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1. INTRODUCTION

In [7],[8], Fisher proved some related fixed point theorems in
two complete metric spaces which is as follows:

Theorem 1.1. Let (X, d) and (Y, ρ) be a complete metric
spaces. If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions:

ρ(Tx, Tsy) ≤ cmax{d(x, Sy), ρ(y, Tx), ρ(y, STy)}

d(Sy, STx) ≤ cmax{ρ(y, Tx), d(x, Sy), d(x, STx)}

for all x, y ∈ X where c ∈ [0, 1), then ST have a unique fixed
point w in Y . Further Tz = w and Sw = z.

In [30], Popa extended the results of Fisher. Besides, Cho [6],
extended and improved the results of Fisher [7],[8], and Popa
[30]. Recently, related fixed point theorems on three complete
metric spaces have been studied by Fisher and Rao [28-30],
Nung [24], Jain and Rao[10-12], Jain and Dixit[9].

In 2006 Mustafa, and Sims, introduced the notion of
generalized metric space called G-metric space [15]. In
this generalization to every triplet of elements in the space
assigned a non-negative real number. An analysis of
the structure of these spaces was done in details in [15].
Subsequently, several authors proved many kind of fixed point
theorems for contractive type mapping and expansive mapping
in generalized metric spaces (see [1]-[3],[4-5],[13-14],[16-
23],[25],[27],[31]). On the other hand, Rao [31], obtained
the related fixed point theorems on three complete G-metric
spaces.

In the first part of this paper, we prove some results
concerning the related fixed point theorems on two complete

G-metric spaces and deduce some corollaries. In the second
part, we prove also a related fixed point theorems on two
compact G-metric spaces. The results of this paper are new
in G-metric spaces.

2. PRELIMINARIES

We recall some basic definitions and results which are
important in the sequel. We refer to [19], for details on the
following notions. Throughout this paper, R denotes the set of
all real numbers, R+ denotes the set of nonnegative reals and
N denotes the set of natural numbers.

Definition 2.1. Let X be a non empty set andG : X×X×X →
R+ be a function satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X , with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X , with z 6= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) =··· (symmetry in
all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z,
a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or more
specifically a G-metric on X , and the pair (X,G) is called a
G-metric space.

Example 2.1. Define G : R× R× R→ R+ by G(x, y, z) =
|x− y|+ |y− z|+ |z− x|, for all x, y, z ∈ X . Then it is clear
that (R, G) is a G-metric space.

Proposition 2.1. Let (X,G)be a G-metric space. Then for any
x, y, z and a ∈ X, it follows that:

(1) if G(x, y, z) = 0 then x = y = z,

(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(3) G(x, y, y) ≤ 2G(y, x, x).

Definition 2.2. Let (X,G) be a G-metric space, and (xn) be
a sequence of points of X , we say that (xn) is G-convergent
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to x ∈ X if for any ε > 0, there exists N ∈ N such that
G(x, xn, xm) < ε, for all n,m ≥ N .

Proposition 2.2. Let (X,G) be a G-metric space. Then the
following are equivalent:

(1) (xn) is G-convergent to x,

(2) G(xn, xn, x) −→ 0, as n −→∞,

(3) G(xn, x, x) −→ 0, as n −→∞.

Definition 2.3. Let (X,G) be a G-metric space, a sequence
(xn) is called G-Cauchy if given ε > 0, there is N ∈ N such
that G(xn, xm, xl) < ε, for all n,m, l ≥ N.

Definition 2.4. A G-metric space (X, G) is said to be
G-complete if every G-Cauchy sequence in (X,G) is G-
convergent in (X,G).

Definition 2.5. A G-metric space (X,G) is said to be a
compact G-metric space if it is G-complete and G-totally
bounded.

Definition 2.6. Let (X,G1) and (Y,G2) be complete G-
metric spaces, and let f : (X,G1) −→ (Y,G2) be a function,
then f is said to be G-continuous at a point a ∈ X, if
given ε > 0, there exists δ > 0, such that x1, x2 ∈
X,G1(a, x1, x2) < δ implies G2(f(a), f(x1), f(x2)) < ε.

A function f is G-continuous on X if and only if, it is G-
continuous at all a ∈ X .

Proposition 2.3. Let (X, G) be a G-metric space. Then the
function G(x, y, z) is continuous in all variables.

3. RELATED FIXED POINT THEOREMS ON
COMPLETE G-METRIC SPACES

Our main result follows:

Let = be the set of all continuous real functions g : R+ ×
R+ × R+ → R+ such that:

(i) g(0, 0, 0) = 0

(ii) If u2 ≤ g(uv, 0, 0) or u2 ≤ g(0, uv, 0) or u2 ≤
g(0, 0, uv), for all u, v ∈ R+, then there exists 0 ≤ c < 1
such that u ≤ 1

4cv.

Example 3.1. If we define a function g : R+×R+×R+ → R+

by the following:

(a) g(u, v, w) = 1
4cmax{uw, vu,wv}, for all u, v, w ∈ R+,

where 0 ≤ c < 1,

(b) g(u, v, w) = 1
4 (auw+ bvu+ cwv), for all u, v, w, a, b, c ∈

R+.

Then g ∈ =.

