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Abstract
We consider a coupled system of mathematical problem
given in the form of two Partial differential equations in
viscoelasticities describing the propagation of surface waves
on multi-layered liquid films. We establish the existence of
solutions for initial-value problem (1.3) in the linear case by
using a priori energy estimates.
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1. INTRODUCTION

In recent years, modern technology has seen more interest in
physical sciences and a rapid increase especially in areas that
are exploited and dependent on multiple physical connections.
In this research, we present a broad view, new perspective
and a fruitful study of recent and serious issues in the form
of time differential equations that represent important physical
phenomena in many fields of application in modern sciences.
We will consider a mathematical problem given in the form
of partial differential equations related to the appropriate time
for some important physical phenomena in various fields of
application in engineering and modern technology, and try
to propose and develop some new mathematical methods
for a new study of the output of interactions between some
associated effects.
The Kuramoto-Sivashinsky (KS) equation in the form, α, γ >
0,

u′ + uux + αuxx − γuxxxx = 0, (1.1)

is a well known model of 1D turbulence, which was derived in
different physical contexts, including chemical reaction waves,
propagation of combustion fronts in gases, surface waves in a
film of a viscous liquid flowing along a diagonal level, patterns
in thermal convection, rapid solidification, and others.
Recently, a linear coupled Kuramoto-Sivashinsky-KdV
equation with an extra linear dissipative equation, was studies
by many authors (see [1], [2], [6], . . . ). The model had the
form u′ + αuxx + uxxx + uux + βuxxxx = vx,

v′ + a1vx − γvxx = ux,
(1.2)

and a studies in wider way are made.
Viscoelastic substances exhibit behavior between flexible
solids and Newtonian liquids. In fact, pressures in these
media depend on the entire history of their distortion, not
only on current state of deformation or the state of their
current movement. This is why they are called materials with
memory. Many authors have studied viscous systems with
faded memory in a specific area. In this paper, we propose
and develop in-depth and useful mathematical studies related
to a new class of Kuramoto-Sivashinsky system, along with
an additional linear equation, and of course we will extend
the studies to the viscoelastic system. These proposed models
apply to the description of surface waves of layer liquid films
in different fields of applied science and modern technology
modeled. Let (x, y) ∈ Ω = R2, let us consider the system

u′ + αuxx + ∆ux + uux + β∆2u+
∫ t
−∞ µ1(t− s)∆u(s)ds = vx,

v′ + a1vx − γ∆v +
∫ t
−∞ µ2(t− s)∆v(s)ds = ux,

(1.3)
where u and v are the two real wave fields, the dissipative
parameter γ > 0 accounts for the stabilization and a1 is a
group-velocity mismatch between the two wave modes. The
coefficients α and β are all positive constants. The given
functions µ1, µ2 are specified later. The terms

∫ t
−∞ µi(t −

s)uxx(s)ds =
∫∞

0
µi(s)uxx(t − s)ds, i = 1, 2 represent the

infinite memories. To deal with infinite history, we assume that
the kernel functions µ1, µ2 satisfy the following hypothesis:
µ1, µ2 : R+ → R+ are a non-increasing C1 functions such
that

1−
∫ ∞

0

µ1(s)ds = l > 0, µ1(0) > 0. (1.4)

and

1−
∫ ∞

0

µ2(s)ds = l̃ > 0, µ2(0) > 0. (1.5)

Let Hm(Ω) usual Sobolev space defined by the norm

‖w‖2m =

∫
Ω

∑
|j|≤m

|Djw|2dxdy, (1.6)

where H0(Ω) = L2(Ω) and ‖w‖ = ‖w‖0, where

Djw =
∂|j|w

∂j1x ∂
j2
y

.

The main problem is the quantitative studies of surface
waves on multilayered liquid films. In particular, the
fundamental cause of the matter is under consideration by
many mathematicians to answer physicist’s questions to
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achieve a complex and new physical structure, by merging
several phenomena into one side and considering their
effectiveness. It is therefore natural to ask whether a
comprehensive presence of strong solutions can arise when the
dissipation changes.
It is very important to address some scientific issues through
the theories of functional analysis and then provide numerical
simulation of the theoretical study to obtain a useful and stable
convergence. Thus, the goal here is to develop some of the
recent results obtained in research work near to our subject.
In this paper we are studying the mathematical question
of the Kuramoto-Sivashinsky-Corteug-de-Fries equation in a
multidimensional field. This model was put into paper [1] to
describe surface waves on multilayered liquid films, by the

theory of perturbation, where the authors studied dissipation
and acquired acquisition of instability in the model as small
disturbances. Later, two-dimensional model was proposed
and developed in [2]. In fact, the problem was originally
proposed in [3]; attention was focused in particular on the
existence and uniqueness of the solution. These studies were
later significantly known in [4] and [5].
Our research methodology or plan includes the following
parts: The main theme is to give more informations about
the solution for surface waves on multi-layer liquid films.
Interactions between externally applied power and dissipation
by infinite memory term lead to the associated systems, which
also makes us use a new mathematical methods in the linear
case.

