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Abstract: 

This paper proposes a method of constructing a control system 

for deterministic chaotic modes of nonlinear objects in a class 

of hyperbolic umbilic catastrophe from the catastrophe theory 

for multidimensional and nonlinear systems. It is shown that an 

increase in the potential of robust stability is the primary factor 

in the protection, ensuring the system from the deterministic 

chaos mode with an emergence of "strange attractors". A study 

of control systems with a high potential for robust stability is 

implemented by the gradient-velocity method of Vector 

Lyapunov Functions. 

Modern control problems are characterized by increasing 

complexity and nonlinearity of control objects, stability 

requirements of control systems in conditions of uncertainty 

and incomplete information. In recent years, the possibility of 

chaotic dynamics has been discovered in a large number of non-

linear systems. Currently, it is generally accepted that the real 

objects of control are non-linear and one of the basic properties 

of nonlinear dynamical systems is an attainment of the 

deterministic chaos mode with a formation of "strange 

attractors". 

Keywords - Control, Robust Stability, Nonlinear System, 

Strange Attractor, Hyperbolic Umbilic. 

 

I. INTRODUCTION 

As it has been already emphasized, a property of deterministic 

chaos, bifurcation, self-organization is defined by a property of 

stability and is associated with the system response to 

disturbances of various types [1-10]. Therefore, we introduce a 

"standard state" ,,...,,...,1 SnSiS XXX  where  SiX  represents a 

set of state variables, continuously probed by internal 

fluctuations or external disturbances. If we deal with a 

completely unperturbed system, i.e if the system has no 

external disturbance and control, then it is true that 

),...,( 1 SnSS XXX   will refer to the time-independent 

stationary solution. This result means that the system has no 

deterministic chaos and complex behavior types [11-13]. Thus, 

the occurrence of complex behavior and deterministic chaos 

can be considered as a transition from ),...,( 1 nSSS XXX  to the 

solutions of the new type. 

Let us now consider what should be a formalism that allows to 

find out the stability of the studied standard state. The main 

difficulty in the theory of stability is related to the large number 

of variables that describe this problem [14-16]. 

II. RESULTS AND DISCUSSION 

A nonlinear stationary control system is described by the 

equation of state: 

 

,)( BuXfX 


,nRX 
mRu    

        (1) 

where, )(f  is a vector - a function of dimension   nRfn 

, u (t) is a vector - function of dimension m, defined in the form 

of three-parameter structurally stable mappings. 
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A control matrix is defined in the diagonal form for comfort. 

mmb

b

b

b

B

...,,000

...............

0...,,00

0...,,00

0...,,00

33

22

11


 

A nonlinear stationary object is described by the equation: 

 

)(XfX 


     

        (3) 

The state of equation the control object in the expanded form 

can be written as: 
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        (4) 

All functions in the right-hand side of the state equation (4) are 

given in the canonical form using a number of theorems from 
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the theory of catastrophes. Change in X  in the process of 

control )0)(( tu and disturbances )0)(( tz  to zero, i.e. free 

movement of the system can be written in the following form: 

)(Xf
dt

dX
        (5) 

 

Here )(f  - a vector-function operating in the space, which 

defines a vector .),...,( 1

T

nXXX  This vector-function is 

usually nonlinear.  

Derived above standard state 
SX is a particular solution of 

equation (5). Consequently:  

)( S
S Xf

dt

dX
  

Using this representation from (5) we can obtain equation for 

x : 

)()( SS XfxXf
dt

dx
  

Naturally, this equation can be expanded, i.e. its right-hand side 

near any standard state 
SX . If a f  has the form of a polynomial 

in terms of X , then it is always possible that leads to a finite 

number of terms. However, in more complex cases f  may 

depend on X  in any other way. In this case, we assume that: 

1) f  continues to be expanded in a power series of X and 2) 

the expansion can be truncated at power of a finite order. By 

virtue of the latter assumption, usually we  have to be 

sometimes limited to the study of infinitesimal stability, i.e. 

study of the system response to small perturbations, such that 

SXx << 1. This limitation is often of minor  importance, 

since the infinitesimal stability gives a necessary condition for 

instability in the sense that if
SX  is unstable with respect to 

small x , then it will be unstable with respect to any x . 

Formally, the above-described expansion in state space 
nRtx )( can be represented by the equation:  
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        (6) 

Equations (6) corresponds to the description of the free 

movement of system, comprising  deviations x  relative to the 

standard state 
sX . 

The state equations of the control object in the expanded form 

can be represented in the following form: 
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Nonlinear stationary control object with m inputs and n outputs, 

using a smooth change of variables in the canonical form can 

be written as: 
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Nonlinear stationary control system (1) subject to the control 

procedure (2) and a mathematical model of control object (8) 

in the expanded form can be presented as the following system 

of equations: 
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Obtained state of the system (9) will be determined by solving 

equations: 
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From the system of equations (10) we can find the stationary 

states: 

,01 sx ,0,...,02  nss xx     

      (11) 

Some other stationary states can be determined by solving 

equations: 

,02  iiiiiisii kbaxb 0jsx  at niji ,...,1, 

    

    (12) 

Equation (12) with negative  ,,...,1 ni
b

a
k

ii

ii
i 

ii

ii

i
b

a
k ( <0, 

),...,1 ni   have imaginary solutions that cannot correspond to 

any physical possible situation. When 

ii

ii
i

b

a
k   greater than 

zero

ii

ii

i
b

a
k ( > 0), equation (12) admits the following steady 

states: 

,
ii

ii
iis

b

a
kx  0jsx  at njniji ,...,1;,...,1,   

      (13) 

and 

,
ii

ii
iis

b

a
kx  0jsx  at njniji ,...,1;,...,1,   

      (14) 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 12 (2019), pp. 2510-2515 

© International Research Publication House.  http://www.irphouse.com 

2513 

Stability of the stationary states (11), (13) and (14) of the 

system (9) is investigated by gradient-velocity method of 

Vector Lyapunov function [9,10]. 