Theorem 3.1. Let (X,G1) and (Y,G2) be complete G- metric
spaces, and T be a mapping of X into Y and let S be a

mapping of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) ≤ g(G2(y1, TSy1, TSy2)G2(y1, y2, Tx ),

G2(y1, y2, Tx )G1(x, Sy1, Sy2),
G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2))

(3.1)

G2
1(Sy1, Sy2, STx ) ≤g(G1(x, x, STx)G1(x, Sy1, Sy2),

G1(x, Sy1, Sy2)G2(y1, y2, Tx),
G2(y1, y2, Tx)G1(x, x, STx))

(3.2)

for all x in X and y1, y2 in Y, where g ∈ =. Then ST has a
unique fixed point z in X and TS has a unique fixed point w in
Y. Further, Tz = w and Sw = z.

Proof. We define the sequences (xn) in X , and (yn) in Y by
xn = (ST )nx, yn = T (ST )n−1x , for n = 1, 2, ....We will
assume that xn 6= xn+1 and yn 6= yn+1 for all n. Applying
the inequality (3.1) and using property (ii), we have

G2
2(yn, yn+1, yn+1)

= G2
2(Txn−1, TSyn, TSyn) ≤

g(G2(yn, TSyn, TSyn)G2(yn, yn, Txn−1),

G2(yn, yn, Txn−1)G1(xn−1, Syn, Syn),

G1(xn−1, Syn, Syn)G2(yn, TSyn, TSyn))

≤ g(0, 0, G1(xn−1, xn, xn)G2(yn, yn+1, yn+1)),

and it follows that

G2
2(yn, yn+1, yn+1) ≤

1

4
cG1(xn−1, xn, xn)G2(yn, yn+1, yn+1)

G2(yn, yn+1, yn+1) ≤
1

4
cG1(xn−1, xn, xn) (3.3)

Similarly, applying the inequality (3.2),

G2
1(xn, xn, xn+1) = G2

1(Syn, Syn, STxn)

≤ g(G1(xn, xn, xn+1)G1(xn, Syn, Syn),

G1(xn, Syn, Syn)G2(yn, yn, Txn),

G2(yn, yn, Txn)G1(xn, xn, xn+1))

≤ g(G1(xn, xn, xn+1)G1(xn, xn, xn),

G1(xn, xn, xn)G2(yn, yn, yn+1),

G2(yn, yn, yn+1)G1(xn, xn, xn+1))

Using property (ii) and the Proposition(2.2), we have

G2
1(xn, xn, xn+1) ≤

1

4
cG2(yn, yn, yn+1)G1(xn, xn, xn+1)

1

2
G1(xn, xn+1, xn+1) ≤ G1(xn, xn, xn+1)

≤ 1

4
cG2(yn, yn, yn+1) ≤

1

2
cG2(yn, yn+1, yn+1)
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G1(xn, xn+1, xn+1) ≤ cG2(yn, yn+1, yn+1) (3.4)

Now it follows from the inequalities (3.3) and (3.4) that

G1(xn, xn+1, xn+1) ≤
1

4
c2G1(xn−1, xn, xn).

Hence, by induction we get

G1(xn, xn+1, xn+1) ≤ (
1

4
)nc2nG1(x, x1, x1), for n = 1, 2, · · ·

(3.5)
So (xn) and (yn) are G-Cauchy sequences with limits z in X

and w in Y . Using the inequality (3.1), we have

G2
2(Tz, yn, yn)

= G2
2(Tz, TSyn−1, TSyn−1)

≤ g(G2(yn−1, TSyn−1, TSyn−1)G2(yn−1, yn−1, T z),

G2(yn−1, yn−1, T z)G1(z, Syn−1, Syn−1), G1(z, Syn−1,

Syn−1)G2(yn−1, TSyn−1, TSyn−1))

≤ g (G2(yn−1, yn, yn)G2(yn−1, yn−1, T z),

G2(yn−1, yn−1, T z)G1(z, xn−1, xn−1),

G1(z, xn−1, xn−1)G2(yn−1, yn, yn)).

G2
2(Tz,w,w) ≤ g(0, 0, 0) = 0,

it follows that G2(Tz,w,w) = 0, hence w = Tz. Using the
inequality (3.2), we have

G2
1(Sw, Sw, xn) = G2

1(Sw, Sw, STxn−1)

≤ g(G1(xn−1, xn−1, STxn−1)G1(xn−1, Sw, Sw),

G1(xn−1, Sw, Sw)G2(w,w, Txn−1),

G2(w,w, Txn−1)G1(xn−1, xn−1, STxn−1)).

Letting n tends to infinity and using (i), we have
G2

1(Sw, Sw, xn) ≤ g(0, 0, 0) = 0, and it follows that z =
Sw. Thus STz = Sw = z, TSw = Tz = w, and so ST has a
fixed point z and TS has a fixed point w. To prove uniqueness,
suppose that ST has a second fixed point z1 and TS has a
second fixed point w1. Then applying the inequality (3.1) and
using property (ii), we have

G2
2(w,w1, w1)

= G2
2(TSw, TSw1, TSw1)

= G2
2(Tz, TSw1, TSw1)

≤ g(G2(w1, TSw1, TSw1)G2(w1, w1, T z),

G2(w1, w1, T z)G1(z, Sw1, Sw1),

G1(z, Sw1, Sw1)G2(w1, TSw1, TSw1))

≤ g(0, G2(w1, w1, w)G1(Sw, Sw1, Sw1), 0),

it follows that

G2
2(w,w1, w1) ≤ 1

4cG1(Sw, Sw1, Sw1)G2(w1, w1, w),

G2(w,w1, w1) ≤ 1
4cG1(Sw, Sw1, Sw1).

