Minimum Cost Method for Multiskilled Resource Scheduling

Narongrit Wongwai^a and Suphawut Malaikrisanachalee^{b*}

^aPhD student, M.Eng., Department of Civil Engineering, Kasetsart University Sriracha Campus, Chonburi, Thailand.

^bAssistant Professor, PhD, Department of Civil Engineering, Kasetsart University, Bangkok, Thailand.

First author: Narongrit Wongwai.

*Corresponding author: Suphawut Malaikrisanachalee.

ORCIDs: 0000-0001-9031-457X (Suphawut), 0000-0002-8056-6260 (Narongrit)

Abstract:

Conventional multiskilled resource scheduling is restricted to immediate resource replacement regardless of whether a resource is worth replacing financially. Furthermore, information is lacking on the extent to which an activity can be expedited or delayed under resource constraints. This study presents an algorithm for multiskilled resource scheduling that aims to enhance the decision process, yield results, and eliminate waste related to resource replacement. The first step addresses the initial solution selected from the lowest scheduling cost among forward-pass and backward-pass calculations. The second step identifies the resourceconstrained float, in which an activity can be shifted forward or backward with a guarantee of an adequate resource combination and of meeting the project deadline. The final step uses the given float, which allows for flexibility in adjusting the project schedule to optimise resource replacement. The proposed algorithm is simple and can be calculated manually. It provides a solution that is superior to that of the optimisation approach in the optimal resource replacement step. Furthermore, its advantages can be practically applied in large projects that demand a large number of activities and resources. The results of real-world project case study reveal that the proposed algorithm minimises total project cost.

Keywords: multiskilled resource scheduling; resource replacement; resource-constrained float; total project cost

INTRODUCTION 1.

Construction projects involve activities that require the use of resources to achieve certain goals. The fundamental resources necessary for such projects include people, money, methods, materials, and machines. However, these resources are limited because there is usually more than one activity that demands the same resources. As a result, resource shortages become unavoidable and cause project delays and increased project costs.

Single-skilled resource scheduling based on two calculation approaches has been researched over several decades [1, 2, 3,4, 5, 6, 7]. One approach is the traditional forward-pass calculation, which attempts to start an activity as early as possible. The other approach is the backward-pass calculation, which aims to start an activity as late as possible. It is possible

to determine the float of the activity after the completion of both calculations even with limited resources. However, the effect of the result on reducing project cost remains unclear. As long as activities are scheduled within their float, the project cost will remain unchanged owing to identical resource usage (Figure 1).

(a) Forward-pass calculation for single-skilled resource scheduling $R_1 \cos t = 100 \text{ units/day}$ $R_2 \cos t = 200 \text{ units/day}$ Indirect cost = 300 units/day

Activity	Priority	R1	R2 -				D	ay			
(Predecessor)	Value	KI	R2	1	2	3	4	5	6	7	8
Α	6	3	0								
В	5	1	1		l						
С	4	1	0								1
D(B)	3	3	0								1
E(A,B)	2	1	1								
F(C,D,E)	1	1	1				1		1		
	R1 usage (4 units	/day)	4	4	4	4	4	1	1	
	R2 usage (6 units	/day)	1	0	0	0	1	1	1	

Project cost = (22 x 100) R1 + (4 x 200) R2 + (7 x 300) Indirect = 5,100 units (b) Backward-pass calculation for single-skilled resource scheduling

Activity	Priority	R1	R2 -				D	ay			
(Predecessor)	Value	KI	K2 -	1	2	3	4	5	6	7	8
Α	6	3	0								
В	5	1	1								
С	4	1	0						1		
D(B)	3	3	0								
E(A,B)	2	1	1								
F(C,D,E)	1	1	1								
	/day)	3	4	4	2	4	4	1			
	s/day)	0	0	0	1	1	1	1	1		

Project cost = $(22 \times 100) R1 + (4 \times 200) R2 + (7 \times 300) Indirect = 5,100 units$

Figure 1. Calculation approaches of single-skilled resource scheduling

The proposed approach assumes that a resource has multiple skills and can be used to generate efficient resource utilisation for project scheduling. This assumption is based on the fact that workers possess various skills and can adjust themselves to any of them. The results of several studies on this topic demonstrate that the multiskilled ability of a worker contributes to productivity, quality, and continuity. Furthermore, it contributes to greater flexibility in work assignment among construction project managers [8, 9, 10]. Related studies also discovered that a multiskilled resource approach benefits workers regarding longer employment duration, better work qualification, and higher job satisfaction [11, 12, 13].

Existing multiskilled resource scheduling relies solely on a forward-pass calculation [14, 15, 16]; forward- and backward-pass calculations may result in different project costs because of different resource combinations. Furthermore, a forward-pass calculation may not guarantee a lower project cost than a backward-pass calculation (Figure 2). Therefore, it is necessary to perform both calculations to obtain an improved solution. Figure 2 also demonstrates an alternative solution in which the start time of activities is adjusted within the float obtained from calculations. Accordingly, the reduction of resource replacement minimises the total project cost.

(a) Forward-pass calculation of multiskilled resource schedulin	g
Resource replacement rule $\cdot 2R2 = 1R1$	

R1 cost = 100 units/day, R2 cost = 200 units/day, Indirect cost = 300 units/day

Activity	Priority	D1	R2				D	ay			
(Predecessor)	Value	R1	R2	1	2	3	4	5	6	7	8
Α	6	3	0								
В	5	1	1								
С	4	1	0								
D(B)	3	3	0								
E(A,B)	2	1	1								
F(C,D,E)	1	1	1								
	R1 usage (4	4 units	'day)	4	4	4	1	1	1		
	R2 usage (6 units/day)					6	0	1	1		
	R1 replacement										
	R2 replacement										

Project cost = (15 x 100) R1 + (18 x 200) R2 + (6 x 300) Indirect = 6,900 units

(b) Backward-pass calculation of multiskilled resource scheduling Resource replacement rule : 2R2 = 1R1

R1 cost =	100 units/day	R2 cost =	200 units/day	Indirect cost =	= 300 units/day

Activity	Priority	DI	DO				D	ay			
Activity (Predecessor)	Priority Value	R1	R2 ·	1	2	3	4	5	6	7	8
А	6	3	0								
В	5	1	1								
С	4	1	0								
D(B)	3	3	0								
E(A,B)	2	1	1								
F(C,D,E)	1	1	1								
	R1 usage (4	units/	/day)	3	3	4	4	4	1		
	R2 usage (6 units/day)					3	3	3	1		
	R1 replacement						-1	-1			
	R2 replacement						2	2			

Project cost = (19 x 100) R1 + (10 x 200) R2 + (6 x 300) Indirect = 5,700 units

(c) Adjusting the start times of activities B and C

Resource replacement rule : 2R2 = 1R1

R1 cost = 100 units/day, R2 cost = 200 units/day, Indirect cost = 300 units/day

Activity	Priority	D1	D 2				D	ay			
Activity (Predecessor)	Priority Value	R1	R2	1	2	3	4	5	6	7	8
А	6	3	0								
В	5	1	1								
С	4	1	0								
D(B)	3	3	0								
E(A,B)	2	1	1								
F(C,D,E)	1	1	1								
	R1 usage (4	units	(day)	4	4	4	4	4	1		
	R2 usage (6 units/day)						3	1	1		
	R1 replacement						-1				
	R2 replacement						2				

Project cost = (21 x 100) R1 + (6 x 200) R2 + (6 x 300) Indirect = 5,100 units

Figure 2. Project cost from different approaches of multiskilled resource scheduling

In summary, existing multiskilled resource scheduling still has limitations in determining the float of an activity under resource constraints. Furthermore, there is no information regarding the adjustment of the start time of an activity within its float to reduce project cost.

