proof. We assume that u ∈ Rm is a nonzero solution of
problem (4.1). By the Fermat rule in convex analysis for model
(4.1) and using the relations ∂(ϕ ◦ B) = BT ◦ (∂ϕ) ◦ B and
∂(‖u‖2) = 1

‖u‖2u, we have

0 ∈ KT (∂‖ · ‖1)(Ku− f) + ρBT (∂ϕ)(Bu) +
λ

‖u‖2
u,

or equivalently

0 ∈ KT (∂‖ · ‖1)(Ku−f) +BT (∂ρϕ)(Bu) +
λ

‖u‖2
u. (4.5)

From relation (4.5), for any α, β > 0 we can choose a vector
a ∈ ∂( 1

α‖ · ‖1)(Ku − f) and a vector b ∈ ∂( ρβϕ)(Bu)
satisfying

αKTa+ βBT b+
λ

‖u‖2
u = 0. (4.6)

From (4.6), we obtain Equation (4.4). By Theorem 2.7, the
inclusions a ∈ ∂( 1

α‖ · ‖1)(Ku− f) and b ∈ ∂( ρβϕ)(Bu) lead
to Equations (4.2) and (4.3), respectively.
Conversely, suppose that there exist α, β > 0, a, u ∈ Rm, and
b ∈ Rd satisfying Equations (4.2)-(4.4). Again, by Theorem
2.7, Equations (4.2) and (4.3) ensure that a ∈ ∂( 1

α‖·‖1)(Ku−
f) and b ∈ ∂( ρβϕ)(Bu), respectively. Therefore, we obtain

0 = αKTa+ βBT b+
λ

‖u‖2
u

∈ KT (∂‖ · ‖1)(Ku− f) +BT (∂ρϕ)(Bu) +
λ

‖u‖2
u.

Consequently, Equation (4.5) holds. Hence u ∈ Rm is a
nonzero solution of TVL1 problem (4.1).
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From Equations (4.2)-(4.4) of Theorem 4.1, we can obtain
fixed-point-like algorithm, called Algorithm 2, using two
proximal operators for TVL1 problem (1.5).

Algorithm 2 Fixed-point-like algorithm for TVL1 problem
(1.5)

1: Given degraded image f , choose positive parameters
α, β, λ, ρ

2: Initialization : u0 = f , a0 = 0 and b0 = 0

3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

α‖·‖1

) (
Kuk − f + ak

)
5: bk+1 =

(
I − prox ρ

βϕ

) (
Buk + bk

)
6: uk+1 = −‖u

k‖2
λ

(
αKTak+1 + βBT bk+1

)
7: if ‖u

k+1−uk‖2
‖uk+1‖2 < tol then

8: Stop
9: end if

10: end for

Algorithm 2 has been developed using the explicit formula
∂(‖u‖2) = 1

‖u‖2u for a nonzero vector u. We next propose
another fixed-point-like algorithm for TVL1 problem (4.1)
which is developed without using the explicit formula for
∂(‖u‖2). Using Theorem 2.7, we can obtain the following
property for the solution of TVL1 problem (4.1).

Theorem 4.2. If ϕ is a real-valued convex function on Rd, B
is an d×m matrix, K is an m×m matrix, and u is a solution
of problem (4.1), then for any α, β, γ > 0 there exist vectors
a, c ∈ Rm and b ∈ Rd such that

a =
(
I − prox 1

α‖·‖1

)
(Ku− f + a) , (4.7)

b =
(
I − prox ρ

βϕ

)
(Bu+ b) , (4.8)

c = − 1

γλ

(
αKTa+ βBT b

)
, (4.9)

u = prox 1
γ ‖·‖2

(u+ c) . (4.10)

Conversely, if there exist positive numbers α, β, γ and vectors
a, c ∈ Rm, b ∈ Rd, and u ∈ Rm satisfying Equations
(4.7)-(4.10), then u is a solution of TVL1 problem (4.1).