(3.6)

Further, applying the inequality (3.2) and using property (ii),
we have

G2
1(Sw, Sw, Sw1) = G2

1(STSw, STSw, STSw1) ≤

g(G1(Sw1, Sw1, STSw1)G1(Sw1, STSw, STSw),

G1(Sw1, STSw, STSw)G2(TSw, TSw, TSw1),

G2(TSw, TSw, TSw1)G1(Sw1, Sw1, STSw1))

≤ g(0, G1(Sw1, Sw, Sw)G2(w,w,w1), 0)

which implies that

G2
1(Sw, Sw, Sw1) ≤ 1

4cG2(w,w,w1)G1(Sw, Sw, Sw1)

G1(Sw, Sw, Sw1) ≤ 1
4cG2(w,w,w1)

G1(Sw, Sw, Sw1) ≤ 1
4cG2(w,w,w1),

(3.7)
again by using the Proposition (2.2), we get,

1

2
G1(Sw, Sw1, Sw1)

≤ G1(Sw, Sw, Sw1) ≤
1

4
cG2(w,w,w1) ≤

1

2
cG2(w,w1, w1)

G1(Sw, Sw1, Sw1) ≤ cG2(w,w1, w1). (3.8)

Now it follows from the inequalities (3.6) and (3.8) that

G2(w,w1, w1) ≤
1

4
cG1(Sw, Sw1, Sw1)

<
1

4
c2G2(w,w1, w1) < G2(w,w1, w1)

and so w = w1 since c < 1. The fixed point w of TS must
be a unique. Now TSz1 = z1 implies TSTz1 = Tz1 and so
Tz1 = w. Thus z = STz = Sw = STz1 = z1, proving that
z is a unique fixed point of ST . Thus the proof of the Theorem
is completes.

We have the following Corollaries:

Corollary 3.2. Let (X,G1) and (Y,G2) be complete G-
metric spaces, and T be a mapping of X into Y and let S be
a mapping of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) ≤

1

4
cmax{G2(y1, TSy1, TSy2)

G2( y1, y2, Tx ), G2(y1, y2, Tx)G1(x , Sy1, Sy2),

G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2)}

G2
1(Sy1, Sy2, STx ) ≤ 1

4
cmax{G1(x, x, STx)G1(x, Sy1, Sy2),

G1(x, Sy1, Sy2)G2(y1, y2, Tx), G2(y1, y2, Tx)G1(x, x, STx)}

for all x in X and y1, y2 in Y, 0 ≤ c < 1. Then ST has a
unique fixed point z in X and TS has a unique fixed point w
in Y . Further, Tz = w and Sw = z.

Proof. It is immediate to see that, if we take a function g : R+ × R+ × R+ → R+, by g(u, v, w) = 1
4cmax{uw, vu,wv}, for
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all u, v, w ∈ R+, where 0 ≤ c < 1, then from Example (3.1)(a) it follows that g ∈ = and by the Theorem (3.1), the Corollary
follows.

Corollary 3.3. Let (X,G1) and (Y,G2) be complete G- metric spaces, and T be a mapping of X into Y and let S be a mapping
of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) ≤

1

4
(a1G2(y1, TSy1, TSy2)G2(y1, y2, Tx ) + b1G2(y1, y2, Tx )G1(x , Sy1, Sy2)+

c1G1(x, Sy1, Sy2)G2(y1,TSy1, TSy2))

G2
1(Sy1, Sy2, STx ) ≤ 1

4
(a2G1(x , x, STx)G1(x, Sy1, Sy2) + b2G1(x, Sy1, Sy2)G2(y1, y2, Tx)+

c2G2(y1, y2, Tx)G1(x , x, STx))

for all x in X and y1, y2 in Y, a1, a2, b1, b2, c1, c2 ∈ R+ with (a1 + b1 + c1)(a2 + b2 + c2) < 1. Then ST has a unique fixed point
z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Now, we give an example to illustrate Theorem(3.1).

Example 3.2. Let X = Y = [1,∞), we define on X and Y the G1-metric space and the G2-metric space as follows:

G1(x1, x2, x3) = max{|x1 − x2|, |x2 − x3|, |x3 − x1|}, with x1, x2, x3 ∈ X

G2(y1, y2, y3) =

√
2

16
max{|y1 − y2|, |y2 − y3|, |y3 − y1|}, with y1, y2, y3 ∈ Y.

Let T and S defined by Tx = 2x− 1 and Sy = y, we have

G2
2(Tx, TSy, TSy) = G2

2(Tx, Ty, Ty) = (

√
2

16
)2 |Tx− Ty| |Tx− Ty| = 1

4

√
2

2
G1(x, Sy, Sy)G2(y,Ty, Ty)

=
1

4
cmax{0, 0, G1(x, Sy, Sy)G2(y, Ty, Ty)} = g(0, 0, G1(x, Sy, Sy)G2(y, Ty, Ty))

then ST and TS have the unique fixed point 1.