2. LINEAR STABILITY

The proposed system (1.3) describes the propagation of surface waves in a two-layer liquid with a single layer dominated by
viscosity and infinite memory.
Let (ũ, ṽ) be a small perturbation of a bounded C∞ solution (u0, v0) of (1.3)

u ∼ u0 + εũ

v ∼ v0 + εṽ, ε < 1. (2.1)

To linearize system for (ũ, ṽ), substituting (2.1) in (1.3), we get ũ′ + αũxx + ∆ũx + u0ũx + β∆2ũ+
∫∞

0
µ1(t− s)ũxx(s)ds = ṽx + f,

ṽ′ + a1ṽx − γ∆ṽ +
∫∞

0
µ2(t− s)∆ṽ(s)ds = ũx + g,

(2.2)

by omitting the higher order terms of ε.
Under small initial perturbation, the stability of solution (u0, v0) is determined by the energy estimate for (ũ, ṽ). Let u0 be a given
bounded smooth function and a1 be a given bounded smooth function. We will consider the following linearized system with
(ũ, ṽ) 

ũ′ + αũxx + ∆ũx + u0ũx + β∆2ũ+
∫ t
−∞ µ1(t− s)ũxx(s)ds = ṽx + f,

ṽ′ + a1ṽx − γ∆ṽ +
∫ t
−∞ µ2(t− s)∆ṽ(s)ds = ũx + g,

ũ(x, y, 0) = u0(x, y), ṽ(x, y, 0) = v0(x, y)

(2.3)

Theorem 2.1. For any solution (ũ, ṽ) of linearized system (2.3), the Schwartz rapidly decaying function space S(R2), (Introduced
in [8]), satisfies the estimate ∫

Ω

|ũ′|2dxdy +

∫
Ω

|ṽ′|2dxdy + ‖ũ‖H + ‖ṽ‖H

≤ c
(∫

Ω

(|ũ|2 + |ṽ|2)dxdy +

∫
Ω

|f |2dxdy +

∫
Ω

|g|2dxdy
)

(2.4)

and

sup
0≤t≤T

∫
Ω

|ũ|2 + |ṽ|2dxdy +

∫ T

0

‖ũ‖H + ‖ṽ‖Hds

≤ c
(∫

Ω

(|ũ0|2 + |ṽ0|2)dxdy +

∫ T

0

∫
Ω

|f |2dxdy +

∫
Ω

|g|2dxdyds
)

(2.5)

where
‖ũ‖H + ‖ṽ‖H =

∫
Ω

(|ũ|2 + |ũx|2)dxdy + c(µ1 ◦ ũx)(t) + c

∫
Ω

(|ṽ|2 + |∇ṽ|2)dxdy + c(µ2 ◦ ∇ṽ)(t).
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Proof. Multiplying (2.3)1 by ũ and (2.3)2 by ṽ integrating over Ω, we have

1
2
d
dt

∫
Ω
|ũ|2dxdy − α

∫
Ω
|ũx|2dxdy −

∫
Ω
∇ũx∇ũdxdy +

∫
Ω
u0ũxũdxdy

−β
∫

Ω
∆ũ∆ũdxdy −

∫
Ω

∫∞
0
µ1(s)ũx(t− s)ũxdsdxdy =

∫
Ω
ṽxũdxdy +

∫
Ω
fũdxdy,

1
2
d
dt

∫
Ω
|ṽ|2dxdy + a1

∫
Ω
ṽxṽdx+ γ

∫
Ω
|∇ṽ|2dxdy

−
∫

Ω

∫∞
0
µ2(s)∇ṽ(t− s)∇ṽdsdxdy =

∫
Ω
ũxṽdxdy +

∫
Ω
gṽdxdy.