Proof. We assume that u ∈ Rm is a solution of problem (4.1).
By the Fermat rule in convex analysis for problem (4.1) and
using the relations ∂(ϕ ◦B) = BT ◦ (∂ϕ) ◦B, we have

0 ∈ KT (∂‖ · ‖1)(Ku− f) + ρBT (∂ϕ)(Bu) + λ(∂‖ · ‖2)(u),

or equivalently

0 ∈ KT (∂‖ · ‖1)(Ku− f) +BT (∂ρϕ) (Bu) +λ(∂‖ · ‖2)(u).
(4.11)

From relation (4.11), for any α, β, γ > 0 we can choose
a vector a ∈ ∂( 1

α‖ · ‖1)(Ku − f), b ∈ ∂( ρβϕ)(Bu) and
c ∈ ∂( 1

γ ‖ · ‖2)(u) satisfying

αKTa+ βBT b+ γλc = 0. (4.12)

From Equation (4.12), we obtain Equation (4.9). By Theorem
2.7, the inclusions a ∈ ∂( 1

α‖ · ‖1)(Ku− f), b ∈ ∂( ρβϕ)(Bu)

and c ∈ ∂( 1
γ ‖·‖2)(u) lead to Equations (4.7), (4.8) and (4.10),

respectively.
Conversely, suppose that there exist α, β, γ > 0, a, c, u ∈ Rm,
and b ∈ Rd satisfying Equations (4.7)-(4.10). Again, by
Theorem 2.7, Equations (4.7), (4.8) and (4.10) ensure that a ∈
∂( 1

α‖ · ‖1)(Ku− f), b ∈ ∂( ρβϕ)(Bu) and c ∈ ∂( 1
γ ‖ · ‖2)(u),

respectively. From Equation (4.9), Equation (4.11) holds.
Hence u ∈ Rm is a solution of TVL1 problem (4.1).

From Equations (4.7)-(4.10) of Theorem 4.2, we can obtain
another fixed-point-like algorithm, called Algorithm 3, using
three proximal operators for TVL1 problem (1.5).

Algorithm 3 Fixed-point-like algorithm for TVL1 problem
(1.5)

1: Given degraded image f , choose positive parameters
α, β, γ, λ, ρ

2: Initialization : u0 = 0, a0 = 0 and b0 = 0

3: for k = 0 to maxit do
4: ak+1 =

(
I − prox 1

α‖·‖1

) (
Kuk − f + ak

)
5: bk+1 =

(
I − prox ρ

βϕ

) (
Buk + bk

)
6: ck+1 = − 1

γλ

(
αKTak+1 + βBT bk+1

)
7: uk+1 = prox 1

γ ‖·‖2
(
uk + ck+1

)
8: if ‖u

k+1−uk‖2
‖uk+1‖2 < tol then

9: Stop
10: end if
11: end for

The following theorem provides convergence analysis only for
Algorithm 3 since convergence for other algorithms can be
analyzed similarly.

Theorem 4.3. Let {an}, {bn}, {cn} and {un} be sequences
generated by Algorithm 3. If we can find two consecutive
vectors uk and uk+1 such that uk+1 = uk for some positive
values of α, β, γ, λ and ρ, then uk+1 is a solution of TVL1
problem (1.5).

Proof. Substituting Equations (4.7) to (4.9) into Equation
(4.10), one obtains

u = prox 1
γ
‖·‖2

(
u−

1

γλ

(
αKT

(
I − prox 1

α
‖·‖1

)
(Ku− f + a)

+βBT
(
I − prox ρ

β
ϕ

)
(Bu+ b)

))
.

(4.13)

From Theorem 4.2, it can be easily seen that if u, a and b
satisfy (4.13) for some positive values of α, β, γ, λ and ρ, then
u is a solution of TVL1 problem (1.5). By combining lines 4
to 7 of Algorithm 3, one obtains

uk+1 = prox 1
γ
‖·‖2

(
uk −

1

γλ

(
αKT

(
I − prox 1

α
‖·‖1

)(
Kuk − f + ak

)
+βBT

(
I − prox ρ

β
ϕ

)(
Buk + bk

)))
.

(4.14)
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If uk+1 = uk in Equation (4.14), then uk+1, ak and bk satisfy
(4.13) for some positive values of α, β, γ, λ and ρ. Hence uk+1

is a solution of TVL1 problem (1.5).