Theorem 3.4. Let (X,G1) and (Y,G2) be complete G- metric spaces, and T be a mapping of X into Y and let S be a mapping of
Y into X satisfying the inequalities:

G3
2(Tx, TSy1, TSy2) ≤

1

4
c1 max{G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2)G2(y1, TSy1, TSy2), (3.9)

G2(y1, y2, Tx)G1(x, Sy1, Sy2)G2(y1, y2, Tx ), G2(y1, TSy1, TSy2)G2(y1, y2, Tx )G2(y1, y2, Tx )}

G3
1(Sy1, Sy2, STx ) ≤ 1

4
c2 max{G2(y1, y2, Tx)G1(x, x, STx)G1(x, x, STx), (3.10)

G1(x, Sy1, Sy2)G2(y1, y2, Tx)G1(x, Sy1, Sy2), G1(x, x, STx)G1(x, Sy1, Sy2)G1(x, Sy1, Sy2)}

for all x in X and y1, y2 in Y, where 0 ≤ c1c2 < 1. Then ST has a unique fixed point z in X and TS has a unique fixed point w in
Y. Further, Tz = w and Sw = z.

Proof. We define the sequences (xn) in X , and (yn) in Y, by xn = (ST )nx, yn = T (ST )n−1x, for n = 1, 2, ....We will
assume that xn 6= xn+1 and yn 6= yn+1 for all n. Applying the inequality (3.9), we have

G3
2(yn, yn+1, yn+1) = G3

2(Txn−1, TSyn, TSyn) ≤
1

4
c1 max{G1(xn−1, Syn, Syn)G2(yn, TSyn, TSyn)G2(yn, TSyn, TSyn),

G2(yn, yn, Txn−1)G1(xn−1, Syn, Syn)G2(yn, yn, Txn−1), G2(yn, TSyn, TSyn)G2(yn, yn, Txn−1)G2(yn, yn, Txn−1)}

≤ 1

4
c1 max{G1(xn−1, xn, xn)G2(yn, yn+1, yn+1)G2(yn, yn+1, yn+1), 0, 0}.

It follows that
G3

2(yn, yn+1, yn+1) ≤
1

4
c1G1(xn−1, xn, xn)G2(yn, yn+1, yn+1)G2(yn, yn+1, yn+1)
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G2(yn, yn+1, yn+1) ≤
1

4
cG1(xn−1, xn, xn) (3.11)

Applying the inequality (3.10), and using the Proposition (2.2), we get

G3
1(xn, xn, xn+1) = G3

1(Syn, Syn, STxn) ≤
1

4
c2 max{G2(yn, yn, Txn)G1(xn, xn, xn+1)G1(xn, xn, xn+1),

G1(xn, Syn, Syn)G2(yn, yn, Txn)G1(xn, Syn, Syn), G1(xn, xn, xn+1)G1(xn, Syn, Syn)G1(xn, Syn, Syn)}

≤ 1

4
c2 max{G2(yn, yn, yn+1)G1(xn, xn, xn+1)G1(xn, xn, xn+1),

G1(xn, xn, xn)G2(yn, yn, yn+1)G1(xn, xn, xn), G1(xn, xn, xn+1)G1(xn, xn, xn)G1(xn, xn, xn)}

G3
1(xn, xn, xn+1) ≤

1

4
c2G2(yn, yn, yn+1)G1(xn, xn, xn+1)G1(xn, xn, xn+1)

1

2
G1(xn, xn+1, xn+1) ≤ G1(xn, xn, xn+1) ≤

1

4
c2G2(yn, yn, yn+1) ≤

1

2
c2G2(yn, yn+1, yn+1). (3.12)

Now it follows from the inequalities (3.11) and (3.12) that

G1(xn, xn+1, xn+1) ≤ c2G2(yn, yn+1, yn+1) ≤
1

4
c1c2G1(xn−1, xn, xn). (3.13)

Hence, by induction we get

G1(xn, xn+1, xn+1) ≤ (
1

4
)n(c2c1)

nG1(x, x1, x1), for n = 1, 2, · · ·

Since c2c1 < 1, it follows that xn and yn are G-Cauchy sequences with limits z in X and w in Y . Using the inequality (3.9), we
have

G3
2(Tz, yn, yn) = G3

2(Tz, TSyn−1, TSyn−1)

1

4
c1 max{G1(z, Syn−1, Syn−1)G2(yn−1, TSyn−1, TSyn−1)G2(yn−1, TSyn−1, TSyn−1),

G2(yn−1, yn−1, T z)G1(z, Syn−1, Syn−1)G2(yn−1, yn−1, T z),

G2(yn−1, TSyn−1, TSyn−1)G2(yn−1, yn−1, T z)G2(yn−1, yn−1, T z)}

≤ 1

4
c1 max{G1(z, xn−1, xn−1)G2(yn−1, yn, yn)G2(yn−1, yn, yn), G2(yn−1, yn−1, T z)G1(z, xn−1, xn−1)G2(yn−1, yn−1, T z),

G2(yn−1, yn, yn)G2(yn−1, yn−1, T z)G2(yn−1, yn−1, T z)}

Letting n→ ∞, we have G3
2(Tz,w,w) ≤ 0, it follows that G2(Tz,w,w) = 0, hence w = Tz. Using the inequality (3.10), we

obtain
G3

1(Sw, Sw, xn) = G3
1(Sw, Sw, STxn−1) ≤

1

4
c2 max{G2(w,w, Txn−1)G1(xn−1, xn−1, STxn−1)G1(xn−1, xn−1, STxn−1),

G1(xn−1, Sw, Sw)G2(w,w, Txn−1)G1(xn−1, Sw, Sw), G1(xn−1, xn−1, STxn−1)G1(xn−1, Sw, Sw)G1(xn−1, Sw, Sw)}.

