
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

321

Testing the correctness of Educational Software System Based on Testmatica

Model to explore its impact on productivity gains.

Eze Nicholas Ude, Obichukwu Peter Uzochukwu*, Ibezim Nnenna Ekpereka

Department of Computer and Robotic Education, University of Nigeria, Nsukka.

*Corresponding Author: Obichukwu Uzochukwu Peter

Abstract

Objectives: This study evaluates various technical
developments in testing that are currently advanced as
potential breakthroughs in determining the correctness of
software system and its correlation with productivity gains.

Methods/Statistical analysis: TESTMATICA testing Model
was developed for testing the correctness of the entire structure
of software using phase-to-phase approach. Thereafter,
quantitative research design technique was adopted where 5
software firms across Africa and G-8 countries were randomly
selected to determine the impact of the model on productivity
gains. Questionnaire was used for data collection and lone
hypothesis guided the study.

Findings: Findings reveals that the test based on the design
using testmatica testing model when evaluated against other
testing approaches can be a more powerful tool for checking if
all the entire structures at the design level of many software
systems are correct. On productivity gains, the findings reveal
that testmatica testing model improves customer satisfaction,
speeds up the development process and improves productivity
of software development teams.

Novelty: The use of testmatica model is very unique and novel
because it deals with the entire structure of the design on a
phase-wise basis; and not just only the control structures of
software as reported in literature.

Keywords: Correctness proofs, Productivity gains, Software
system, Testing, Testmatica model.

I. INTRODUCTION

Research in software engineering have shown that the greatest

threat to the traditional method of software development

endeavor is the high amount of errors detected when testing is

conducted, 1, 2. This is because the method by which software is

developed often determines the time and how testing is carried

out. For example, in a traditional waterfall model of software

development, testing is carried out only after the design of the

entire software, 3. But, under an agile programming 4 approach,

requirements, programming, and testing are often conducted at

the same time, 5.

However, because testing is conducted only during the final

stage of software development in a traditional waterfall

process, problem is bound to occur especially when it takes a

very long period of time before an error that occurred at the

earlier phases of the process model is detected, 3, 6. More so,

since project managers are always overanxious in placing

targets on task duration times, implementation of projects

cannot be concluded without a problem when the software is

finally released, 7 as software test coverage are always low and

only few testing are conducted with several faults detected, 8.

Even when there is enough time to test the software, not every

faults are detected when the entire code base are examined 9, 10.

This is because all the test codes are examined at once and no

one will know how faulty the implemented code is until the

date and time it will be released 11. Then when the functionality

of the software is tested, a latent and reasonable number of

wrong results may be detected and this could lead software

developers into heavy loss in terms of increased cost,

depreciated profit, delayed delivery of software product,

clients dissatisfaction and project deviating from earlier

budget, 12, 13.

However, the entire problem is not unsolvable 14, 15, 16, 11. For

example, it is far too late to test a software product only at the

time of delivery to the client without carrying step-wise check

of every step taken to develop it. This is because if the software

developer makes a mistake while eliciting and documenting the

requirements, then the remaining phases of software

development (the specifications, the design, the code and so

on), will all be affected 17.

Faults should therefore be detected as earlier as possible

because the earlier a fault is detected; the cheaper it is to fix 17;

though it depends on what has to be done to fix the fault. Let’s

say, if a problem that is supposed to be discovered earlier at the

requirement or the specification stage (as requirements,

analysis, and design stage faults constitute over 60% of all

faults 18, 19 is found only at the post delivery stage, then it would

consume huge amount of resources (money, time, etc) to

correct than if the fault had been detected at the earlier stages.

Testing and proofing of correctness of software is therefore

very important in software development not only because it

help to discover faults earlier but it also help to reduce the cost

and time of delivery of software products. Secondly, software

are developed by humans who because they are not perfect

could make mistakes. Without proper testing and proofing of

correctness of software, there will also be of less value in terms

of cost, time, profit, customer satisfaction etc for any software

development group to discover after several months of

developing a software that a single mistake they made at the

mailto:nicholas.eze@unn.edu.ng

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

322

early phases of the development process will cause them to

redesign the entire software.

Because of this, phase-wise testing is so touted in this study as

it requires over 70% of software development effort in other to

achieve software that one can rely on, 20. To achieve this

reliability will require that the requirement must be tested; the

specification document must be tested; the design also must be

tested; and so on, 21; and each of these phases must be certified

error free by the software quality assurance team before

moving to the next phase (see Figure 4 in section II).

However, based on the literature reviewed so far, it is so

glaring that because of when and how testing is conducted,

there are always errors when the software is finally released 11.

Trying to correct such errors could lead to increased cost and

budget and clients not being satisfied because there is always

delay in delivering software products. All these problems have

persisted and what researchers are only interested on is getting

empirical data to know if software testing strategies are reliable

or not, 14. This is the rational for this study since the existing

problems have remained without addressing it.