2. MINIMUM COST METHOD (MCM ALGORITHM)

MCM algorithm is developed to improve the results of multiskilled resource scheduling. This algorithm attempts to determine the lowest project cost. A resource-constrained float is the period in which an activity can move forward or backward while guaranteeing an adequate resource combination and meeting the project deadline. The given float allows for flexibility in adjusting the project schedule to minimise resource replacement and reduce the total project cost. MCM algorithm consists of three main steps (Figure 3):

- (1) determination of the initial solution,
- (2) determination of the resource-constrained float, and
- (3) determination of the optimal resource replacement.

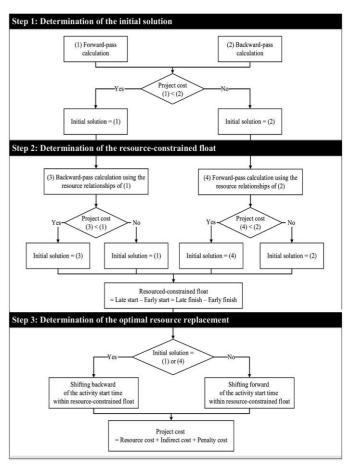
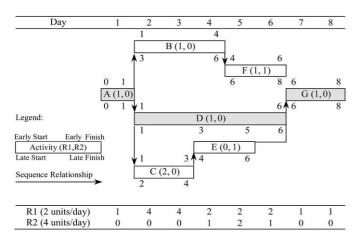
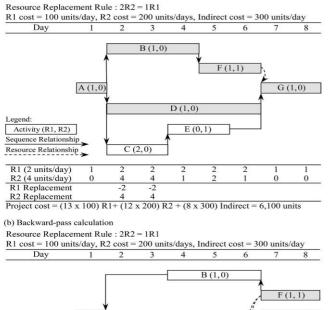



Figure 3. MCM algorithm steps

2.1 Step 1: determination of the initial solution


In a forward-pass calculation, the eligible activities are required to be activities with completed predecessors and selected for resource allocation. The resource allocation of a forward-pass calculation focuses on activity priority in descending order. Therefore, resources are first allocated to

the activity with higher priority. There are several criteria for determining the priority of activities; however, in this example, a late start time calculated by the critical path method (Figure 4) is used as a means of identifying activity priority. The activity with the earliest late start time is considered the most important activity. If certain activities do not have sufficient resources, the remaining qualified resources from the resource pool and the lower priority activities will replace them. However, if the qualified resources are insufficient, the activities will be delayed (Figure 5).

(a) Forward-pass calculation

G (1, 0) A (1, 0 D(1,0) nd E(0,1) Activity(R1,R2) equence Relation Resource Relationship C(2,0) R1 (2 units/day) 2 R2 (4 units/day) 0 0 R1 Replacement -2 R2 Replacement 1

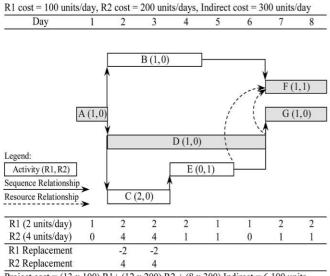
Project cost = (14 x 100) R1+ (10 x 200) R2 + (8 x 300) Indirect = 5,800 units

Figure 5. The 1st step of MCM algorithm

Figure 5 shows that activity A, which has no predecessor but has sufficient resources, can be started on day 1. On day 2, resources are allocated to activities B, C, and D because of the completion of the predecessor (activity A). The resources are then allocated to activities D, C, and B. On days 2 and 3, although activities C and B lack two R1 resources (1R1 for activity C and 1R1 for activity B), they can proceed with the work because four R2 resources can replace them (2R2 = 1R1)for activity C and 2R2 = 1R1 for activity B). On day 4, all activities have sufficient resources; therefore, activity E can be started on this day. Activity E can also be started on day 4 because its predecessor (activity C) is completed on day 3. Following the completion of activity B (day 4), activities E and F can be started on day 5. After activities D and F are completed on day 6, their resources are released to start activity G on day 7. Activities F and G have a resource relationship even though there is no sequence relationship between them. The project completion time is on day 9, and the project cost is 6,100 units. Owing to the additional resource relationship, the path consisting of activities A, B, F, and G, which is referred to as the critical path of this project, is created.

Multiskilled resource scheduling is not only a forward-pass calculation but also a backward-pass calculation. A backwardpass calculation allows each activity to start as late as possible with limited resources. A backward-pass calculation is performed from the project completion time (obtained from a forward-pass calculation) to the project start time. The eligible activities are required to be activities that can be completed no later than the start times of their successors. The resource allocation of a backward-pass calculation focuses on activity priority in ascending order. Therefore, resources are initially allocated to lower priority activities. If certain activities have insufficient resources, the remaining qualified resources from the resource pool and the activities with higher priority will replace them. However, if the qualified resources are insufficient, the activities are expedited (Figure 5).

Figure 5 shows that activities F and G, which have no successors but have sufficient resources, can be completed by the project deadline, which is derived from forward-pass calculation (day 8). Therefore, they can be started on day 7. Thereafter, their resources are released to activity B (predecessor of activity F) and activities D and E (predecessors of activity G). Although there is no sequence relationship between activities D, E, and F, there is a resource relationship between them. During days 5 and 6, sufficient resources are allocated to activities E, B, and D in that order. On days 3 and 4, although activity C lacks one and two R1 resources, it can proceed because two and four R2 resources can be used as replacements, respectively. Given that activity A can be started on day 1, the project completion time is guaranteed to be on day 8. This results in a project cost of 5,800 units, which is lower than that produced by forwardpass calculation. Owing to the additional resource relationship between activities D and F, the path consisting of activities A, D, and F, which is known as the critical path of this project, is created.


The aforementioned examples demonstrate that different resource relationships can produce different critical paths,

thus leading to different project costs because of different combinations of resources. Furthermore, forward-pass scheduling may not guarantee a lower project cost than backward-pass scheduling. Therefore, it is necessary to use the lower project cost as the criterion for the initial solution. In summary, backward-pass scheduling is selected as the initial solution for the second step.

2.2 Step 2: determination of the resource-constrained float

This step aims to determine the float under limited resources for each activity in the initial solution. The initial solution must perform a reverse calculation by retaining the same resource relationship to guarantee that the critical paths remain the same. As a result, the mistake of obtaining the previous expensive scheduling can be avoided. Thus, forwardpass calculation is performed again by using the same resource relationship as that in the initial solution (backwardpass calculation) (Figure 6).