Summing to get 

1
2
d
dt

∫
Ω

(|ũ|2 + |ṽ|2)dxdy − α
∫

Ω
|ũx|2dxdy −

∫
Ω

(β|∆ũ|2 − γ|∇ṽ|2)dxdy

−
∫

Ω
∇ũx∇ũdxdy +

∫
Ω
u0ũxũdxdy + a1

∫
Ω
ṽxṽdxdy

−
∫

Ω

∫∞
0
µ1(s)ũx(t− s)ũxdsdxdy −

∫
Ω

∫∞
0
µ2(s)∇ṽ(t− s)∇ṽdsdxdy

=
∫

Ω
ṽxũdxdy +

∫
Ω
ũxṽdxdy +

∫
Ω
fũdxdy +

∫
Ω
gṽdxdy,

(2.6)

for any ν > 0, we have

−
∫

Ω

(β|∆ũ|2 − γ|∇ṽ|2)dxdy ≤ −ν
∫

Ω

(|∆ũ|2 + |∇ṽ|2)dxdy (2.7)

and ∣∣∣ ∫
Ω

α|ũx|2 +∇ũx∇ũ+ u0ũxũ+ a1ṽxṽdxdy + ṽxũdxdy + ũxṽdxdy
∣∣∣

≤ ν
∫

Ω

(|∆ũ|2 + |∇ṽ|2)dxdy + c

∫
Ω

(|ũ|2 + |ṽ|2)dxdy (2.8)

and ∫
Ω

fũdxdy +

∫
Ω

gṽdxdy ≤
∫

Ω

(|f |2 + |g|2)dxdy +

∫
Ω

(|ũ|2 + |ṽ|2)dxdy (2.9)

we have ∫
Ω

ũx

∫ ∞
0

µ1(s)ũx(t− s)dsdxdy

≤ 1

2

∫
Ω

ũ2
xdxdy +

1

2

∫
Ω

(∫ ∞
0

µ1(s)ũx(t− s)ds
)2

dx

≤ 1

2

∫
Ω

ũ2
xdxdy +

1

2

∫
Ω

(∫ ∞
0

µ1(s)|ũx(t− s)− ũx|+ |ũx|ds
)2

dxdy

By Cauchy-Schwarz and Young inequalities, we obtain, for some ν > 0,∫
Ω

(∫ ∞
0

µ1(s)|ũx(t− s)− ũx|+ |ũx|ds
)2

dxdy

≤
∫

Ω

(∫ ∞
0

µ1(s)|ũx(t− s)− ũx|ds
)2

dxdy +

∫
Ω

(∫ ∞
0

µ1(s)|ũx|ds
)2

dxdy

+2

∫
Ω

(∫ ∞
0

µ1(s)|ũx(t− s)− ũx|ds
)(∫ ∞

0

µ1(s)|ũx|ds
)
dxdy

≤
(

1 +
1

ν

)∫
Ω

(∫ ∞
0

µ1(s)|ũx(t− s)− ũx|ds
)2

dxdy

+ (1 + ν)

∫
Ω

(∫ ∞
0

µ1(s)ds|ũx|
)2

dxdy
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≤
(

1 +
1

ν

)
(1− l)

∫
Ω

∫ ∞
0

µ1(s)|ũx(t− s)− ũx|2dsdxdy + (1 + ν)(1− l)2

∫
Ω

|ũx|2dxdy.

Then ∫
Ω

ũx

∫ ∞
0

µ1(s)ũx(t− s)dsdxdy ≤ 1

2
(1 + (1 + ν)(1− l)2)

∫
Ω

ũ2
xdxdy

+
1

2

(
1 +

1

ν

)
(1− l)

∫
Ω

∫ ∞
0

µ1(s)|ũx(t− s)− ũx|2dsdxdy

and similarly ∫
Ω

∇ṽ
∫ ∞

0

µ2(s)∇ṽ(t− s)dsdxdy ≤ 1

2
(1 + (1 + ν)(1− l̃)2)

∫
Ω

|∇ṽ|2dxdy

+
1

2

(
1 +

1

ν

)
(1− l̃)

∫
Ω

∫ ∞
0

µ2(s)|∇ṽ(t− s)−∇ṽ|2dsdxdy

Then, (2.6) becomes 

1
2
d
dt

∫
Ω

(|ũ|2 + |ṽ|2)dxdy + c
∫

Ω
(|ũ|2 + |ṽ|2)dxdy

+ 1
2 (1 + (1 + ν)(1− l)2)

∫
Ω
ũ2
xdxdy + 1

2

(
1 + 1

ν

)
(1− l)(µ1 ◦ ũx)(t)

+ 1
2 (1 + (1 + ν)(1− l̃)2)

∫
Ω
|∇ṽ|2dxdy + 1

2

(
1 + 1

ν

)
(1− l̃)(µ2 ◦ ∇ṽ)(t)

≤
∫

Ω
(|f |2 + |g|2)dxdy +

∫
Ω

(|ũ|2 + |ṽ|2)dxdy,

where

(φ ◦Ψ)(t) =

∫
Ω

∫ ∞
0

φ(s)|Ψ(t− s)−Ψ|2dsdxdy.