To start addressing the problem, this study first dealt with

phase-wise testing of the design structures of software and how

the testing techniques and methods suggested can be used in

every phase/iteration of software development to achieve error

free software. These techniques when applied will go a long

way in solving the problems. Secondly the study introduces a

new and better model – (the Testmatica Model) for proofing

the correctness of the control structures of software. This is to

support Brooks’s in his article, 7 ‘no silver bullet’, that a major

potential silver bullets in software development, is to prove its

correctness.

Our discussion then proceed to an examination of the

perceptions of testing by different groups on productivity gains

and we conclude by reporting their experiences in applying

testing methods to determine the productivity gains in a

business context.

II. LITERATURE SURVEY

This section reviews previous research from different scholars

on software testing in correlation with productivity gains and

consequences of lack of it. The aim is to enable the readers gain

more insight on testing and its impact on productivity gains.

We then examine the various testing methods and techniques

employed at each phase of software development. We further

introduce a model for proofing the correctness of a software

product based on TESTMATICA MODEL.

AN OVERVIEW OF PRIOR RESEARCH

So many success stories have been heard of software

development. Of these are that software development has

reduced radically the rate at which firms across the globe fail in

business. Despite these, a huge amount of software products

are still not delivered within the stipulated time frame and

when it is delivered, a lot of errors are detected, 12. A very good

example is a Standish Group study involving 8,380

development projects which was completed in 2006 with 365

respondents on the adoption of agile methodology in software

development process as summarized in Figure 1 22.

The major findings of this study was that, of a hundred percent

success rate with respect to timely completion and within

budget successful delivery of projects, only a meager 35

percent of these projects were successfully completed and

delivered within stipulated time and budget. The rest 65

percent were not even channeled on completing and delivering

the entire projects; rather 19 percent of these projects were

terminated at one point while the product is still being

developed or were never implemented at all. Then only 46

percent of the software product were completed and handed

over to the client.

What this means was that the initially specified features and

functionality of these projects were no longer maintained as

projects were seen delivered over budget and late. Hence, in

2006, the success rate of software development endeavor was

just one third with over 50percent of the projects showing so

many symptoms of the software crisis which was due to

improper software testing.

The financial implications of these failures and crises are

horrendous on both the firms and the customer. For example,

research has shown that late delivery of a software product

could lead to serious legal action which is capable of sapping

huge amount of resources from clients and firms, 23. However,

Cutter Consortium in 2002 reported that:

: A surprising 78 percent of software development firms

have settled their disputes in court.

: 67 percent of the issues lies in the fact that software

developers failed to measure up with the functionality and

performance of the software products as delivered.

: In 56 percent of those cases, the actual dates for delivering

of the product were not met.

: In 45 percent of those cases, there were so many errors on

the software that could not be managed hence not usable.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

323

All these reports are not healthy for successful software

development considering its many success stories as they come

with heavy cost implications.

Corroborating, a study conducted by National Institute of

Standards and Technology (NIST) in 2002, also shows that one

of the greatest threat to the U.S. economy is software bugs.

According to the report, the United State loses a whopping

$59.5 billion annually as a result of this. The study however

suggested that better software testing could save more than a

third of this cost24.

The above suggestion is in agreement with the result of the

study as reported in 25, which stated that while developing an

operating system, proper testing can bring down the amount of

error by 85 percent, 26.

The Jet Propulsion Laboratory (JPL) also corroborated when

they reported that over $25,000 is saved per inspection of

software as every little inspection reveals at least 4 major faults

and 14 minor faults 27.

However, an Australian group, 28, conducted a survey

involving 131 respondents of software development groups

and firms that used testing methodologies in their software

development projects and their report shows that, productivity

was improved by 93%; development cost was reduced by 49%;

88% quality and customer satisfaction was achieved; and 83%

business satisfaction was equally great.

Further research also reveals that conducting a thorough testing

on software can lead to an increase in the overall quality of the

product and decrease the cost of the product, 29.

A comparative study was conducted between 1997 and 2007 to

determine the perceived influence of testing methods and

techniques used by different software development firms on

productivity gain in the G8 countries, 30. Their findings as

shown in Figure 2; is the discovery that companies that use

some degree of testing techniques have more satisfied

employees and clients. The perception of University students is

that use of testing methods avails them more experience and

relevant training. On productivity gains, the study found that

there is a greater increase in productivity gain if testing is

thoroughly used while developing a software product.

Summing up the literature review, testing is a nice tool for

software development. This is because it comes with a lot of

benefits for the software development team, as well as business

benefits to the client, 7.

Secondly, testing should not be seen as a separate phase of

software development. For example, consider Figure 3.

Fig. 3. Software Development Life cycle

In the preceding list of phases of software development in

Figure 3, notice there is no separate testing phase. This

omission is deliberate for the purpose of this study. This study

is advocating that testing rather should be an activity that

should take place all the way through software production, 21, 5

(see Figure 4)

More emphases should be placed on testing more than other

activities in software development. This normally should take

place at the end of every phase or iteration (verification); and

also before the product is finally handed down to the client

(validation), 31, 6. This is to verify if system behaves according

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

324

to specification, and to check the system correctness to

ascertain if the clients’ requirement as specified actually met

the desired output.