Theorem 4.3 gives an idea of how to stop the fixed-point-like
algorithms. In practical applications, we do not have to find
uk+1 which is equal to uk. Instead, we need to find uk+1

which is reasonably close to uk. Hence, for all algorithms
considered in this paper we have used the following stopping
criterion

‖uk+1 − uk‖2
‖uk+1‖2

< tol,

where tol is a suitably chosen small tolerance value.

5 Numerical Experiments

In this section, we provide numerical performance results for
Algorithms 1 to 3. Note that the isotropic TV of u ∈ Rm
is defined by ||u||TV = (ϕ ◦ B)(u), where ϕ and B are
defined the same as in (2.3). Let DN denote the N ×N ‘local
difference’ matrix defined by

DN =


0 0 · · · · · · 0
−1 1 · · · · · · 0

...
. . . . . . . . .

...
0 · · · −1 1 0
0 · · · 0 −1 1

 .

Then B can be expressed as a d×m matrix given by

B =

(
IN ⊗DN

DN ⊗ IN

)
,

where ⊗ denotes the Kronecker product, IN denotes the
identity matrix of order N , m = N2 and d = 2m.
In order to illustrate the efficiency and reliability of two
fixed-point-like methods, called Algorithms 2 and 3, for
solving the new proposed TVL1 problem (1.5), we provide
numerical results for 4 test images such as Cameraman, Lena,
House and Boat. The pixel size of 4 test images is 256× 256.
All numerical tests have been performed using Matlab R2018a
on a personal computer with 3.6GHz CPU and 8GB RAM.
maxit is set to 6000 for all algorithms, and tol is set to
1×10−5 (for Algorithms 1 and 2) or 1.5×10−4 (for Algorithm
3).
To evaluate the quality of the restored images, we use the peak
signal-to-noise ratio (PSNR) between the restored image and
original image which is defined by

PSNR = 10 log10

(
N2 ·maxi,j |ui,j |2

‖u− ũ‖2F

)
where ‖ · ‖F refers to the Frobenius norm, u and ũ are the
original and restored images with size N × N , respectively.
Also ui,j stands for the value of original image u at the pixel
point (i, j) and N2 is the total number of pixels. It is generally
true that the larger PSNR value stands for the better quality of
restored image.
For all numerical experiments, we have used the test images
with an intensity range of [0, 1]. For all test problems, we
choose the degraded test images which are resulting images
blurred by Gaussian kernel of size 15 × 15 with reflexive
boundary condition and standard deviation 9, and corrupted by
30% or 60% salt-and-pepper impulse noise. In Tables 1 and
2, P0 represents the PSNR values for the blurred and noisy
images f , Alg denotes the algorithm to be used, Cam denotes
the Cameraman image, PSNR represents the PSNR values for
the restored images, and Iter denotes the number of iterations.
All parameters α, β, γ, λ and ρ are chosen as the best one by
numerical tries,
Tables 1 and 2 provide numerical results for Algorithm 1 for
TVL1 problem (1.4) and those for Algorithms 2 and 3 for
TVL1 problem (1.5). Table 1 contains numerical results for
degraded test images with 30% salt-and-pepper impulse noise,
and Table 2 contains numerical results for degraded test images
with 60% salt-and-pepper impulse noise.
In Figures 1 to 4, the first row images are true image, blurred
image with 30% salt-and-pepper noise, and blurred image
with 60% salt-and-pepper noise. The second row contains the
images restored by Algorithms 1, 2 and 3 for blurred image
with 30% salt-and-pepper noise. The third row contains the
images restored by Algorithms 1, 2 and 3 for blurred image
with 60% salt-and-pepper noise.
As can be seen in Tables 1 and 2, Algorithm 3 for TVL1
problem (1.5) performs best. That is, Algorithm 3 yields
the highest PSNR values. Algorithm 1 for TVL1 problem
(1.4) performs better than Algorithm 2 for TVL1 problem
(1.5) for blurred images with 30% salt-and-pepper noise (see
Table 1), while Algorithm 2 performs better than Algorithm 1
for blurred images with 60% salt-and-pepper noise (see Table
2). Both Algorithms 2 and 3 are fixed-point-like methods
for solving the TVL1 problem (1.5). Numerical experiments
show that Algorithm 2 using the explicit formula ∂(‖u‖2) =