Thus,

P ′(t)− cP (t) ≤M(t), (2.10)

where

P (t) =

∫
Ω

(|ũ|2 + |ṽ|2)dxdy +

∫ t

0

∫
Ω

(|ũ|H + |ṽ|H)dxdyds

and

M(t) =

∫
Ω

(|f |2 + |g|2)dxdy.

Therefore, we have

exp(−ct)P (t)− P (0) ≤
∫ t

0

exp(−cs)M(s)ds, (2.11)

and

c(t)
(
P (0) +

∫ t

0

M(s)ds
)
≥ P (t), (2.12)

this proves (2.4) and (2.5) (see [6]).

Theorem 2.2 ([6], Theorem 2). Any solution (ũ, ṽ) of linearized system (2.3), satisfies the estimate, for κ ≥ 0,

sup
0≤t≤T

[
‖ũ‖2κ+2 + ‖ṽ‖2κ+1

]
+

∫ T

0

‖ũ‖Hκ + ‖ṽ‖Hκ + ‖ũ′‖2κ + ‖ṽ′‖2κds

≤ c
(
‖ũ0‖2κ+2 + ‖ṽ0‖2κ+1 +

∫ T

0

‖f‖2κ + ‖g‖2κds
)
, (2.13)

where
‖ũ‖Hκ + ‖ṽ‖Hκ = (‖ũ‖2κ+4 + ‖ũx‖22) + c(µ1 ◦ ũx) + c(‖ṽ‖2κ+2 + ‖∇ṽ‖2) + c(µ2 ◦ ∇ṽ).
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3. EXISTENCE FOR LINEARIZED PROBLEM

To prove the existence and uniqueness results for related problem (2.3), we use the well known continuation method.
We assume that

1. u0 ∈ Hκ+2(Ω) and v0 ∈ Hκ+1(Ω) and f, g ∈ L2([0, T ], Hκ(Ω)),

Let us define the Banach space

Y =
{

(ũ, ṽ) : ũ ∈ C([0, T ], Hκ+2(Ω)) ∩ L2([0, T ], Hκ+4(Ω)) ∩H1([0, T ], Hκ(Ω))

ṽ ∈ C([0, T ], Hκ+1(Ω)) ∩ L2([0, T ], Hκ+2(Ω)) ∩H1([0, T ], Hκ(Ω))
}

equipped with the norm

sup
0≤t≤T

[
‖ũ‖2κ+2 + ‖ṽ‖2κ+1

]
+

∫ T

0

‖ũ‖Hκ + ‖ṽ‖Hκ + ‖ũ′‖2κ + ‖ṽ′‖2κds

Theorem 3.1. Let κ ≥ 0 be any integer and under the assumption (1), system (2.3) has a unique solution (u, v) in the Banach
space Y satisfying estimate in Theorem 2.2.

Proof. We rewrite (2.3) as 
ũ′ + L1(ũ, ṽ) = f,

ṽ′ + L2(ũ, ṽ) = g,

ũ(x, y, 0) = u0(x, y), ṽ(x, y, 0) = v0(x, y)

(3.1)

where

L1(ũ, ṽ) =
[
αũ+

∫ ∞
0

µ1(s)ũ(t− s)ds
]
xx

+ ∆ũx + u0ũx + β∆2ũ− ṽx,

L2(ũ, ṽ) = a1ṽx −∆
[
γṽ −

∫ ∞
0

µ2(s)ṽ(t− s)ds
]
− ũx.

For λ ∈ [0, 1], we define 
ũ′ + λL1(ũ, ṽ) + (1− λ)∆2ũ = f,

ṽ′ + λL2(ũ, ṽ)− (1− λ)∆ṽ = g,

ũ(x, y, 0) = u0(x, y), ṽ(x, y, 0) = v0(x, y).