Note that this verification could be achieved in two ways, 1)

Test Mode, and 2) walk- through mode 32. Under the test

mode, we first generate the correct operational sequences of the

design according to the requirement specification and

semantics of operations. Then the true input responses are

generated and compared with the correct version. Example see

Figure 5.

In walkthrough, input sequences from the design and their

corresponding responses can be taken as "path programs"

where its correctness could be achieved by a walk-through

procedure based on the specification by applying the testmatica

model as will been seen later in this study. During this step, one

may discover that there may be ambiguity or incompleteness in

the specification; and also not all specification errors can be

revealed. But the application of the testimatica model must

establish that the input specification satisfies the output

specification.

However, although there are times when testing predominate,

there should never be times when no testing is carried out else

it will have a high negative impact on productivity gain 11.

For these reasons, the testing of each phase of software

development process must be certified error free by software

quality assurance team of the firm,33 before moving on to the

next phase. This will make software development ‘more agile’

which is the best for addressing the problems of the traditional

waterfall, incremental and spiral model of software

development, 4.

STRATEGIES FOR TESTING SOFTWARE

To achieve good software testing, one needs to get acquainted

with the best testing strategies capable of integrating various

software test case design methods into a well organized series

of steps. Our earlier review of literature shows that software

testing strategies are necessary for testing and these are

developed by project managers, Software Quality Assurance

Engineers and individuals who are specialist in testing. This

study has identified and employed four software testing

strategies in other to draw inference from reports across firms

that use testing techniques as an agile method of software

development. They include:

 Unit testing

This type of testing is conducted only at the smallest level often

referred to as "unit", ''iteration'', "module", or "component".

Here, the entire program is broken down into separate, smaller

sections called modules, units, subroutines, subprograms as

they are interchangeably referred to. Each module has a

specific job to do and is relatively easy to test each module to

verify the functionality of a particular section of the code. This

type of testing is generally grouped into a white box test class.

However, in an object-oriented programming environment,

this is usually at the class level in which the constructors and

destructors constitute the unit test, 34.

 Integration Testing

In integration testing, program codes to be tested are organized

within various control structures and then merged as one bigger

entity which has direct interface with the control structures.

Testing is then conducted on the interfaces in other to discover

faults in the interfaces and interaction between the merged

components (modules). The testing and integration of the

larger groups of software components corresponding to

elements of the architectural design continues gradually until

the software works as a system 35 (See section C for more

details).

 System Testing

In system testing, both the functional and requirement

specifications including the behavioral properties of the entire

system are tested so as to know if the product functions

correctly, 36. The SQA group first look at these properties, in

parts, run it with known input data, and examines the output, 37.

The SQA simply does this by inputting intentionally erroneous

data into the system to check the functionality of the product or

if the mechanism for detecting faults is still working perfectly

to detect faults incase bad data is inputted into the system. After

this, the internal consistency of the product source code will be

tested to know if the new inputted product will have any form

of effect on the client's existing computer operations.

 Acceptance Testing

Acceptance testing precedes Integration testing as it is the

testing that stands to give complete assurance that the entire

system is perfectly working without any residual fault, 38. This

type of testing is done at the time when the complete design

artifact is to be handed over to the client by the developer. In

other words, without a software product passing through its

acceptance testing, it can never be said to be correct or meet its

specification, 11.

However, in the course of this testing the SQA must ensure that

the portability of the system as well as working as expected

should protect the systems operating environment from

damage to avoid causing other processes within the

environment to become inoperative 39.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

325

THE TESTING PROCESS OF SOFTWARE

DEVELOPMENT

In this section the seven phases of the software life cycle, are

carefully analyzed and the role played by software quality

assurance team during testing of each phase to improve

software quality by detecting software bugs were explored.

The first phase is the requirement phase.

Requirement Phase Testing

Every software development organization has Software

Quality Assurance (SQA) group 33; who ensures that the

quality of a software product that is delivered to the client met

with the specification of the client. This is so because; the

quality and the correctness of any software product depend on

the extent to which it meets its specification 37. In that case, the

SQA is set up to enforce these standards and must play a role

right from the beginning of the software development process.

In particular, it is important that clients get satisfied when the

product is finally handed over to them by first crosschecking

with the client to know if the rapid prototype of the software

reflects their current needs.

Nevertheless, no matter how meticulously this is done, there is

always the possibility that forces beyond the control of the

development team will cause changes to happen during the

design process. Further development will then have to be put

on hold until the necessary modifications have been made to

the partially completed products.

 Specification Phase Testing

Before the specification phase can be deemed to be finished,

the SQA group must carefully check the specifications, looking

for contradictions, ambiguities, and any sign of

incompleteness, 40. In addition, the SQA group must also

certify the capacity of the specified hardware and online disk

storage in handling the new products.

If a specification document is to be testable, then one of the

properties it must have is traceability where every statement in

the output specification document is traced back to every

statement in the input specification document. If the

requirement has been methodically presented, then the SQA

group will have fewer jobs tracing through the specification

documents. If rapid prototyping has been used in the

requirement phase, then the relevant statements of the

specification document should be traceable to the rapid

prototype.