(a) Forward-pass calculation using resource relationships of backward-pass calculation Resource Replacement Rule : 2R2 = 1R1

Project $cost = (13 \times 100) R1 + (12 \times 200) R2 + (8 \times 300) Indirect = 6,100 units$

(b) Initial solution with resource-constrained float

Resource Replacement Rule : 2R2 = 1R1

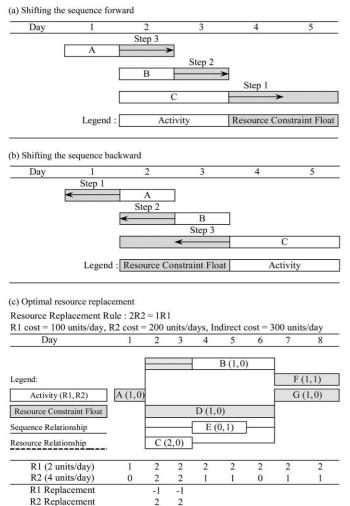
R1 cost = 100 units/day, R2 cost = 200 units/days, Indirect cost = 300 units/day Day 2 3 4 5 8 1 6 7 B(1,0) F (1,0) Legend: G (1,0) Activity (R1, R2) A(1,0)D(1,0) Resource Constraint Float E(0,1) Sequence Relationship C (2,0) Resource Relationship R1 (2 units/day) 1 1 2 2 2 2 2 2 R2 (4 units/day) 0 0 2 4 1 1 1 R1 Replacement -2 -1 R2 Replacement 4 2 Project cost = (14 x 100) R1+ (10 x 200) R2 + (8 x 300) Indirect = 5,800 units

Figure 6. The 2nd step of MCM algorithm

In Figure 6, the solution of the forward-pass calculation appears to be the same as the previous calculation (Figure 5). However, the difference is the start time of activity F. The resource relationship between activities D and F causes activity F to be started after the completion time of activity D. As a result, the path consisting of activities A, D, and F remains the same critical path as that in the initial solution (backward-pass scheduling). Owing to the higher project cost of a forward-pass calculation, backward-pass scheduling is retained as the initial solution.

When the forward- and backward-pass calculations are completed, they can determine the resource-constrained float of each activity. The resource-constrained float can be calculated by the following relationship in (1):

$$F_r = LS_r - ES_r = LF_r - EF_r.$$
(1)


where F_r is the resource-constrained float, ES_r is the early start time under resource constraints, EF_r is the early completion time under resource constraints, LS_r is the late start time under resource constraints, and LF_r is the late completion time under resource constraints.

By using the relationship in (1), noncritical activities B, C, and D in the initial solution can be identified (Figure 6).

2.3 Step 3: determination of the optimal resource replacement

This step continues the efforts of improving the lower project cost of the initial solution. It is possible to shift the start time of a noncritical activity to a point within its resourceconstrained float to reduce resource replacement. A reduction in resource replacement leads to a lower project cost. Therefore, a heuristic algorithm based on a shifting sequence is required. The criteria for shifting a sequence forward for forward-pass scheduling focuses on early completion time under resource constraints. A noncritical activity with the latest early completion time under resource constraints is performed first (Figure 7). By contrast, the criteria for shifting back a sequence for backward-pass scheduling focuses on a late start time under resource constraints. Therefore, a noncritical activity with the earliest late start time under resource constraints is performed first (Figure 7).

Figure 7 also shows the improvement process using the aforementioned algorithm. Backward shifting leads to noncritical activities C, B, and E being performed in that order. First, activity C is shifted back to start on day 2. As a result, the replacement of resource R2 is reduced by two units. Accordingly, the project cost decreases to 5,500 units, thus reducing the initial solution by 300 units. Shifting activity B then results in a larger resource replacement; therefore, the start time of activity B should not be shifted by even one day. It should be noted that the results remain the same regardless of whether activity E is shifted. On the basis of this process, the project cost of the initial solution can be reduced to the minimum cost.

 $\frac{1}{1} \frac{1}{1} \frac{1}$

Figure 7. The 3rd step of MCM algorithm

3. REAL-WORLD PROJECT CASE STUDY

Table 1 shows a real-world project case study involving activities, resources, and project data. The project is calculated by the CPM network to be 200 days regardless of any resource limits. The MCM algorithm is applied to this real-world project case study to clarify the concept and verify the solution.

3.1 Step 1: initial solution

A heuristic approach for assigning, replacing, and releasing resources on the basis of an algorithm for multiskilled resource scheduling, namely, Augmented Heuristic Algorithm for Multi-skilled Resource Scheduling [14], was applied to the project case study. Two approaches for resource scheduling were calculated manually (Table 2 and Table 3).

Table 2 shows that the forward-pass calculation starts at the beginning of the project (day 1). The only eligible activities are site preparation and piling, which are sorted by activity priority on the basis of the shortest processing time rule, which states that a shorter activity duration leads to higher activity priority. Considering that these two activities are in order, if site preparation can start accordingly, three labors will be unavailable for piling. Thus, site preparation is started

on day 1 and can be completed on day 10. Before delaying piling, the process verifies the remaining qualified resources for replacing insufficient labors for piling (4 carpenters = 2 labors and 2 steel workers = 1 labor). Accordingly, piling can be started on day 1 and completed on day 15.

On day 20, excavation is completed, and the eligible activities are underground utility (continued from the previous decisionmaking stage), formwork of footing and rebar of footing (successors of excavation) with the sequence relationship from excavation. After considering these activities sequentially, formwork of footing can be started only after replacing one insufficient carpenter with two qualified plasterers (2 plasterers = 1 carpenter). Furthermore, rebar of footing can be started only after replacing one insufficient labor with two qualified plasterers (2 plasterers = 1 labor) and replacing two insufficient steel workers with two plasterers and two painters (2 plasterers = 1 steel worker and 2 painters = 1 steel worker) in that order.

After underground utility is completed on day 22, formwork of footing and rebar of footing are completed on day 30, their resources are released to the resource pool and assigned to eligible activity at the next decision-making stage (day 31). Thereafter, the resources in the resources pool returned by underground utility, formwork of footing and rebar of footing are assigned to concrete of footing (a current eligible activity). As a result, this activity can be started on day 31. Therefore, underground utility, formwork of footing and rebar of footing have a resource relationship with concrete of footing. However, concrete of footing already has a sequence relationship with formwork of footing and rebar of footing; therefore, it is not necessary to create a resource relationship between them. This process is then continued until all activities are scheduled. Finally, forward-pass scheduling is completed with a project duration of 203 days and a project cost of 2,946,400 THB.

In Table 3, the backward-pass calculation starts at the end of the project (day 203, derived from forward-pass calculation). The only eligible activities are landscaping, fence and gate, interior painting, wooden floor, window, receptacles and switches, stud and lintel, ceiling work, plumbing fixtures, HVAC, concrete of stair and concrete of floor which are sorted by activity priority on the basis of a reverse shortest processing time rule, which states that a shorter activity duration leads to lower activity priority. Considering day 195, receptacles and switches is already completed and released their resources to the resource pool. Thereafter, these resources are assigned to window. As a result, there are four qualified plumbers and two qualified electricians that are available to replace two insufficient labors (4 plumbers = 2labors) and one insufficient carpenters (2 electricians = 1carpenter) for window, respectively. Therefore, receptacles and switched has a resource relationship with window. This process is continued up to the beginning of the project and results in a project duration of 203 days and a project cost of 2,918,950 THB.