Letting n tends to infinity, we have G3
1(Sw, Sw, xn) ≤ 0, and it follows that z = Sw. Thus STz = Sw = z, TSw = Tz = w,

and so ST has a fixed point z and TS has a fixed point w. Now suppose that ST has a second fixed point z1 and TS has a second
fixed point w1. Then using the inequality (3.9) and property (ii), we have

G3
2(w,w1, w1) = G3

2(TSw, TSw1, TSw1) = G3
2(Tz, TSw1, TSw1) ≤

1

4
c1 max{G1(z, Sw1, Sw1)G2(w1, TSw1, TSw1)G2(w1, TSw1, TSw1),

G2(w1, w1, T z)G2(w1, w1, T z)G1(z, Sw1, Sw1),

G2(w1, TSw1, TSw1)G2(w1, w1, T z)G2(w1, w1, T z)}

≤ 1

4
c1 max{0, G2(w1, w1, w)G1(Sw, Sw1, Sw1)G2(w1, w1, w), 0},

and so G3
2(w,w1, w1) ≤ 1

4cG1(Sw, Sw1, Sw1)G2(w1, w1, w)G2(w1, w1, w)

G2(w,w1, w1) ≤
1

4
cG1(Sw, Sw1, Sw1). (3.14)
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Applying the inequality (3.10), Proposition (2.2) we have

G3
1(Sw, Sw, Sw1) = G3

1(STSw, STSw, STSw1) ≤

1

4
c2 max{G2(TSw, TSw, TSw1)G1(Sw1, Sw1, STSw1)G1(Sw, Sw, STSw),

G1(Sw1, STSw, STSw)G2(TSw, TSw, TSw1)G1(Sw1, STSw, STSw),

G1(Sw1, Sw1, STSw1)G1(Sw1, STSw, STSw)G1(Sw1, STSw, STSw)}

≤ 1

4
c2 max{0, G1(Sw1, Sw, Sw)G1(Sw1, Sw, Sw)G2(w,w,w1), 0}

G3
1(Sw, Sw, Sw1) ≤

1

4
c2G2(w,w,w1)G1(Sw, Sw, Sw1)G1(Sw, Sw, Sw1)

1

2
G1(Sw, Sw1, Sw1) ≤ G1(Sw, Sw, Sw1) ≤

1

4
c2G2(w,w,w1) ≤

1

2
c2G2(w,w1, w1) (3.15)

G1(Sw, Sw1, Sw1) ≤ c2G2(w,w1, w1) (3.16)

Now it follows from the inequalities (3.14) and (3.16) that

G2(w,w1, w1) ≤
1

4
c1G1(Sw, Sw1, Sw1) <

1

4
c1c2G2(w,w1, w1) < G2(w,w1, w1)

and so w = w1 since c1c2 < 1. The fixed point w of TS must be a unique. Now TSz1 = z1 implies TSTz1 = Tz1 and so
Tz1 = w. Thus z = STz = Sw = STz1 = z1, proving that z is the unique fixed point of ST . This completes the proof of the
Theorem.

Corollary 3.5. Let (X,G1) and (Y,G2) be complete G- metric spaces, and T be a mapping of X into Y and let S be a mapping
of Y into X satisfying the inequalities:

G3
2(Tx, TSy1, TSy2) ≤

1

4
(a1G1(x , Sy1, Sy2)G2(y1, TSy1, TSy2)G2(y1, TSy1, TSy2)+

b1G2(y1, y2, Tx)G1(x , Sy1, Sy2)G2(y1, y2, Tx) + c1G2(y1, TSy1, TSy2)G2(y1, y2, Tx )G2(y1, y2, Tx))

G3
1(Sy1, Sy2, STx ) ≤

1

4
(a2G2(y1, y2, Tx)G1(x, x, STx)G1(x, x, STx)+b2G1(x, Sy1, Sy2)G2(y1, y2, Tx)G1(x, Sy1, Sy2)+

c2G1(x, x, STx)G1(x, Sy1, Sy2)G1(x, Sy1, Sy2))

for all x in X and y1, y2 in Y , a1, a2, b1, b2, c1, c2 ∈ R+ with (a1 + b1 + c1)(a2 + b2 + c2) < 1. Then ST has a unique fixed
point z in X and TS has a unique fixed point w in Y . Further, Tz = w and Sw = z.

Example 3.3. Let X = Y = [1,∞), we define on X and Y the G1-metric space and the G2-metric space as follows:

G1(x1, x2, x3) = max{|x1 − x2|, |x2 − x3|, |x3 − x1|}, with x1, x2, x3 ∈ X

G2(y1, y2, y3) =

√
4

48
max{|y1 − y2|, |y2 − y3|, |y3 − y1|}, with y1, y2, y3 ∈ Y.

Let T and S defined by Tx = 3x− 2 and Sy = y, we have

G3
2(Tx, TSy, TSy) = G3

2(Tx, Ty, Ty) = 3(

√
4

48
)2 |x− y| |Tx− Ty| = 1

4

√
4

4
G1(x, Sy, Sy)G2(y, Ty, Ty)G2(y, Ty, Ty)

=
1

4
cmax{G1(x, Sy, Sy)G2(y, Ty, Ty)G2(y, Ty, Ty), 0, 0}

then ST and TS have a unique fixed point 1.
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4. RELATED FIXED POINT THEOREMS ON COMPACT G-METRIC SPACES

In this section, we prove an analogous results for compact G-metric spaces.