However, a way out for checking the specification document is

by means of a review where walkthrough or inspection could

be used. During this, both the SQA team and the client meet to

determine the correctness of a specification document. The

specification documents are reviewed, ensuring that there are

no misunderstandings about the documents.

 Planning Phase Testing

In this phase, a Software Project Management Plan (SPMP) is

drawn and carefully checked by the SQA team. The SPMP

contains detailed plan on delivery date and an estimate of the

cost for developing the software.

To test the planning phase, software development firms obtain

more than one independent quotes of both delivery date and

cost at the commencement of the planning phase. If there is any

difference in the two quotes, such differences is reconciled

through the process of a review similar to the review of the

specification document. This review will make it possible for

software development cost and delivery date not to slip away.

 Design Phase Testing

Testing the design phase of software requires traceability

where every aspect of the design are traced to a statement in the

specification document. This design review is similar to the

specification reviews as it helps the SQA team to check and

know if the actual design conforms to what is specified or that

whatever is in the specification document reflects with what is

in the design.

During the design review, clients need not be physically

present because of the technical nature of the design. Here

software development team and the SQA team work through

the entire design and each separate module, looking for logic

faults, interface faults, etc all with the intent of achieving a

correct and perfect design. In addition it is important that the

review team should know that some specification faults were

not detected during the previous phase before the design and so

pay more attention to discover such faults during the design

phase.

 Implementation Phase Testing

The modules should be desk checked by the programmer

during implementation and also tested immediately they have

been implemented and run against test cases. After this

informal testing, the SQA team then performs methodical

testing on the modules.

Code review could be employed in detecting programming

faults by the programmer and the SQA representatives. This

procedure is similar to reviews of specifications and design

described previously.

 Integration Phase Testing

Integration phase testing ensures that various units or modules

are combined correctly in other that the entire product meets

with its specification. Here module interfaces are meticulously

tested and checked by the compiler and the linker to ensure that

number, order, and types of formal arguments matches with

number, order, and types of actual arguments.

The SQA team carries out product testing 37 at the completion

of the integration testing during which the entire product is

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

326

tested against its specification. In particular, the constraints

listed in the specification documents must be tested to ascertain

if the correct specifications have been implemented. Only after

this are the test cases drawn up.

In some cases, early versions (alpha version) of the complete

product are sent to the client for testing on site. After

correction, this corrected alpha version, now called the beta

version is intended to be close to the final version. Alpha

testing and beta testing are particularly important during

software development 7.

 Maintenance Phase Testing

From the foregoing, once the software developer has satisfied

that the desired changes have been implemented correctly, then

the software product must undergo regression testing, 3 to

ascertain if the functionality of the rest of the product has been

compromised or not. Here all the previous test cases are

retained, together with the results of running those regression

tests. If it is discovered that the product has been compromised,

then fault could be easily traced and corrected.

A. TESTING THE CORRECTNESS OF SOFTWARE

 SYSTEM

According to Dijkstra, "software testing can show the presence

of faults, but definitely not the total absence of it,” 10. What this

means is that, when a product undergoes some testing and the

output did not meet the specification, then that product is

wrong. On the other hand if a product is tested and the output

met the specification, the product may likely still have some

faults in it.

For this reason, there must be some behavioral attribute of the

software which needs to be tested to ascertain whether the

program still shows the presence of fault or not, 37. These

behavioral attributes ranges from reliability, performance,

robustness, utility, and correctness. However, for the purpose

of this study, the behavioral attribute of software that will be

considered is correctness.

 Correctness

A product is simply said to be correct 37, if the input

specification satisfies the output specifications. This definition

has big worrisome implications. For example, there is no law

that says a product must be accepted simply because the

product has been successfully tested against a broad range of

test data, 32. If a product is correct and should be accepted, that

simply means that the output specifications were met. But what

if the specifications themselves are incorrect? Consider the

following illustrations

Illustrating the above difficulty, one may think that the

specification in Figure 6 is correct simply because, may be

when the product was tested against a given set of data, it runs

correctly. But it is not. The specification have only created a

specification gap by showing that the input to the sort is an

array p of n integers, and the output is another array q sorted in

non decreasing order; without recourse that the element of q

and the output array are all a permutation of the element of the

input array p.

The second method in Figure 7, tricksort then capitalizes on

this specification fault and tries to correct it by setting all n

elements of array q to 0 as in Figure 8. Figure 8 is then the

corrected specification for the sort. This example has set the

record straight that it is no meaning claiming that a product is

correct when its specification is incorrect.

In other words, it is better to look at what accounted for the

correctness of a product rather than just showing that the

product is correct. Therefore it is necessary to prove that a

product specification is correct. This proof which is a

mathematical technique should be carried out in conjunction

with step by step coding and the design 10, after which it is

tested to know if the coding and design is equivalent to the

specification and therefore is correct 11.

To prove the correctness of software, 32 proposes the automata

theory for testing just the control structures of software. Their

result only showed that the method is correct. However, in

furtherance of their study, we propose here a similar method

based on TESTMATICA MODEL where the entire structure

of the design is thoroughly checked; and tested for errors while

satisfying some reasonable assumptions. The test based on the

design is evaluated against the specification and comparison

was made with other testing approaches to compare their error

detecting capabilities.