When the forward- and backward-pass calculations are completed, the results of the first step are obtained (Table 4). It can be seen that the project cost obtained from a backwardpass calculation is lower. Thus, scheduling using a backwardpass calculation is selected as the initial solution.

						d project cas Dai	· ·	e reauire	nent (perso	ons)		
ID	Activity	Duration (day)	Predecessors	Labor (LAB)	Carpenter (CAR)	Steel Worker (STW)	-	-	Welder (WEL)	Roofer (ROF)	Plumber (PLB)	Electricia (ELE)
1	Site Preparation	10		5	2	2	3	3	3		2	2
2	Piling	15		6		3	2					
3	Excavation	5	1,2	5	1							
4	Underground Utility	7	1,2	3	2	3	2		2		5	4
5	Formwork of Footing	10	3	3	5				3			
6	Rebar of Footing	10	3	3		6						
7	Concrete of Footing	7	5,6	5			5					
8	Formwork of Ground Column	9	7	2	4				3		1	1
9	Rebar of Ground Column	6	7	2		5						
10	Concrete of Ground Column	2	8,9	3			4					
	Formwork of Ground Beam	15	7	3	5				3			
	Rebar of Ground Beam	12	7	4		6						
	Concrete of Ground Beam	2	11,12	4			5					
	Termite Protection	2	13	5								
	Backfill	10	4,10,14	5								
	Formwork of Column	20	13,15	5	5				3			
	Rebar of Column	15	13,15	5		6						
	Concrete of Column	7	16,17	5			5					
	Formwork of Beam	20	16	5	5				3			
	Rebar of Beam	15	17	5		7						
	Concrete of Beam	7	19,20	6			6					
	PC Floor	5	21	5	-				1			
	Formwork of Floor	3	21,22	5	5	-			3			
	Rebar of Floor	2	21,22	4		6	6					
	Concrete of Floor	1	23,24	5	2		6		2			
	Formwork of Stair Rebar of Stair	10	21 21	2 2	3	E			2			
	Concrete of Stair	7 2	21 26,27	2		6	3					
	Roof Trusses	2 15	18	2			3		5			
		5	18 29	2					3	5		
	Roof Sheathing Masonry Wall	25	29 21	2			6			5		
	Ductwork	3	30	2			0		2		5	2
	Electrical System	5	30 30	2					2		5	2 5
	HVAC	2	32,33	2								6
	Plumbing Fixtures	4	32,33	2							5	0
	Stud and Lintel	7	31	1	3	2	2				5	
	Plastering Work	20	31	2	5	2	4					
	Wall Ceramic Tile	15	31	2			3					
	Floor Ceramic Tile	15	31	2			3					
	Ceiling Work	5	38,39	1	2		2					
	Door	7	38,39	2	3		_					
42	Window	8	38,39	2	2							
43	Drywall	15	37	1	2		3		2			
44	Wooden Floor	10	37	1	3							
45	Cabinet and Counters	8	41		3			1	1			
	Interior Painting	10	43,45	2				5				
	Exterior Painting	15	43,45	2				6				
	Receptacles and Switches	7	43	1								3
	Fence and Gate	10	47	4	2	1	5	2	2			1
	Landscaping	12	47	5			4	2				
	Daily resource limit (persons/d	lay)		8	6	7	8	8	5	5	5	6
	Daily resource cost (THB/day)			300	400	500	600	650	700	750	800	850
	Resource replacement rules: 2		inexpert work	er = 1 pe	rson of expe	ert worker						
	Contract duration = 240 days		-	ŕ								
	Indirect cost = 3,000 THB/day	r										
	Penalty cost = 5,000 units/ day											
	renaity $cost = 5,000 \text{ units/ day}$	/										

Time	ID Activity	Priority				Reso							Decisio		Resource Replacement		Resource
		Value		CAR	STW	PLT	PAT	WEL	ROF	PL.	EL	on	n	d Finish			Relationsh
			8	6	7	8	8	5	5	5	6					р	р
1	1 Site Preparation	10	5	2	2	3	3	3	0	2	2	10	Start	10			
	2 Piling	15	6(-3)+3		3+2	2	0	0	0	0	0	15	Start		4CAR=2LAB. 2STW=1LAB		
	2 Piling		6	0	3	2	0	0	0	0	0	15	Continu	15			
16	3 Excavation	5	5	1	0	0	0	0	0	0	0	.5	Start	20		1 2	
	4 Underground Utility		3	2	3	2	0	2	0	5	4	7	Start			1 2	
21	4 Underground Utility	7	3	2	3	2	0	2	0	5	4	7	Continu	22			
	5 Formwork of Footin	g 10	3	5(-1)+1	0	0+2	0	3	0	0	0	10	Start		2PLT=1CAR	3	
	6 Rebar of Footing	10	3(-1)+1	0	6(-2)+2	0+4	0+2	0	0	0	0	10	Start		2PLT=1LAB. 2PLT=1STW. 2PAT=1STW	3	
23	5 Formwork of Footin	g	3	5	0	0	0	3	0	0	0	10	Continu	30			
	6 Rebar of Footing		3	0	6	0	0	0	0	0	0	10	Continu	30			
31	7 Concrete of Footing	7	5	0	0	5	0	0	0	0	0	7	Start	37		5 6	4
38	9 Rebar of Ground Co	olumn 6	2	0	5	0	0	0	0	0	0	6	Start	43		7	
	8 Formwork of Groun	d 9	2	4	0	0	0	3	0	1	1	9	Start			7	
	12 Rebar of Ground Be	am 12	4	0	6(-4)+4	0+8	0	0	0	0	0	12	Start		8PLT=4STW	7	
	11 Formwork of Groun	d 15	3(-3)+3	5(-3)+3	0	0	0+8	3(-1)+1	0+4	0+	0	15	Start		6PAT=3LAB. 2PAT=1CAR. 4ROF=2CAR.	7	
44	8 Formwork of Groun	d	2	4	0	0	0	3	0	1	1	9	Continu	46			
	12 Rebar of Ground Be	am	4	0	6	0	0	0	0	0	0	12	Continu				
	11 Formwork of Groun	d	3(-1)+1	5(-3)+3	0	0+8	0+2	3(-1)+1	0	0	0	15	Continu		2PLT=1LAB. 6PLT=3CAR. 2PAT=1WEL		
47	12 Rebar of Ground Be	am	4	0	6	0	0	0	0	0	0	12	Continu				
	11 Formwork of Groun	d	3	5	0	0	0	3	0	0	0	15	Continu				
	10 Concrete of Ground	2	3(-2)+2	0	0	4+4	0	0	0	0	0	2	Start	48	4PLT=2LAB	89	
49	12 Rebar of Ground Be	am	4	0	6	0	0	0	0	0	0	12	Continu	49			
	11 Formwork of Groun	d	3	5	0	0	0	3	0	0	0	15	Continu				
50	11 Formwork of Groun	d NNN VZZZ	, , , , , , ,	۶ ۲			. 0		<u>, 0</u> ,	, _0		15	Continu	52			KANNA.
	40 D 11			·	· / / / /	• • • •			\times	177	//	7	Ctt	102		NN////	
1.7.7	46 Interior Painting	10	2	0	0	0	5	0	0	0	0	10	Start	10.7		43 45	42 44
	47 Exterior Painting	15	2+2	0+4	0	0	6(-3)+3		0	0	0	15	Start		2LAB=1PAT. 4CAR=2PAT	43 45	42 44
184	46 Interior Painting	15	212	0	0	0	5	0	0	0	0	10	Continu	186		15 15	.2
104	47 Exterior Painting		2+4	0+2	0	0	6(-3)+3		0	0	0	15	Continu	100	4LAB=2PAT. 2CAR=1PAT		
187	47 Exterior Painting		214	0	0	0	6	0	0	0		15	Continu	191			
	49 Fence and Gate	10	4	2	1	5	2	2	0	0	1	10	Start	201		47	46 48
174	50 Landscaping	10	4 5(-1)+1	0+4	0	., 4(-1)+1	2	0	0	0	0	12	Start	201	2CAR=1LAB. 2CAR=1PLT	47	40 48
	50 Landscaping	12	5	0+4	0	4(-1)+1	2	0	0		0	12	Continu	203	$2\sqrt{A}N = 11/AD$. $2\sqrt{A}N = 171/1$	4/	40 40