Let =∗ denotes the set of all real functions f : R+ × R+ × R+ → R+ such that :

(i)∗ If u2 < g(uv, 0, 0) or u2 < g(0, uv, 0) or u2 < g(0, 0, uv),for all u, v ∈ R+, then u < 1
2v.

Theorem 4.1. Let (X,G1) and (Y,G2) be compact G- metric spaces, and T be a continuous mapping of X into Y and let S be
a continuous mapping of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) < g(G2(y1, TSy1, TSy2)G2(y1, y2, Tx ), G2(y1, y2, Tx)G1(x, Sy1, Sy2), (4.1)

G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2))

for all x in X and y1, y2 in Y with x 6= Sy1, and x 6= Sy2, where g ∈ =∗,and

G2
1(Sy1, Sy2, STx) < g(G1(x, x, STx)G1(x, Sy1, Sy2), G1(x, Sy1, Sy2)G2(y1, y2, Tx), (4.2)

G2(y1, y2, Tx)G1(x, x, STx))

for all x in X and y1, y2 in Y, where g ∈ =∗with y1 6= Tx, y2 6= Tx. Then ST has a unique fixed point z in X and TS has a
unique fixed point w inY . Further, Tz = w and Sw = z.

Proof. Let ψ : X → R+ defined by ψ(x) = G1(x, STx, STx) is G-continuous on X . Since X is compact, there exists a point u
in X such that ψ(u) = G1(u, STu, STu) = min{G1(x, STx, STx);x ∈ X}. Now suppose that Tu 6= TSTu, then u 6= STu.
Put y1 = y2 = Tu, x = Sy = STu in the inequality (4.2), we have

G2
1(STu, STu, STSTu) < g(G1(STu, STu, STSTu)G1(STu, STu, STu),

G1(STu, STu, STu)G2(Tu, Tu, TSTu), G2(Tu, Tu, TSTu)G1(STu, STu, STSTu))

< g(0, 0, G2(Tu, Tu, TSTu)G1(STu , STu, STSTu)).

Using condition (i)∗ and Proposition(2.2) we have

G2
1(STu, STu, STSTu ) <

1

2
G2(Tu, Tu, TSTu)G1(STu, STu, STSTu)

G1(STu, STu, STSTu ) <
1

2
G2(Tu, Tu, TSTu) < G2(Tu, TSTu, TSTu)

Put y1 = y2 = Tu, x = u in the inequality (4.1), we have

G2
2(Tu, TSTu, TSTu) < g(G2(Tu, TSTu, TSTu)G2(Tu, Tu, Tu ),

G2(Tu, Tu, Tu )G1(u, STu, STu), G1(u, STu, STu)G2(Tu, TSTu, TSTu))

< g(0, 0, G1(u, STu, STu)G2(Tu, TSTu, TSTu))

But using condition (i)∗, we get

G2
2(Tu, TSTu, TSTu) <

1

2
G1(u, STu, STu)G2(Tu, TSTu, TSTu),

G2(Tu, TSTu, TSTu) <
1

2
G1(u, STu, STu)

1

2
G1(STu, STSTu, STSTu) ≤ G1(STu, STu, STSTu ) <

1

2
G1(u, STu, STu)

G1(STu, STSTu, STSTu) < G1(u, STu, STu).

Hence ψ(STu) < ψ(u), and this gives us a contradiction. So TSTu = Tu. If putting Tu = w and Sw = z, then we get
ST (STu) = S(TSTu) = STu = Sw = z, and w = Tu = TS(Tu) = T (STu) = Tz. Thus, Sw = z is a fixed point of ST
and Tz = w is a fixed point of TS. To prove uniqueness, suppose that ST has a second distinct fixed point z1. Then applying
the inequality (4.2) and using condition (i)∗, we have

G2
1(z, z, z1) = G2

1(STz, STz, STz1) < g(G1(z1, z1, STz1)G1(z1, z, z),
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G1(z1, z, z)G2(Tz, Tz, Tz1), G2(Tz, Tz, Tz1)G1(z1, z1, STz1)).

It follows that
G2

1(z, z, z1) <
1

2
G2(Tz, Tz, Tz1)G1(z1, z, z)

G1(z, z, z1) <
1

2
G2(Tz, Tz, Tz1)

Further, applying the inequality (4.1) and using condition (i)∗we have,

G2
2(Tz, Tz1, T z1) = G2

2(Tz, TSTz1, TSTz1) <

g(G2(T z1, TSTz1, TSTz1)G2(Tz1, T z1, T z ), G2(Tz1, T z1, T z )G1(z, STz1, STz1),

G1(z, STz1, STz1)G2(T z1, TSTz1, TSTz1)) = g(0, G2(Tz1, T z1, T z)G1(z, z1, z1), 0),

G2
2(Tz, Tz1, T z1) <

1

2
G1(z, z1, z1)G2(Tz1, T z1, T z),

1

2
G2(Tz1, T z, Tz) ≤ G2(Tz, Tz1, T z1) <

1

2
G1(z, z1, z1).

Now, it follows that G1( z, z, z1) <
1
2G1( z, z1, z1) ≤ G1( z, z, z1), this is a contradiction and so the fixed point z must be a

unique. Similarly, w is a unique fixed point of TS. This completes the proof of the Theorem.