The result shows that our proposed method "TESTMATICA

MODEL" TESTING STRATEGY can be a powerful testing

tool for checking if all the control structures at the design level

of many software systems are correct. In achieving this, we

identified the following steps; 1) the highest number of states

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

327

in the design is estimated; for example, see an informal

specification of a comment printer below:

 2) According to the coding and the design, the test sequence is

generated; and finally 3) the test sequence generated in step 2 is

then checked.

The flowchart equivalent of Figure 9 is shown in fig 10 below.

To prove that the code fragment and the corresponding

flowchart in Figures 9 and 10 respectively is correct, we set, the

variable s to contain the sum of the n elements of the array y

after the code has been executed.

However, observe that Figure 10 contains a certain claim of a

mathematical attribute from statement A to H; that is at the

beginning and at the end of each statement. Having observed

that, then each statement can be proven as thus.

The input specification, just at the beginning of the code

execution holds at A and initializes n value as a positive

integer; i.e,

A: n ∈ {1, 2, 3, . . .} (1.1)

The output specification to this is that, when control gets to H ,

then the addition of the n value will be stored in the s value

which will all be stored in array y, that is,

H: s y[0] + y[1] + . . . + y[n-1] (1.2)

Then a very strong output specification can only prove correct

the code fragment as shown:

H: k n and s y[0] + y[1] + . . . + y[n - 1] (1.3)

After declaring the input and output specification, we move to

prove the mathematical expression that holds at point D not

minding if its loop invariant has been executed several times or

not. That is;

D: k # n and s y[0] + y[1] + . . . + y[k - 1] (1.4)

Next is to prove that the code fragment is correct by showing

that the output specification in (1.3) holds at point H; and the

input specification in (1.1) holds at point A. Then the

assignment statement k R 0 where the control is at B is first

executed and this is what holds:

B: k 0 (1.5)

That is to say that at point B, the statement holds as k 0 and n ∈

{1, 2, 3, . . .} thus making the input specification in (1.1) to

hold at all points in the flowchart after which k 0 and n ∈ {1, 2,

3, . . .} is removed from the prove.

Then at point C, as a result of the statement s R 0, seen in the

second assignment, the statement below holds true:

C: k 0 and s 0 (1.6)

Next is to prove by induction the correctness of the loop

invariant in (1.4). While considering that statement (1.6) holds

that C: k 0, and s 0; then k 0 by statement (1.6) and n $ 1 from

input specification (1.1), will require k # n. Now since k 0, in

statement (1.6) holds; then k − 1 −1, will empty the sum in (1.4)

and s 0 as required thereby proving that the Loop invariant

(1.4) is true.

Next, the inductive hypothesis will be performed to ascertain if

k is equivalent to some value k0, 0 # k0 # n, and execution is at

point D. then the statement that holds is

D: k0 # n and s y[0] + y[1] + . . . + y[k0 − 1] (1.7)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

328

Next if k 0 $ n, and k0 # n by hypothesis, it means that k0 n.

Going by the inductive hypothesis in (1.7), the following

statement implies

H: k0 n and s y[0] + y[1] + . . . + y[n − 1] (1.8)

The above assertion is the output specification as in (1.3). Now,

supposing the test k0 $ n? did not hold, then control will be

passed from a point D to a point E. Again since k0 is neither ≥
n, k0 n, then the statement implies.

E: k n and s y[0] + y[1] + . . .+ y[k - 1] (1.9)

 O 0

Now that the statement s R s + y[k0] is executed, then from

statement (1.9), at point F, the following statement must hold:

k0 n and s y[0] + y[1] + . . . + y[k0 − 1] + y[k0]

y[0] + y[1] + . . . + y[k] (1.10)

 0

After that, k0 R k0 + 1 will be executed. Now if we set the value

of k0 to 19 say before the statement is executed, then the last

term in the sum in (1.10) will be y[19]. Notice that the value of

k0 is increased by 1 to 20 with the sum s unaltered, hence the

last term in the sum still remains y[19], thereby bringing it to

y[k0 − 1]. Again, the incremental value of k0 by 1 at point F, k0

n presupposes k0 # n should the inequality be hold at point G.
Now the outcome of increasing k0 by 1 is that at point G the

following statement must hold:

G: k0 # n and s y[0] + y[1] + . . . + y[k0 – 1 (1.11)

Statement (1.11) that holds at point G above reveals its

similarity with assertion (1.7) meaning that suppose (1.7) holds

at D for k k0, it will also hold at D with k k0 + 1 proving the

statement that the loop invariant in (1.4) holds for k 0 which

also stand for all values of k, 0 # k # n.

Next is to prove the termination of the loop by observing that

the loop adds 1 to the value of k at every iteration each time the

statement k R k + 1 is executed. Remember also that statement

(1.6) sets k to be equal to 0. This loop addition per iteration will

therefore continue to increase by 1 until k reaches the value n

thereby causing the exit of the loop and setting the value of s as

in assertion (1.8), thereby satisfying output specification (1.3).