Table 2. Forward-pass calculation

Time I	ID Activity	Priority				Resour	ce					Duratio	n Decision I		d Resource Replacement	Sequence	Resource
		Value	LAB	CAR	STW	PLT	PAT	WEL	ROF	PLB	ELE			Start		Relationship	p Relationship
			8	6	7	8	8	5	5	5	6						
203 5	50 Landscaping	12	5	0	0	4	2	0	0	0	0	12	Finish				
4	49 Fence and Gate	10	4(-1)+1	2	1+4	5(-1)+1	2	2	0	0	1	10	Finish		2STW=1LAB, 2STW=1PLT		
4	46 Interior Painting	10	2(-2)+2	0	0	0	5(-1)+1	0+2	0+4	0	0	10	Finish		2WEL=1LAB, 2ROF=1LAB, 2ROF=1PA	Г	
4	44 Wooden Floor	10	1(-1)+1	3	0+2	0	0	0	0	0	0	10	Finish		2STW=1LAB		
4	42 Window	8	2(-2)+2	2(-1)+1	0	0	0	0	0	0+4	0+2	8	Finish	196	4PLB=2LAB, 2ELE=1CAR	38 39	48
4	48 Receptacles and Switches	7	1(-1)	0	0	0	0	0	0	0	3	7	Delay				
3	36 Stud and Lintel	7	1(-1)	3(-3)	2(-2)	2(-2)	0	0	0	0	0	7	Delay				
4	40 Ceiling Work	5	1(-1)	2(-2)	0	2(-2)	0	0	0	0	0	5	Delay				
3	35 Plumbing Fixtures	4	2(-2)	0	0	0	0	0	0	5(-4)	0	4	Delay				
3	34 HVAC	2	2(-2)	0	0	0	0	0	0	0	6(-6)	2	Delay				
2	28 Concrete of Stair	2	2(-2)	0	0	3(-3)	0	0	0	0	0	2	Delay				
2	25 Concrete of Floor	1	5(-5)	0	0	6(-6)	0	0	0	0	0	1	Delay				
195 5	50 Landscaping		5	0	0	4	2	0	0	0	0	12	Continue				
4	49 Fence and Gate		4(-1)+1	2	1+4	5(-1)+1	2	2	0	0	1	10	Continue	194	2STW=1LAB, 2STW=1PLT	47	34 35 36 40
4	46 Interior Painting		2(-2)+2	0	0	0	5(-1)+1	0+2	0+4	0	0	10	Continue	194	2WEL=1LAB, 2ROF=1LAB, 2ROF=1PA	Г 43 45	34 35 36 40
4	44 Wooden Floor		1(-1)+1	3	0+2	0	0	0	0	0	0	10	Continue	194	2STW=1LAB	37	34 35 36 40
4	48 Receptacles and Switches	7	1(-1)+1	0	0	0	0	0	0	0+2	3	7	Finish		2PLB=1LAB		
3	36 Stud and Lintel	7	1(-1)	3(-3)	2(-2)	2(-2)	0	0	0	0	0	7	Delay				
2	40 Ceiling Work	5	1(-1)	2(-2)	0	2(-2)	0	0	0	0	0	5	Delay				
3	35 Plumbing Fixtures	4	2(-2)	0	0	0	0	0	0	5(-2)	0	4	Delay				
3	34 HVAC	2	2(-2)	0	0	0	0	0	0	0	6(-4)	2	Delay				
2	28 Concrete of Stair	2	2(-2)	0	0	3(-3)	0	0	0	0	0	2	Delay				
2	25 Concrete of Floor	1	5(-5)	0	0	6(-6)	0	0	0	0	0	1	Delay				
193 5	50 Landscaping		5	0	0	4	2	0	0	0	0	12	Continue	192		47	28
4	48 Receptacles and Switches		1	0	0	0	0	0	0	0	3	7	Continue				
3	36 Stud and Lintel	7	1	3	2	2	0	0	0	0	0	7	Finish				
4	40 Ceiling Work	5	1	2	0	2	0	0	0	0	0	5	Finish				
	35 Plumbing Fixtures	4	2(-2)+2	0	0+4	0	0	0	0	5	0	4	Finish		4STW=2LAB		
	34 HVAC	2	2(-2)+2	0	0	0	0+6	0+4	0	0	6(-3)+3	2	Finish	192	4PAT=2LAB, 2PAT=1ELE, 4WEL=2ELE	32 33	28 47
2	28 Concrete of Stair	2	2(-2)	0	0	3(-3)	0	0	0	0	0	2	Delay				
2	25 Concrete of Floor	1	5(-5)	0	0	6(-6)	0	0	0	0	0	1	Delay				,
	* * * * * * * * * * * * * * * * * * * *		\. \. \. \. \. \. \. \. \. \. \. \. \. \.		· · · · · · ·		* / / / / / / • • • • • •										rononononon. A a a a a a a a
	5 Formwork of Footing	10	3	5	· · · · · · · · · · · · · · · · · · ·	0	· / / / / / 0	3	6	0	0	10	∖′∕/// Finish	21	~~~~~	3	*******
	6 Rebar of Footing	10	3	0	6	0	0	0	0	0	0	10	Finish	21		3	
20	3 Excavation	5	5	1	0	0	0	0	0	0	0	5	Finish	16		1 2	
15	2 Piling	15	6	0	3	2	0	0	0	0	0	15	Finish				
	1 Site Preparation	10	5(-3)+3	2+4	2+2	3	3	3	0	2	2	10	Finish	6	4CAR=2LAB, 2STW=1LAB		
5	2 Piling		6	0	3	2	0	0	0	0	0	15	Continue	1			