Corollary 4.2. Let (X,G1) and (Y,G2) be compact G- metric spaces, and T be a continuous mapping of X into Y and let S be
a continuous mapping of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) <

1

2
max{G2(y1, TSy1, TSy2)G2(y1, y2Tx ), G2(y1, y2, Tx )G1(x, Sy1, Sy2),

G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2)},

for all x in X and y1, y2 in Y with x 6= Sy1, and x 6= Sy2, and

G2
1(Sy1, Sy2, STx) <

1

2
max{G1(x, x, STx)G1(x, Sy1, Sy2), G1(x, Sy1, Sy2)G2(y1, y2, Tx),

G2(y1, y2, Tx)G1(x, x, STx)},

for all x in X and y1, y2 in Y, with y1 6= Tx, y2 6= Tx. Then ST has a unique fixed point z in X and TS has a unique fixed point
w in Y. Further, Tz = w and Sw = z.

Corollary 4.3. Let (X,G1) and (Y,G2) be compact G- metric spaces, and T be a continuous mapping of X into Y and let S be a
continuous mapping of Y into X satisfying the inequalities:

G2
2(Tx, TSy1, TSy2) <

1

2
(a1G2(y1, TSy1, TSy2)G2(y1, y2, Tx ) + b1G2(y1, y2, Tx)G1(x, Sy1, Sy2)+

c1G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2))

for all x in X and y1, y2 in Y with x 6= Sy1, and x 6= Sy2, and

G2
1(Sy1, Sy2, STx ) <

1

2
(a2G1(x, x, STx)G1(x, Sy1, Sy2) + b2G1(x, Sy1, Sy2)G2(y1, y2, Tx)+

c2G2(y1, y2, Tx)G1(x, x, STx))

for all x in X and y1, y2 in Y , with y1 6= Tx, y2 6= Tx, and a1, a2, b1, b2, c1, c2 ∈ R+ with (a1 + b1 + c1)(a2 + b2 + c2) < 1.
Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y . Further, Tz = w and Sw = z.

We give an example to support Theorem(4.1).

Example 4.1. Let X = Y = [0, 1], we define on X and Y the G1-metric space and the G2-metric space as follows:

G1(x1, x2, x3) = max{|x1 − x2|, |x2 − x3|, |x3 − x1|}, with x1, x2, x3 ∈ X

G2(y1, y2, y3) =

√
3

9
max{|y1 − y2|, |y2 − y3|, |y3 − y1|}, with y1, y2, y3 ∈ Y.
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Let T and S defined by Tx = 3
4x

2 and Sy = y, we have

G2
2(Tx, TSy, TSy) = G2

2(Tx, Ty, Ty) ≤
3

2
(

√
3

9
)2 |x− y| |Tx− Ty| = 1

2

√
3

3
G1(x, Sy, Sy)G2(y,Ty, Ty)

<
1

2
max{0, 0, G1(x, Sy, Sy)G2(y, Ty, Ty)} = g(0, 0, G1(x, Sy, Sy)G2(y, Ty, Ty)),

then ST and TS have the unique fixed point 0.

Theorem 4.4. Let (X,G1) and (Y,G2) be compact G- metric spaces, and T be a continuous mapping of X into Y and let S
be a continuous mapping of Y into X satisfying the inequalities:

G3
2(Tx, TSy1, TSy2) <

1

2
max{G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2)G2(y1, TSy1, TSy2), (4.3)

G2(y1, y2, Tx )G1(x, Sy1, Sy2)G2(y1, y2, Tx ), G2(y1, TSy1, TSy2)G2(y1, y2, Tx )G2(y1, y2, Tx )}

for all x in X and y1, y2 in Y , with x 6= Sy1, and x 6= Sy2,and

G3
1(Sy1, Sy2, STx ) <

1

2
max {G2(y1, y2, Tx)G1(x, x, STx)G1(x, x, STx), (4.4)

G1(x, Sy1, Sy2)G2(y1, y2, Tx)G1(x, Sy1, Sy2), G1(x, x, STx)G1(x, Sy1, Sy2)G1(x, Sy1, Sy2)}

for all x in X and y1, y2 in Y , with y1 6= Tx, y2 6= Tx. Then ST has a unique fixed point z in X and TS has a unique fixed point
w in Y. Further, Tz = w and Sw = z .

Proof. Let ψ : X → R+ defined by ψ(x) = G1(x, STx, STx) is G-continuous on X . Since X is compact, there exists a point u
in X such that ψ(u) = G1(u, STu, STu) = min{G1(x, STx, STx);x ∈ X}. Now suppose that Tu 6= TSTu. Then u 6= STu.
By the inequality (4.4), we have

G3
1(STu, STu, STSTu ) <

1

2
max{G2(Tu, Tu, TSTu)G1(STu, STu, STSTu)G1(STu, STu, STSTu),

G1(STu, STu, STu)G2(Tu, Tu, TSTu)G1(STu, STu, STu),

G1(STu, STu, STSTu)G1(STu, STu, STu)G1(STu, STu, STu)}

<
1

2
max{G2(Tu, Tu, TSTu)G1(STu, STu, STSTu)G1(STu, STu, STSTu), 0, 0},

G3
1(STu, STu, STSTu ) <

1

2
G2(Tu, Tu, TSTu)G1(STu, STu, STSTu)G1(STu, STu, STSTu),

G1(STu, STu, STSTu ) <
1

2
G2(Tu, Tu, TSTu) < G2(Tu, TSTu, TSTu) (4.5)

Using the inequality (4.3), we have

G3
2(Tu, TSTu, TSTu) <

1

2
max{G1(u, STu, STu)G2(Tu, TSTu, TSTu)G2(Tu, TSTu, TSTu),

G2(Tu, Tu, Tu )G1(u, STu, STu)G2(Tu, Tu, Tu ), G2(Tu, TSTu, TSTu)G2(Tu, Tu, Tu )G2Tu, Tu, Tu )}