To conclude the review, observe that the input specification is

given in (1.1), and that loop invariant in (1.4) holds

irrespective of the number of times executed, which thereafter

terminates after n iterations through an incremental value of 1.

When this happens, the values of k and s will be seen to satisfy

the output specification as in (1.3) hence proving correct the

code fragment of Figure 9 and the flowchart in Figure 10.

The above process will give the programmer confidence that

the software is correct since the correctness of any software

simply means that input specification must satisfy the output

specification. It also means that numbers of faults are reduced

to the barest minimum and productivity gains are obvious.

B. BENEFITS OF TESTING AS A FACTOR OF AGILE

 DEVELOPMENT METHODS.

Thus far, having reviewed the literature and explored the

testing techniques applied in software development, this

section discusses the benefits of testing as a component of the

agile software development method.

1) Improves Quality

Testing improves quality. When testing and review is

conducted regularly at every phase of software development,

quality is improved since every faults detected will be exposed

and fixed at once. This is done more easily and quickly when

the entire project is broken down into units or modules. Then it

will allow the project development team to focus on

developing high quality products.

2) Allows for change

During the process of software development, the developers

tries to constantly shape and reshape the overall product

backing so as to meet customers demand. However, this

process can introduce new or changed backlog items in the

process thereby providing the opportunity for making or

creating change.

3) Predictable cost and schedule

Testing allows for cost of developing a product to be predicted.

Owing to the fact that each scheduled time box is a fixed

duration, the cost can be predictable. It will make clients to be

well informed of the approximate cost which the product will

take and also help to achieve good decisions on which feature

should be considered first.

4) Early and predictable Delivery

By using time box where jobs are scheduled to be delivered

within a particular spate of time, testing makes it easier and

possible for product delivery date and time to be highly

predictable. Those faults that could have delayed the

development process are detected earlier and fixed thereby

making way for speedy development and delivery.

5) Transparency

Testing guarantees transparency because it includes the client

in the development process so as to make input. This gives the

client a good impression that they are seeing their work in

progress. Clients follow the development process and tend to

be satisfied with what they are observing.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

329

III. METHODOLOGY

 Design of the Study

This study adopted a quantitative study in which the unit of

analysis was individuals who were expected to provide their

perception regarding the benefits of testing and testing

techniques employed in executing software projects in their

organizations. The rational for using quantitative research

approach is that it allows the researcher to examine the

relationship between two variables. In this study, the two

variables are software testing and productivity gains. Insight

from this study can be used to look for cause and effect

relationships and to make predictions.

 Area of Study

The area of study is limited to selected G-8 countries and

African countries. The countries that constitute G-8 are the

United States, Canada, France, Germany, Italy, Japan, Russia

and the UK; whereas the independent countries in Africa are

54.

 Sample and Sampling Technique

In a research with a large population of this kind, it is

uneconomical to involve all the members (firms) of the

population, 20. Therefore a simple random sampling technique

was used to select 5 software development firms across 5

countries randomly selected.

These firms were selected on ground that they recently shifted

to agile method of software development and so are employing

testing techniques in their software development process.

Table 1 shows a distribution of the firms and their countries.

Table I. Distribution of firms and their countries

S/N Firms Countries

1 Microsoft USA

2 Symbiotic Application

Services

South Africa

3 Net Solutions United

Kingdom

4 Microtelesoft Japan

5 Tenece Nigeria

 Instrument for Data Collection

Data for this study were collected using newly developed

questionnaire by the author. The content was aimed at

investigating the day-to-day experience associated with testing

that reduces cost, risk, improves customer satisfaction and

bring return on investment. Although the study used a

convenient sample, precautionary measures were taken to

ensure that all respondents were software professionals who

work at these software development firms, and who have

recently implemented (less than eighteen months) a software

project.

 Method of Data Collection

The questionnaire was sent through e-mail to the firms sampled

for the study. However, I received usable feedback from only

20 respondents in the following order, Microsoft (USA) 01;

Symbiotics Application Services, (South Africa) 04; Net

Solutions (UK) 03, Microtelesoft (Japan) 05 and Tenecee

(Nigeria) 07. (see distribution in Table2).

My analysis therefore will be based on these pieces of data.

However, my hypotheses is that indeed, testing in software

development makes the software development process more

agile and reduced cost, risk and this is in line with my research.

Table II: Showing Analysis of the rate of questionnaire

returned

S/N Firms Countries

1 Microsoft USA 01

2 Symbiotic Application

Services

South Africa 04

3 Net Solutions United

Kingdom

03

4 Microtelesoft Japan 05

5 Tenece Nigeria 07

 Total 20

 Data Analysis

The data collected from the respondents will be analyzed using

mean and standard Deviation. However, the results of data

analysis will be presented with reference to the research

hypotheses posed to determine whether the observed

experience with testing matched my research, figure 3 Shows

the Data Analysis Using mean and Standard Deviation.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

330

Table 3: Showing data Anlysis using Mean and standard

Deviation

S/

N

Items Mean

(n = 32)

SD

(n =32)

1 The use of testing method

improves software quality

4.68 1.46

2 The use of testing method

reduces project cycle time

5.05 0.95

3 The use of testing method

reduces development cost

4.45 1.3

4 The use of testing method

improves the productivity of

teams

5.18 1.14

5 The use of testing method

improves customer satisfaction

5.55 1.26

6 I personally like extreme

programming

4.68 1.13

7 I believe extreme

programming speeds up the

development process

5.18 1.01

8 I believe using testing methods

improves the quality of code

5.09 1.02

Total (Average) 4.98 1.16

 Discussion

Indeed, the study found that (at the time of the present

research), all the firms surveyed use testing process throughout

its entire development cycle. The respondents maintained that

team members spend more time on projects under testing

process with a strong intent on achieving customers’ desires.