Table 3. Backward-pass calculation

ID	Activity	Duration		Step 1: initi	al solution		Step	2: resource-con	strained float
		(days)	Forwa	rd-pass	Backw	/ard-pass	Forwa	rd-pass	Resource-constrained
			Early Start	Early Finish	Late Start	Late Finish	Early Start	Early Finish	float
			(a)	(b)	(c)	(d)	(e)	(f)	(e - c or f - d)
1	Site Preparation	10	0	10	5	15	0	10	5
2	Piling	15	0	15	0	15	0	15	0
3	Excavation	5	15	20	15	20	15	20	0
4	Underground Utility	7	15	22	52	59	52	59	0
5	Formwork of Footing	10	20	30	20	30	20	30	0
6	Rebar of Footing	10	20	30	20	30	20	30	0
7	Concrete of Footing	7	30	37	30	37	30	37	0
8	Formwork of Ground Column	9	37	46	48	57	37	46	11
9	Rebar of Ground Column	6	37	43	51	57	37	43	14
10	Concrete of Ground Column	2	46	48	57	59	54	56	3
11	Formwork of Ground Beam	15	37	52	37	52	37	52	0
12	Rebar of Ground Beam	12	37	49	40	52	37	49	3
13	Concrete of Ground Beam	2	52	54	55	57	52	54	3
14	Termite Protection	2	54	56	57	59	54	56	3
15	Backfill	10	56	66	59	69	59	69	0
16	Formwork of Column	20	66	86	69	89	69	89	0
17	Rebar of Column	15	66	81	79	94	69	84	10
18	Concrete of Column	7	86	93	157	164	141	148	16
19	Formwork of Beam	20	86	106	89	109	89	109	0
20	Rebar of Beam	15	81	96	94	109	84	99	10
21	Concrete of Beam	7	106	113	109	116	109	116	0
22	PC Floor	5	113	118	175	180	168	173	7
23	Formwork of Floor	3	120	123	181	184	173	176	8
24	Rebar of Floor	2	118	120	180	182	173	175	7
25	Concrete of Floor	1	123	124	184	185	176	177	8
26	Formwork of Stair	10	113	123	179	189	163	173	16
27	Rebar of Stair	7	113	120	182	189	175	182	7
28	Concrete of Stair	2	123	125	189	191	184	186	5
29	Roof Trusses	15	93	108	164	179	148	163	16
30	Roof Sheathing	5	108	113	179	184	163	168	16
31	Masonry Wall	25	116	141	116	141	116	141	0
32	Ductwork	3	113	116	185	188	177	180	8
33	Electrical System	5	113	118	184	189	176	181	8
34	HVAC	2	118	120	191	193	191	193	0
35	Plumbing Fixtures	4	120	124	189	193	182	186	7
36	Stud and Lintel	7	141	148	186	193	177	184	9
37	Plastering Work	20	141	161	141	161	141	161	0
38	Wall Ceramic Tile	15	141	156	146	161	141	156	5
39	Floor Ceramic Tile	15	141	156	146	161	141	156	5
40	Ceiling Work	5	156	161	188	193	179	184	9
41	Door	7	156	163	161	168	161	168	0
42	Window	8	156	164	195	203	191	199	4
43	Drywall	15	161	176	161	176	161	176	0
44	Wooden Floor	10	161	171	193	203	193	203	0
45	Cabinet and Counters	8	163	171	168	176	168	176	0
46	Interior Painting	10	176	186	193	203	193	203	0
47	Exterior Painting	15	176	191	176	191	176	191	0
48	Receptacles and Switches	7	176	183	188	195	184	191	4
49	Fence and Gate	10	191	201	193	203	193	203	0
50	Landscaping	12	191	203	191	203	191	203	0
	Project cost (THB)		2,94	6,400	2,91	18,950		2,946,40)

Table 4. Results from the first and the second steps

3.2 Step 2: resource-constrained float

A forward-pass calculation results in a different critical path than the initial solution (backward-pass calculation). Therefore, it is necessary to use the same resource relationship during reverse calculation to guarantee the same critical path. A forward-pass calculation is performed again using this concept (Table 5).

Table 5 illustrates that the eligible activities of each decisionmaking stage are sorted by activity priority on the basis of the earliest backward start rule, which states that an earliest backward start activity leads to higher activity priority. For example, at the beginning of the project (day 1), resources are first assigned to piling (backward start on day 1), which has more priority than site preparation (backward start on day 6).

On day 16, the only eligible activity is excavation. Underground utility should in fact be considered an eligible activity at this decision-making stage but not because it has the resource relationship with formwork of ground beam and rebar of ground beam. As a result, underground utility must be started after the completion time of formwork of ground beam and rebar of ground beam (successors of excavation), and it is not possible to take place with excavation concurrently. This process is then continued until all activities are scheduled. Finally, forward-pass scheduling is completed with a project duration of 203 days and a project cost of 2,946,400 THB.

Table 4 also presents the results of the second step. It can be seen that the project cost of a backward-pass calculation is lower than that of a forward-pass calculation; thus, the initial solution is still a backward-pass calculation.

3.3 Step3: optimal resource replacement

3.3.1 Manual adjustment

The algorithm used in this study shifts noncritical activities within their resource-constrained float to reduce previous resource replacement and decrease project cost. However, all strategies eventually produce a schedule that is between an early start schedule and a late start schedule. Critical activities remain unchanged, whereas noncritical activities are shifted within their resource-constrained float without any project delays. Furthermore, the activities have sequence and resource relationships; therefore, shifting one activity has a domino effect on the other activities.

Applying the shifting algorithm to the initial solution leads each cycle to reduce resource replacement, thus decreasing project cost. A detailed analysis is presented in the following:

Cycle 1: A three-day backward shift of rebar of ground beam can reduce the replacement of plasterer by six units, painter by twelve units, roofer by four units and plumber by two units on days 50-52. Although this can increase the replacement of steel worker by six units on days 50-52, the effect of decreasing cost from reducing the replacement of plasterers, painters, roofers and plumbers is greater than that increasing cost from steel workers. Accordingly, the project cost can be reduced by 9,500 THB (2,918,950 THB to 2,909,450 THB).

Cycle 2: A two-day backward shift of rebar of ground column can reduce the replacement of painter and roofer by sixteen units and four units on day 56-57, respectively. Although this can increase the replacement of steel worker by eight units on day 56-57, the effect of decreasing cost from reducing the replacement of painters and roofer is greater than that increasing cost from steel workers. Accordingly, the project cost can be additionally reduced by 7,200 THB (2,909,450 THB to 2,902,250 THB).

Cycle 3: A five-day backward shift of wall ceramic tile can reduce the replacement of labor by two units, carpenter by two units, steel worker by eight units and painter by thirty-two units on days 157-161. Accordingly, the project cost can be additionally reduced by 15,400 THB (2,902,250 THB to 2,886,850 THB).

Cycle 4: A four-day backward shift of floor ceramic tile can reduce the replacement of carpenter and steel worker by sixteen units on day 158 - 161. Accordingly, the project cost can be further reduced by 5,200 units (2,886,850 THB to 2,881,650 THB).

It should be noted that further shifting the remaining activities does not improve the solution of the current schedule; therefore, minimum resource scheduling is achieved.

3.3.2 Optimisation adjustment

An integer programming model is developed to verify resource replacement in the resource-constrained float of the initial solution. The decision variable $x_{(i, t)}$ indicates whether activity *i* starts on day *t*. The value is one if activity *i* can start on day t; otherwise, the value is zero. The start time of activity *i* is defined by the decision variable $s_{(i)}$. The last decision variable $y_{(r, m, t)}$ determines the number of insufficient resources r replaced by qualified resource m on day t. The objective function (2) attempts to minimise the project cost, including the resource cost (3), indirect cost (4), and penalty cost (5). Equation (6) indicates that each activity has only one start date. Accordingly, the start time of each activity is determined by (7). Furthermore, the activity must be started at an early start time (8) and late start time (9). The sequence and resource relationships between a pair of activities ensures that a successor activity cannot be started until all predecessor activities are completed (10). The number of qualified resources used to replace the insufficient resource is proportional to the decision variable $y_{(r, m, j)}$ (11). Equation (12) ensures that the resource availability constraint is met.