<
1

2
max{G1(u, STu, STu)G2(Tu, TSTu, TSTu)G2(Tu, TSTu, TSTu), 0, 0}

we get G3
2(Tu, TSTu, TSTu) <

1
2G1(u, STu, STu)G2(Tu, TSTu, TSTu)G2(Tu, TSTu, TSTu),

G2(Tu, TSTu, TSTu) <
1

2
G1(u, STu, STu) (4.6)

from the inequalities (4.5) and (4.6), we have

1

2
G1(STu, STSTu, STSTu) ≤ G1(STu, STu, STSTu ) <

1

2
G1(u, STu, STu),

G1(STu, STSTu, STSTu) < G1(u, STu, STu).
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Then ψ(STu) < ψ(u), and this gives us a contradiction, so TSTu = Tu. If putting Tu = w and Sw = z, then we get
ST (STu) = S(TSTu) = STu = Sw = z, and w = Tu = TS(Tu) = T (STu) = Tz. Thus, Sw = z is a fixed point of ST
and Tz = w is a fixed point of TS. To prove uniqueness, suppose that ST has a second distinct fixed point z

′
. Then applying the

inequality (4.4), we have

G3
1(z, z, z

′
) = G3

1(STz, STz, STz
′
) <

1

2
max{G2(Tz, Tz, Tz

′
)G1(z

′
, z

′
, STz

′
)G1(z

′
, z

′
, STz

′
),

G1(z
′
, z, z)G2(Tz, Tz, Tz

′
)G1(z

′
, z, z), G1(z

′
, z

′
, STz

′
)G1(z

′
, z, z)G1(z

′
, z, z)}

and it follows that
G3

1(z, z, z
′
) <

1

2
G2(Tz, Tz, Tz

′
)G1(z

′
, z, z)

G1(z, z, z
′
) <

1

2
G2(Tz, Tz, Tz

′
) (4.7)

Applying the inequality (4.3) we have, since z 6= z
′
= STz

′
,

G3
2(Tz, Tz

′
, T z

′
) = G3

2(Tz, TSTz
′
, TSTz

′
) <

1

2
max{G1(z, STz

′
, STz

′
)G2(Tz

′
, TSTz

′
, TSTz

′
)G2(Tz

′
, TSTz

′
, TSTz

′
),

G2(Tz
′
, T z

′
, T z)G1(z, STz

′
, STz

′
)G2(Tz

′
, T z

′
, T z), G2(T z

′
, TSTz

′
, TSTz

′
)G2(Tz

′
, T z

′
, T z )G2(Tz

′
, T z

′
, T z )}

<
1

2
max{0, G2(Tz

′
, T z

′
, T z)G1(z, z

′
, z

′
)G2(Tz

′
, T z

′
, T z), 0}

G3
2(Tz, Tz

′
, T z

′
) <

1

2
G1( z, z

′
, z

′
)G2(Tz

′
, T z

′
, T z )G2(Tz

′
, T z

′
, T z ),

G2(Tz, Tz
′
, T z

′
) <

1

2
G1(z, z

′
, z

′
),

1

2
G2(Tz

′
, T z, Tz) ≤ G2(Tz, Tz

′
, T z

′
) <

1

2
G1(z, z

′
, z

′
). (4.8)

From the inequalities (4.7) and (4.8), we get G1(z, z, z
′
) < 1

2G1(z, z
′
, z

′
) ≤ G1(z, z, z

′
), This is impossible, and so the fixed

point z must be a unique, similarly w is a unique fixed point of TS.

Corollary 4.5. Let (X,G1) and (Y,G2) be compact G- metric spaces, and T be a continuous mapping of X into Y and let S be
a continuous mapping of Y into X satisfying the inequalities:

G3
2(Tx, TSy1, TSy2) <

1

2
(a1G1(x, Sy1, Sy2)G2(y1, TSy1, TSy2)G2(y1, TSy1, TSy2)+

b1G2(y1, y2, Tx )G1(x, Sy1, Sy2)G2(y1, y2, Tx )+

c1G2(y1, TSy1, TSy2)G2(y1, y2, Tx )G2(y1, y2, Tx ))

for all x in X and y1, y2 in Y , with x 6= Sy1, and x 6= Sy2, and

G3
1(Sy1, Sy2, STx ) <

1

2
(a2G2(y1, y2, Tx)G1(x, x, STx)G1(x, x, STx)+

b2G1(x, Sy1, Sy2)G2(y1, y2, Tx)G1(x, Sy1, Sy2) + c2G1(x, x, STx)G1(x, Sy1, Sy2)G1(x, Sy1, Sy2))

for all x in X and y1, y2 in Y , with y1 6= Tx, y2 6= Tx and a1, a2, b1, b2, c1, c2 ∈ R+ with (a1 + b1 + c1)(a2 + b2 + c2) < 1.
Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.
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