Due to these experiences, it would seem that team work of

software developers has led to high productivity gains and

customer satisfactions, 37.

 Conclusion and Future scope

Testing has been widely used as a way to help engineers

develop high-quality software. Above result indicates that the

top benefits of testing are customer satisfaction, speeding up

the development process and improved productivity of teams.

Based on similar norms and firm sizes, it is expected that other

software development firms in the G-8 countries, Africa and

the world could experience the same benefits.

However, shortfalls are also there. For example based on the

small sample size and the fact that the study was conducted

using few selected firms, my results may not give any

surprising points which is different from what other

researchers produced for generalization. But with time, and

given a high response rate from employees and firms that

employs testing methods, more data may be collected, analyzed

and substantial results may be found to produce a more

quantitative fact on the impact of testing on productivity gains.

 Recommendation for Further studies

Our first recommendation suggests that the way software is

produces should be changed in other to achieve comparable

future breakthroughs. To improve cost and productivity gains,

software should be developed incrementally to enable it to be

constructed phase-wise with testing carried out at each phase

instead of trying to build the product as a whole. Some teams

must begin phase-to-phase testing as necessary.

Great and potential software designers should be encouraged to

undergo more training on software development to be

up-to-date with recent trends in software development. This

will bring about greatest hope considering that Brooks’s

opined that great designers should be considered first if we

wish to improve software production and cost.

ACKNOWLEDGMENT

I would like to thank all respondents who have participated in

this study.

REFERENCES

[1] Goodenough B, Gerhart SL. Toward a theory of test

data selection. IEEE Transactions on Software
Engineering. 1975 June, 1(2), pp. 156-173.

[2] Stephenson W. An Analysis of the Resources Used in

Safeguard System Software Development.

Proceedings of the 2nd international Conference on
Software Engineering, Califonia, 1976, pp 312-321

[3] Myers G, Glenford J. The Art of Software Testing. 2nd

edn. John Wiley and Sons: New York. 1979.

[4] Beck K. Extreme Programming Explained: Embrace

Change. 1st edn. Addison-Wesley Longman

Publishing Co.: USA, 2000.

[5] Dustin E. Effective Software Testing. 1st edn.

Addison-Wesley Professional: New York. 2002.

[6] Software Testing Lifecycle. etestinghub. Testing

Phase in Software Testing. Retrieved: 13/01/2012.

[7] Brooks F. No Silver Bullet. In: Information

Processing. Kugler (ed.), Elsevier North-Holland.:

New York. 1986; reprinted in IEEE Computer, April

1987), pp. 10–19.

[8] Eze N. Development Process for Controllable

Software. International Journal of Education and
Research. 2017 July, 5(7), pp. 37-52.

[9] Pan J. Evaluation of Software Testing tools

(coursework).

http://myassignmenthelp.info/assignments/master-the

https://en.wikipedia.org/wiki/Glenford_Myers
http://www.etestinghub.com/testing_lifecycles.php#2
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

331

sis-title-evaluation-software-testing-tools-87710/.

Retrieved 21/11/2017.

[10] Dijkstra E. The Humble Programmer.

Communications of the ACM. 1972 Oct, 15(10) pp.

859–66.

[11] Schach SR. Object Oriented and Classical Software

Engineering. 10th edn. McGraw-Hill.: New York,

2010, pp. 18–23.

[12] Johnson RA. The Ups and Downs of

Object-Oriented System Development.

Communications of the ACM. 2000 October, 43(10)

pp. 69–73.

[13] Certified Tester Foundation Level Syllabus.

International Software Testing Qualifications Board.

https://www.bcs.org/upload/pdf/ct-foundation-syllab

us.pdf. Date Accessed: 31/03/2011.

[14] Howden WE. Reliability of the path analysis

testing strategy. IEEE Transaction on Software Eng.

1976 Sept, vol. SE-2, pp. 208-215.

[15] Raymond ES. The Cathedral and the Bazaar: Musings

on Linux and Open Source by an Accidental

Revolutionary. 2nd edn. O’Reilly & Associates:

Sebastopol, CA, 2000.

[16] Dorota H, Adam K. Automated Defect Prevention:

Best Practices in Software Management. 1st edn.

Wiley-IEEE Computer Society Press. USA, 2007.

[17] Mcconnell S. The Nine Deadly Sins of Project

Planning. IEEE Software. 2001 January, 18(1), pp.

5–7.

[18] Boehm BW. Software Engineering: R & D Trends

and Defense Needs. ICSE ‘79 Proceedings of the 4th
international conference on software engineering,

Germany, 1979, pp 11-21.