Objective function: minimise
$$(C_r + C_i + C_p)$$
, (2)

which is subjected to:

$$C_{r} = \sum \sum (q_{(i, r)} \cdot x_{(i, t)} - \sum y_{(r, m, t)} + \sum z_{(r, s, t)}) \cdot u_{(r)}; \ \forall r = 1, \dots, p,$$
(3)
$$t = 1 \ i = 1 \qquad m = 1 \qquad s = 1$$

$$C_i = v \cdot t_p, \tag{4}$$

Table 5. Forward-pass calculation using resource relationship of initial solution

Time	ID Activity	Backwar				Resou						Duration	n Decision		Resource Replacement		equence		Resou	
		d Start	LAB	CAR	STW	PLT	PAT	WEL	ROF	PLB	ELE	_		Finish		ĸe	lationship	R	eiatio	onship
1	2 Diline	0	8	6	7	8	8	5	5	5	6	15	C to at							
1	2 Piling	0	6 5(2)+2	0	3	2	0	0	0	0	0	15	Start	10	ACAD OLAD OCTW ILAD					
11	1 Site Preparation	5	5(-3)+3	2+4	2+2	3	3	3	0	2	2	10	Start	10	4CAR=2LAB, 2STW=1LAB					
11	2 Piling		6	0	3	2	0	0	0	0	0	15	Continue	15						
16	3 Excavation	15	5	1	0	0	0	0	0	0	0	5	Start	20		1	2			
21	5 Formwork of Footing	20	3	5	0	0	0	3	0	0	0	10	Start	30		3				
	6 Rebar of Footing	20	3	0	6	0	0	0	0	0	0	10	Start	30		3				
_	7 Concrete of Footing	30	5	0	0	5	0	0	0	0	0	7	Start	37		5	6			
38	11 Formwork of Ground Beam	37	3	5	0	0	0	3	0	0	0	15	Start			7				
	12 Rebar of Ground Beam	40	4	0	6	0	0	0	0	0	0	12	Start			7				
	8 Formwork of Ground Column	n 48	2(-1)+1	4(-3)+3	0	0+8	0+2	3(- 1)+1	0	1	1	9	Start		2PLT=1LAB, 6PLT=3CAR, 2PAT=1WEL	7				
_	9 Rebar of Ground Column	51	2(-2)+2	0	5(-4)+4	0	0+6	0	0+4	0+2	0	6	Start	43	4PAT=2LAB, 2PAT=1STW, 4ROF=2STW, 2PLB=1STW	7				
44	11 Formwork of Ground Beam		3	5	0	0	0	3	0	0	0	15	Continue							
	12 Rebar of Ground Beam		4	0	6	0	0	0	0	0	0	12	Continue							
	8 Formwork of Ground Column	1	2(-1)+1	4(-3)+3	0	0+2+6	0+2	3(- 1)+1	0	1	1	9	Continue	46	2PLT=1LAB, 6PLT=3CAR, 2PAT=1WEL					
47	11 Formwork of Ground Beam		3	5	0	0	0	3	0	0	0	15	Continue							
	12 Rebar of Ground Beam		4	0	6	0	0	0	0	0	0	12	Continue	49						
50	11 Formwork of Ground Beam		3	5	0	0	0	3	0	0	0	15	Continue	52						
53	4 Underground Utility	52	3	2	3	2	0	2	0	5	4	7	Start			1	2	11	12	
	13 Concrete of Ground Beam	55	4	0	0	5	0	0	0	0	0	2	Start	54		11	12			
55	4 Underground Utility		3	2	3	2	0	2	0	5	4	7	Continue							
	10 Concrete of Ground Column	57	3	0	0	4	0	0	0	0	0	2	Start	56		8	9	13		
	14 Termite Protection	57	5(-3)+3	0+4	0+2	0	0	0	0	0	0 /////	2	Start	56	4CAR=2LAB, 2STW=1LAB	13	~ ^ ^ ^		9	
												~ ` ` ` ` `			~~~~~		~ ~ ~ ~	11	,	
192	34 HVAC	191	2	0	0	0	0	0	0	0	6	2	Start	193		32	33	28	47	
	50 Landscaping	191	5	0	0	4	2	0	0	0	0	12	Start			47		28		
	42 Window	195	2(-1)+1	2+2	0	0	0	0	0	0	0	8	Start		2CAR=1LAB	38	39	48		
194	50 Landscaping		5	0	0	4	2	0	0	0	0	12	Continue							
	42 Window		2	2	0	0	0	0	0	0	0	8	Continue	199						
	44 Wooden Floor	193	1	3	0	0	0	0	0	0	0	10	Start			37				36 40
	46 Interior Painting	193	2(-2)+2	0	0+4	0	5	0	0	0	0	10	Start		4STW=2LAB	43	45			36 40
	49 Fence and Gate	193	4(-4)+4	2(-1)+1	1+2	5(-1)+1	2(-1)+1	2+2	0+4	0+4	1+2	10	Start		2STW=1LAB, 2WEL=1LAB,	47		34	35	36 40
200	50 Landscaping		5	0	0	4	2	0	0	0	0	12	Continue	203						
	44 Wooden Floor		1	3	0	0	0	0	0	0	0	10	Continue	203						
	46 Interior Painting		2	0	0	0	5	0	0	0	0	10	Continue	203						
	49 Fence and Gate		4(-4)+3+1	2	1+6	5(-1)+1	2(-1)+1	2+2	0+2+2	0	1	10	Continue	203	6STW=3LAB,					

$$C_p = w \cdot \max\{t_p - t_c, 0\},$$

$$LS_{(i)}$$
(5)

$$\sum x_{(i, i)} = 1; \ \forall i = 1, ..., k,$$
 (6)

 $t=ES_{(i)}+1$

$$LF_{i}$$

 $s_{(i)} = (\Sigma x_{(i, t)} \cdot t) - 1; \forall i = 1, ..., k,$
(7)

$$t = ES_i + 1$$

 $s_{(i)} \ge ES_{(i)},\tag{8}$

$$s_{(i)} \le LS_{(i)},\tag{9}$$

$$s_{(i)} + d_{(i)} \le s_{(j)}; \ \forall (i,j) \in A,$$

$$\tag{10}$$

 $z_{(m, r, t)} = n \cdot y_{(r, m, t)}, \tag{11}$

n LS_(i) $l_{(m, r)}$ $h_{(s, r)}$ $\sum \sum (q_{(i, r)} \cdot x_{(i, t)} - \sum y_{(r, m, t)} + \sum z_{(r, s, t)}) \cdot V_{(i, t)} \le R_{(r)}; \quad \forall i = 1, ..., k; \forall r = 1, ..., p,$ (12)

$$i{=}1 \hspace{0.1in} t{=}ES_{(i)}{+}1 \hspace{1.5in} m{=}1 \hspace{1.5in} s{=}1$$

 $x_{(i, t)} = 1$; if activity *i* starts on day *t*,

0; otherwise and $t \le ES_i$ and $t > LS_i + 1$, (13)

 $s_{(i)} = \text{integer},\tag{14}$

$$y_{(r, m, t)} = \text{integer}, \tag{15}$$

where C_r is the total resource cost; C_i is the total indirect cost; C_p is the total penalty cost; $s_{(i)}$ is the start date of activity *i*; t_p is the project duration; t_c is the contract duration; $u_{(r)}$ is the daily cost of resource r; v is the daily indirect cost; w is the daily penalty cost; $q_{(i, r)}$ is the daily requirement of resource r for activity i; $y_{(r, m, t)}$ is the number of resources r replaced by qualified multiskilled resource m on day t; $z_{(r, s, t)}$ is the number of resources r used to replace insufficient resource s on day t; k is the last activity in project network; p is the last resource type r; $l_{(m, r)}$ is the last qualified multiskilled resource m that can replace resource r; $h_{(s, r)}$ is the last insufficient resource s that can be replaced by resource r; $ES_{(i)}$ is the early start of activity *i*; $LS_{(i)}$ is the late start of activity *i*; $d_{(i)}$ is the duration of activity i; A is the set of pair of activities with a sequence relationship or resource relationship; $V_{(i, t)}$ is the vector containing 1s at position t, $t+1,..., t+d_i-1$; $R_{(r,t)}$ is the available resource r on day t; and $R_{(r)}$ is the row vector of resource r that has $R_{(r, t)}$.