1
‖u‖2u performs much worse than Algorithm 3 using proximal
operator instead of using the explicit formula for ∂(‖u‖2).
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Table 1: Numerical results for TVL1 problems with 30% salt-and-pepper impulse noise

Image P0 Alg α β γ λ ρ tol PSNR Iter

1 2.2 0.1 0.14 0.004 1× 10−5 25.12 2323

Cam 9.86 2 0.066 0.0017 4.6 0.01 1× 10−5 25.56 3931

3 6.3 0.001 1.3 1.03 0.003 1.5× 10−4 30.03 1843

1 2.2 0.07 0.13 0.01 1× 10−5 26.65 3122

Lena 9.92 2 0.066 0.0017 4.6 0.019 1× 10−5 26.31 3917

3 6.3 0.0003 1.3 1.1 0.003 1.5× 10−4 30.09 1845

1 2.2 0.2 0.15 0.02 1× 10−5 31.20 2195

House 9.91 2 0.066 0.0017 5.0 0.026 1× 10−5 30.52 3363

3 6.6 0.00003 1.3 1.1 0.003 1.5× 10−4 36.57 2332

1 2.2 0.06 0.14 0.007 1× 10−5 26.23 2907

Boat 9.55 2 0.075 0.0009 4.8 0.026 1× 10−5 25.45 4843

3 6.6 0.00008 1.3 1.1 0.003 1.5× 10−4 30.43 1668

Table 2: Numerical results for TVL1 problems with 60% salt-and-pepper impulse noise

Image P0 Alg α β γ λ ρ tol PSNR Iter

1 2.6 0.2 0.29 0.02 1× 10−5 22.11 1443

Cam 7.11 2 0.063 0.0019 5.0 0.02 1× 10−5 23.86 3663

3 6.3 0.002 1.1 1.1 0.014 1.5× 10−4 24.86 1096

1 2.6 0.2 0.29 0.03 1× 10−5 23.89 1716

Lena 7.12 2 0.065 0.0014 4.8 0.032 1× 10−5 25.25 4275

3 5.9 0.0008 1.1 1.1 0.015 1.5× 10−4 26.38 1143

1 2.5 0.3 0.25 0.02 1× 10−5 27.17 1313

House 7.07 2 0.066 0.0015 5.1 0.025 1× 10−5 29.00 3187

3 5.3 0.0008 0.7 1.3 0.015 1.5× 10−4 31.15 958

1 2.5 0.2 0.24 0.01 1× 10−5 23.13 1553

Boat 6.76 2 0.065 0.001 4.7 0.02 1× 10−5 23.96 4330

3 1.5 0.001 1.4 2.2 0.015 1.5× 10−4 24.72 1546
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True image Blurred and 30% noisy image Blurred and 60% noisy image

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Figure 1: TVL1 image restoration for Cameraman image with 30% or 60% salt-and-pepper noise

True image Blurred and 30% noisy image Blurred and 60% noisy image

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Figure 2: TVL1 image restoration for Lena image with 30% or 60% salt-and-pepper noise
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True image Blurred and 30% noisy image Blurred and 60% noisy image

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Figure 3: TVL1 image restoration for House image with 30% or 60% salt-and-pepper noise

True image Blurred and 30% noisy image Blurred and 60% noisy image

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Restoration by Algorithm 1 Restoration by Algorithm 2 Restoration by Algorithm 3

Figure 4: TVL1 image restoration for Boat image with 30% or 60% salt-and-pepper noise
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6 Conclusion

In this paper, we proposed a new TVL1 variational problem
(1.5) for restoring images degraded by blurring and impulse
noise, and then we proposed two fixed-point-like methods,
called Algorithms 2 and 3, for solving the new proposed TVL1
problem (1.5). Numerical experiments showed that Algorithm
3 without using the explicit formula ∂(‖u‖2) = 1

‖u‖2u

performs much better than Algorithm 2 using the explicit
formula for ∂(‖u‖2) and Algorithm 1 for the TVL1 problem
(1.4) proposed by Lu et al. [6]. Hence, it can be concluded
that the new proposed TVL1 problem (1.5) provides better
quality in image restoration than the TVL1 problem (1.4), and
Algorithm 3 is preferred over Algorithm 2 for the new TVL1
problem (1.5).
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