(3.2)

In order to prove our result, let us consider a subset B ⊂ [0, 1] such that λ ∈ B. We will show that B is not empty, and it is both
closed and open.

1. B is not empty:
At least, 0 ∈ B. Since, for λ = 0, problem (3.2) takes the form

ũ′ + ∆2ũ = f,

ṽ′ −∆ṽ = g,

ũ(x, y, 0) = u0(x, y), ṽ(x, y, 0) = v0(x, y)

(3.3)

It is not hard to see that the Cauchy problem of general parabolic equations (3.3) admits a solutions (ũ, ṽ) (see for instance
[8])

2. B is closed in [0, 1]:
Let λj ∈ B and let (ũ, ṽ) be the solution of the following initial-value problem

ũ′j + λjL1(ũj , ṽj) + (1− λJ)∆2ũ = f,

ṽ′j + λJL2(ũJ , ṽJ)− (1− λj)∆ṽJ = g,

ũj(x, y, 0) = u0(x, y), ṽj(x, y, 0) = v0(x, y).

(3.4)
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Bu Theorem 2.2, we have (uj , vj) is uniformly bounded in Y .
Let (ũj , ṽj) = (ũj − ũj−1, ṽj − ṽj−1), with satisfies

ũ′j + λjL1(ũj , ṽj) + (1− λ)∆2ũj = −(λj − λj−1)
[
L1(ũj−1, ṽj−1) + (1− λ)∆2ũj−1

]
,

ṽ′j + λjL2(ũj , ũj)− (1− λj)∆ũj = −(λj − λj−1)
[
L2(ũj−1, ṽj−1) + (1− λ)∆ũj−1

]
,

ũj(x, y, 0) = 0, ṽj(x, y, 0) = 0.

By Theorem 2.2, we have

sup
0≤t≤T

[
‖ũj‖2κ+2 + ‖ṽj‖2κ+1

]
+

∫ T

0

‖ũj‖Hκ + ‖ṽj‖Hκds

≤ c
∣∣∣(λJ − λj−1)

∣∣∣2 ∫ T

0

‖ũj−1‖Hκ + ‖ṽj−1‖Hκds

≤ c
∣∣∣(λJ − λj−1)

∣∣∣2K. (3.5)

where
‖ũ‖Hκ + ‖ṽ‖Hκ = (‖ũ‖2κ+4 + ‖ũx‖22) + c(µ1 ◦ ũx) + c(‖ṽ‖2κ+2 + ‖∇ṽ‖2) + c(µ2 ◦ ∇ṽ).

It follows that (ũj , ṽJ) is a Cauchy sequence in Y and its limit (ũ, ṽ) is obviously the solution of (3.2). This shows that B is
closed in [0, 1].

3. B is open in [0, 1]:
Let λ0 ∈ B and λ ∈ [0, 1] with |λ− λ0| ≤ ε.
Let (ũ1, ṽ1) be the solution of system

ũ′1 + λ0L1(ũ1, ṽ1) + (1− λ0)∆2ũ1 = f,

ṽ′1 + λ0L2(ũ1, ṽ1)− (1− λ0)∆ṽ1 = g,

ũ1(x, y, 0) = u0(x, y), ṽ1(x, y, 0) = v0(x, y).

(3.6)

We now constract a sequence of solutions for the system
ũ′j + λ0L1(ũj , ṽj) + (1− λ0)∆2ũj = f + (λ0 − λ)[L1(ũj−1, ṽj−1)−∆2ũj−1],

ṽ′j + λ0L2(ũj , ṽj)− (1− λ0)∆ṽj = g + (λ0 − λ)[L2(ũj−1, ṽj−1)−∆ṽj−1],

ũj(x, y, 0) = u0(x, y), ṽj(x, y, 0) = v0(x, y).

(3.7)

As is [6], by Theorem 2.2, we have

sup
0≤t≤T

[
‖ũj‖2κ+2 + ‖ṽj‖2κ+1

]
+

∫ T

0

‖ũj‖Hκ + ‖ṽj‖Hκds

≤ c
∣∣∣(λ− λ0)

∣∣∣2 ∫ T

0

‖ũj−1‖Hκ + ‖ṽj−1‖Hκds

≤ cε2K. (3.8)

choosing ε smal enought so that cε2K < 1
2 and (ũj , ṽj) is a Cauchy sequence with limit (ũ, ṽ) being the solution of (3.2).

Hence B is open.

This complets the proof of Theorem 3.1.
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