1. Consider the stability of stationary state (11). We find (9) 

antigradient vector components of the vector function at 

))(),...,(),(()( 21 xVxVxVxV n : 
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From (9) we define projections of the velocity vector 

components in the coordinate system. 

Find the total time derivative of the Lyapunov vector-function 

as the scalar product of the gradient vector (15) to the velocity 

vector. 
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From (16) it is clear that the total time derivative of the 

Liapunov function  vector is a negative function, therefore we 

meet a sufficient condition for the asymptotic stability of the 

system. 

By gradient components (15) we construct a vector of 

Lyapunov function in the scalar form. 

Condition of positive and negative states of Lyapunov function 

V (x) is not obvious from (17), so we can use the lemma of 

Morse from the theory of catastrophes. 

 

2

2

2

1,1

42

1

1,

1

2

1,1

4

1

2

21,

2

22

2

11

2

2

2

323

2

2

22

22
2

2

211222

4

222

2

1

11

21
1

2

2

11222122

2

1

2

3132

11

12
211

2

2

2

11211

4

211

2

1

11

11
1112

2

11211

4

1111

2

1

4

1

4

1

2

1

4

1

4

1

2

1
...

2

1

2

1
...

2

1

...
2

1

2

1

4

1

4

1

2

1

4

1

4

1

2

1
...

2

1

2

1

4

1

4

1

2

1

4

1

4

1
)(

n

nn

nn
nn

nnnnnnnnnn

nn

nn

nnnnnnnnn

nnnnnnnnnn

nn

x
b

a
kb

xxkbxbx
b

a
kbxxkb

xbxaxaxaxa

xax
b

a
kxxkbxbx

b

a
k

xxkbxbxaxax
b

a
kb

xxkbxbx
b

a
kbxxkbxbxV










































































      

(17) 

By Lemma Morse, Lyapunov function (17) in the vicinity of 

the stationary state (11) can locally be represented as a 

quadratic form considering the state equation (9): 
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Conditions of the positive definiteness in the quadratic form 

(18) (stability of stationary state (11) determined by the system 

of inequalities): 
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      (19) 

Thus, stability region of the steady state (11) will be determined 

by compliance with the system of inequalities (19), built 

relative to the undefined parameters of the control object and 

selected parameters of the control system. 

2. We investigate the stability of the stationary states (13) and 

(14). The equation of state (9) is represented in the deviations 

relative to the stationary state (13) and (14), using the known 

formalism. We compute the values [17,18] of the derivatives in 

the right-hand side of the state equations (9) at the stationary 

point of states (13). 

Using the given formalism [12,13] in the state equation (9) in 

deviations relative to a stationary state (13) or (14) can be 

recorded in the following form:  
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The control system of deterministic chaotic modes of nonlinear 

objects with a single input and a single output in the class of 

hyperbolic umbilic catastrophe. 

Find the total time derivative of the Lyapunov vector-function 

as the dot product of the velocity vector and the gradient vector: 
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 (21) 

From (21) it is clear that the total time derivative of the 

Liapunov vector-function is a negative function, therefore, a 

sufficient condition is met for asymptotic system stability (20). 

Using components of Lyapunov vector-function we construct 

the Lyapunov vector-function in the scalar form: 
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From the expressions (22) positive or negative definition of 

Lyapunov function cannot be defined, so we use the 

fundamental theorem of the theory of catastrophes - Morse 

Lemma [19-21]. By Lemma Morse, Lyapunov function (22) in 

the vicinity of the stationary state (13) and (14) can be locally 

presented in the quadratic form considering the state equation 

(20) to deviations with respect to the stationary state (13) or 

(14): 
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Stability conditions of stationary state (13) or (14) are 

determined by the positive definiteness of the quadratic form 

(23), i.e. by the system of inequalities: 
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(24) 

Stability conditions of stationary state (13) or (14) are 

determined by the positive definiteness of the quadratic form 

(23), i.e. by the system of inequalities (24). 

Thus, nonlinear MIMO system constructed in the class of three-

parameter structurally stable maps will be stable in the 

unlimited wide range of changes in the undetermined 

parameters of the control object. The steady state (11) exists 

and it is stable when changing the undetermined parameters in 

the region (20), whereas stationary state (13) and (14) exists in 

case of the loss of stability in the stationary state (11) and they 

do not exist simultaneously. 

Stable stationary states (13) and (14) can be obtained when 

inequalities (24) are true. 
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III. CONCLUSIONS 

The real control objects are nonlinear, multidimensional and 

their control systems are designed and operated under 

conditions of uncertainty. The basic property of nonlinear 

dynamic control objects is functioning in the deterministic 

chaos mode with attainment of "strange attractor". The 

deterministic chaotic modes of control objects can lead to 

accidents and crisis, and the chaos is shown in the form of loss 

of stability of the existing stationary state of the system in the 

conditions of uncertainty. 

We propose to solve control problems of deterministic chaotic 

processes by building control systems with a high potential for 

robust stability in the class of hyperbolic umbilic catastrophe. 

The study of control system is perfromed using gradient-

velocity method of the Vector Lyapunov function. 

The stability region of stationary state in the control system is 

obtained in the form of a system of inequalities for the simplest 

uncertain parameters of the closed system. The control system 

with a high potential for robust stability, built in the class of 

hyperbolic umbilic catastrophe provides robust stability for any 

changes in uncertain parameters. Hence, a deterministic chaotic 

mode is removed from the scenario of development process. 
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