Table 6. The results of a real-world project case study

		1 5	
Approach	Project	Project cost	Cost
	Duration		saving
MS project	270 days	2,988,900 THB	4%
Existing heuristic	203 days	2.946.400	2%
approach	205 days	2,940,400 THB	270
MCM algorithm	203 days	2,881,650 THB	-

To apply the proposed integer programming model to the project case study, an open source Excel add-in called OpenSolver is used as the solver tool. The scheduling and project cost solutions are generated by this tool. It can be seen that solutions from the optimisation adjustment do not differ from manual adjustment.

4. REAL-WORLD PROJECT CASE STUDY ANALYSIS

The MCM algorithm was applied to real-world project case study. The results for the project cost obtained by the MCM algorithm are compared with the results from Microsoft project (Commercial project management software) and the existing heuristic approach (Table 6). Since Microsoft Project uses the core concept of the single-skilled resource scheduling where the critical activities with insufficient resources may be delayed regardless of the resource replacement. Therefore, it results in longer project duration than the multiskilled resource scheduling. According to the practical level, especially in the large-scale project, delaying project duration is not affect only increasing the indirect cost and the penalty cost, but also the opportunity cost of moving the resources to new construction project. Furthermore, increasing cost from delaying project duration (indirect cost, penalty cost and opportunity cost) is mostly greater than that increasing cost from resources replacement. Therefore, it is reasonable to state that the MCM algorithm and existing multiskilled resource scheduling can create the results of shorter project duration and lower project cost comparing with Microsoft project (single-skilled resource scheduling). Besides, the results indicate that the MCM algorithm was able to guarantee a lower project cost than the existing heuristic approach because the core concept of the MCM algorithm is the reduction of the resource replacement cost of the initial solution. The initial solution is selected from the lowest project cost among a forward-pass calculation (existing heuristic approach) and backward-pass calculation (proposed calculation method). Furthermore, the manual calculation of the MCM algorithm guarantees the generation of optimal solutions, as verified by optimisation adjustment of which the solutions do not differ.

5. CONCLUSION

This study proposes an alternative heuristic approach for multiskilled resource scheduling. The proposed MCM algorithm is simple and can be calculated manually. It provides a solution that is superior to that of the optimisation approach in the optimal resource replacement step. Furthermore, its advantages can be practically applied in large projects that demand a large number of activities and resources. As demonstrated by real-world project case study, the MCM algorithm guarantees the minimum project cost of resource scheduling.

Acknowledgment: The work was supported by a grant from the Faculty of Engineering, Kasetsart University.

REFERENCES

- [1] K. Kyunghwan and M. d. l. G. Jesus, "Phantom Float," Journal of Construction Engineering and Management, vol. 129, no. 5, pp. 507-517, 2003.
- [2] L. Andrew, M. Hong, R. Brian, T. T. Sun and X. Fei, "New concepts for activity float in resourceconstrained project management," *Computers and Operations Research*, vol. 38, pp. 917-930, 2011.
- [3] J. A. Bowers, "Interpreting float in resource constrained projects," *International Journal of Project Managemen*, vol. 18, pp. 385-392, 2000.
- [4] A. N. Salman, Y. Koshi and S. Koji, "Enhanced Resource-Dependent Critical Path Method for Identifying Resource Dependencies in Variable Resource Constrained Project," *Journal of Japan Society of Civil Engineers*, vol. 69, no. 2, pp. 110-120, 2013a.
- [5] L. Ming and L. Heng, "Resource-Activity Critical-Path Method for Construction Planning," *Journal of Construction Engineering and Management*, vol. 129, pp. 412-420, 2003.
- [6] R. Klein, "Bidirectional planning: improving priority rule-based heuristics for scheduling resourceconstrained projects," *European Journal of Operational Research*, vol. 127, pp. 619-638, 2000.
- [7] A. N. Salman, Y. Koshi and S. Koji, "Resource-Dependent Critical Path Method for Identifying the Critical Path and the "Real Floats" in Resource-Constrained Project Scheduling," *Journal of Japan Society of Civil Engineers*, vol. 69, no. 4, pp. 97-107, 2013b.
- [8] R. C. Burleson, C. T. Hass, R. L. Tucker and A. Stanley, "Multi-skilled labor utilization strategies in construction," *Journal of Construction Engineering and Management*, vol. 124, no. 6, pp. 480-489, 1998.
- [9] M. Cross, "Multi-skilling brings cost and productivity benefits," Proc., Training Plant Management: 11th National Maintenance Engineering Conf., U.K., 1996.
- [10] R. M. Williamson, "Optimum performance through multi-skill maintenance," *AIPE Facilities*, 1992.
- [11] L. A. Carley, "Worker's attitudes toward and experiences with multiskilling," *MS thesis, University* of Texas at Austin, Tex., 1999.
- [12] A. Rodrigyez, "Planning and scheduling a multiskilled workforce," *MS thesis, university of Texas at Austin, Austin, Tex.,* 1998.
- [13] A. Stanley, "Benefits, impediments, and limitations to multiskilling in construction," *MS thesis, University of Texas at Austin, Austin, Tex.*, 1997.

- [14] N. Wongwai and S. Malaikrisanachalee, "Augmented Heuristic Algorithm for Multi-skilled Resource Scheduling," *Automation in Construction*, vol. 20, no. 4, pp. 429-445, 2011.
- [15] T. Hegazy, A. Shabeeb, E. El-beltagi and T. Cheema, "Algorithm for scheduling with multi-skilled construction resources," *Journal of Construction Engineering and Management*, vol. 126, no. 6, pp. 125-133, 2000.
- [16] F. A. Bernardo, C. Isabel and S.-d.-G. Francisco, "Modeling frameworks for the multi-skill resourceconstrained project scheduling problem: a theoretical and empirical comparison," *International Transactions in Operational Research*, vol. 26, pp. 946-967, 2019.

Biographical Statement

Narongrit Wongwai, He was graduated in M.Eng (Construction Management), Kasetsart University, Bangkok, Thailand, 2010. He is lecturer at Kasetsart University Sriracha Campus. His publications were N. Wongwai and S. Malaikrisanachalee (2011) "Augmented Heuristic Algorithm for Multi-skilled Resource Scheduling." Automation in

Construction, Vol. 20, No. 4, Pages 429-445.

Suphawut Malaikrisanachalee. He was graduated in Ph.D. (Geospatial Information Engineering) University of Wisconsin-Madison, Wisconsin, USA, 2005. He is assistant professor at Kasetsart University. His publications were [1] T. Tobgyel and S. Malaikrisanachalee (2014) "Factors Affecting

Construction Quality in Bhutan." International Journal of Advances in Science and Technology, JIT (2014) Special Issue, Pages 246-255, [2] J. Prajongmoon and S. Malaikrisanachalee (2013) "Comparison of Heuristic-based Priority Rules for Resource-Constrained Scheduling." Researchand Development Journal of The Engineering Institute of Thailand, Vol. 24, No. 2, Pages 14-21, [3] S. Malaikrisanachalee and H. Vathananukij (2011) "Integration

of Java-based BIM with Spatial Database." International Journal of Civil Engineering, Vol. 9, No. 1, Pages 17-22, [4] N. Wongwai and S. Malaikrisanachalee (2011) "Augmented Heuristic Algorithm for Multi-skilled Resource Scheduling." Automation in Construction, Vol. 20, No. 4, Pages 429-445, [5] D. Thanapatay and S. Malaikrisanachalee (2010) "Development of Data Logger Based on Embedded System with Wireless Sensor Network for Hydrological Monitoring System." Journal of Research in Engineering and Technology, Vol. 7, No. 3, Pages 5-12.