[19] Kelly JC, Sherif JS, Hops J. An Analysis of Defect

Densities Found during Software Inspections.

Journal of Systems and Software. 1992 January,
17(2), pp. 111–17.

[20] Welman C, Kruger F, Mitchell B. Research

Methodology. 3rd edn. Oxford University Press:

London, 2005.

[21] Smith RK, Hale JE, Parrish AS. An Empirical Study

Using Task Assignment Patterns to Improve the

Accuracy of Software Effort Estimation. IEEE
Transactions on Software Engineering. 2001 March,

27(3), pp. 264–71.

[22] Rubenstein D. Standish Group Report: There’s Less

Development Chaos Today.

www.sdtimes.com/content/article.aspx?ArticleID=30

247. Date accessed: 01/03/ 2007.

[23] Highsmith J. Cutter Consortium Reports: Agile

Project Management: Principles and Tools 4. 2nd edn.

Cutter Consortium, Arlington, MA, 2003.

[24] The Economic Impacts of Inadequate Infrastructure

for Software Testing. National Institute of Standards

and Technology, May 2002. Retrieved Date

Accessed: 19/12/2017.

[25] Ackerman AF, Buchwald LS, Lewski FH. Software

Inspections: An Effective Verification Process.

IEEE Software. 1989 May, 6(3), pp. 31–36.

[26] Fowler PJ. In-Process Inspections of Work

products at AT&T. AT&T Technical Journal. 1986
March-April, 65(2), pp. 102–12.

[27] Bush M. Improving Software Quality: The Use of

Formal Inspections at the Jet Propulsion Laboratory.

Proceedings of the 12th International Conference on
Software Engineering, Nice, France, 1990, pp.

196–99.

[28] Shine Technologies. Agile Methodologies Survey

Results.

http://www.shinetech.com/download/attachment/98/

ShineTechAgileSurvey. Date accessed: February

2012.

[29] Maria P, Lassenius C. How Does an Agile Coaching

Team Work?: A Case Study. Proceedings of the 2011
Sixth IEEE International Conference on Global
Software Engineering. New York, 2011, pp 29-38.

[30] Dyba T, Dingsoyr T. Empirical studies of agile

software development: A systematic review.

Information and Software Technology. 2008 August,
50(9), pp. 833-859.

[31] Tran E. Verification/validation/certification

(coursework). Carnegie Mellon University. (1999)

Date Accessed: 13/08/2008.

[32] Chow TS. Testing Software Design Modeled by

Finite-State Machines. IEEE Transaction on
Software Engineering. 1978 May, Vol. SE-4(3), pp.

178-187.

[33] Gregory J, Crispin L. More Agile Testing. 1st edn.

Addison-Wesley Professional. 2014, Pp. 23-39.

[34] Robert VB. Testing Object-Oriented Systems:

Objects, Patterns, and Tools. 1st edn. Addison-Wesley

Professional. USA, 1999.

[35] Beizer B. Software Testing Techniques. 2nd edn. Van

Nostrand Reinhold. New York, 1990.

[36] A Glossary of Software Engineering Terminology.

Institute of Electrical and Electronic Engineers, New

York, 1990.

[37] Goodenough JB. A Survey of Program Testing Issues.

In: Research Directions in Software Technology. P.

Wegner (ed). The MIT Press, Cambridge, MA, 1979,

pp. 316–40.

[38] Chauhan RK, Singh I. Latest Research and

Development on Software Testing Techniques and

https://www.istqb.org/downloads/send/2-foundation-level-documents/3-foundation-level-syllabus-2011.html
https://en.wikipedia.org/wiki/International_Software_Testing_Qualifications_Board
https://www.bcs.org/upload/pdf/ct-foundation-syllabus.pdf.%20%20Date%20Accessed:
https://www.bcs.org/upload/pdf/ct-foundation-syllabus.pdf.%20%20Date%20Accessed:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.sdtimes.com/content/article.aspx?ArticleID=30247
http://www.sdtimes.com/content/article.aspx?ArticleID=30247
https://www.nist.gov/director/planning/upload/report02-3.pdf
https://www.nist.gov/director/planning/upload/report02-3.pdf
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://www.shinetech.com/download/attachment/98/ShineTechAgileSurvey
http://www.shinetech.com/download/attachment/98/ShineTechAgileSurvey
https://en.wikipedia.org/wiki/Boris_Beizer

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 3 (2019), pp. 321-332

© International Research Publication House. http://www.irphouse.com

332

Tools. International Journal of Current Engineering
and Technology. 2014 August, 4(4), pp.2368-72

[39] Whittaker JA. What Is Software Testing? And Why

Is It So Hard? IEEE Software. 2000 Jan-Feb. 17(1),

pp. 70–79.

[40] Miller GA. The Magical Number Seven, Plus or

Minus Two: Some Limits on Our Capacity for

Processing Information: The Psychological Review

63. 1956 March, pp. 81–97; reprinted in:

www.well.com/user/smalin/miller.html.

http://www.well.com/user/smalin/miller.html

