
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

814

The VLSI Design of a High-Speed Sorting Engine By Using

Demultiplexer Array

Myungchul Yoon

 Dept. of Electtronics and Electrical Engineering, Dankook University: Yongin, Gyeonggi-do, Republic of Korea.
 ORCID: 0000-0001-7952-4349

Abstract

A novel sorting engine called DAS (Demultiplexer Array
Sorting engine) is presented in this paper. The algorithm used
in DAS is based on radix-2 sort algorithm combined with
counting sort algorithm. DAS implements the algorithm using
an array of 1-to-2 deMUX. DAS uses NN deMUX array to
sort N of k-bit data, and completes sorting operation in k cycles
regardless of N. Although sorting is finished in a fixed number
of cycles, the clock cycle time is proportional to N, so that time
complexity of DAS is O(Nk). Although DAS has O(N2)
hardware complexity due to the array of deMUX, the simple
deMUX circuit makes DAS hardware-efficient implementation.
DAS uses minimal memory because it does not move any data
during the sorting operation, but regenerates input data to
memory in sorted order. Therefore, only the memory to store
the final result is required. The speed of DAS is evaluated by
simulations. The worst case cycle time is 20.8 ns for sorting
100 data, and it linearly increases with N. For sorting 1000 of
32-bit data, about 200ns cycle time is required so that the
sorting is completed in 6.4 sec.

Keywords: Sorting, Sorting Engine, Sorting Network, Non-
comparison Sorting, Sorting Architecture.

I. INTRODUCTION

Sorting is a widely used essential operation in computer-related
applications. Therefore, sorting has been extensively studied in
both sequential [3] and parallel [4][5] models of operation, and
many software-based and hardware-based solutions have been
developed. Most of solutions are a comparison-based solution
which compares two data and swap their positions. It is proved
that comparison-based sequential sorting algorithm can achieve
up to (log)O N N time-complexity to sort N of k-bit numbers [6].
Some sorting algorithms such as counting sort, radix sort,
bucket sort, etc. do not compare data. The non-comparison
sorting can achieve up to ()O N time-complexity [6]. Although
there are many sorting algorithms reported in the literature,
their performance is discussed based on software
implementations. Many sorting algorithms are inefficient for
hardware implementation so that the number of hardware
implementations of sorting algorithms is limited.

Because sorting is a computationally intensive and expensive
operation, finding an efficient hardware sorting engine has been
a significant challenge to overcome the computational
bottleneck of the sorting problems. Hardware implementations
also can be divided into comparison-based implementations
and non-comparison implementations. Most of comparison-
based hardware implementations use hardware parallelism,
which requires many k-bit comparators and secondary storages
to swap data. Although this type of implementations can
achieve O(NlogN) time complexity through parallelism, it is
hard to use them for a large number of data due to the large
hardware overheads. Non-comparison hardware
implementations, however, do not compare data one another,
but use a special algorithm to sort. Most of them use bit-serial
approach for bit-unit operations so that their hardware burden
is much lighter than that of comparison-based implementations
which perform word-unit operations.

A new non-comparison sorting engine is presented in this paper.
The new engine sorts N data in k cycle regardless of N using
NN demultiplexer (deMUX) array. Although the number of
clock cycle is fixed, the clock cycle time is proportional to N,
so that its time complexity is O(Nk). The new engine neither
compares nor swaps input data. Therefore, only Nk bit
memory is required to store sorted data, and no other memory
for swapping is necessary. Instead of moving input data, the
sorted data are regenerated and inserted directly to the memory
during the sorting process.

The related sorting engines are reviewed in Section 2. The
algorithm and implementation of the new sorting engine is
described in Section 3. Performance evaluation of new engine
is presented in Section 4, and Section 5 concludes this paper.

II. PREVIOUS WORKS .

Most of hardware sorting implementations use parallelism for
high speed operation. Sorting networks are a well-studied class
of parallel sorting devices. Sorting network is a regularly
connected network of processing elements which compare the
magnitude of data and exchange their order. Batcher’s bitonic

sorting network and odd-even merge sorting network [7][8]
have O(log2N) time complexity, while AKS sorting network
[9] has O(NlogN) time complexity. Leighton [10] developed
hardware-efficient sorting network with O(logN) time

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

815

complexity. Besides, a number of sorting networks have been
developed.

Comparison based hardware solution such as sorting networks
requires many comparators and extra storages for swapping,
which is limited in scalability for sorting a large number of data.
Some hardware sorting solutions do not compare any data to
one another. Most of them use bit-level parallelism while the
majority of comparison-based implementations use word-level
parallelism. Tugba et al. [1] proposed a sorting engine
implemented by rank order filter and multi-input majority
voters. Their engine completes sorting in N+k-l cycles. Srikanth
et al. [2] presented a way to sort binary numbers by making a
special NN matrix called rank matrix. The final rank matrix
contains information on the positions of N input in sorted
sequence. Their sorting engine complete the rank in N+2k
cycles. Even though they have O(N) time complexity, the
constant hidden in O(.) notation is very small because of the
bit-level operation. Because of bit-unit operations, their
processing elements are very small and fast which is suitable
for building a scalable architecture to large number of data.

III. THE DESIGN OF SORTING ENGINE USING

DEMULTIPLEXER ARRAY

A non-comparison type sorting engine is presented in this paper.
The new sorting engine is implemented by using 1-to-2
demultiplexer (deMUX) array so that it is named as DAS
(DeMUX Array Sorting engine). The algorithm and VLSI
implementation of DAS are as follows.

III.I THE SORT ALGORITHM FOR DAS

The sorting algorithm used in DAS is basically radix-2 sort
algorithm combined with counting sort algorithm. That is, input
data are sorted digit (bit) by digit from MSB (most significant
bit) to LSB (least significant bit), and each digit is sorted
according to counting sort algorithm. One of the characteristics
of DAS is that DAS regenerates input data in sorted order rather
than exchanges or moves them to other memory locations.
Therefore, DAS need only Nk bit memory in sorting N of k-bit
binary data.

The algorithm of DAS for sorting N data in descending order is
as follows. For the sorting in ascending order, just switch 0 and
1 each other

 Sorting Algorithm

 To sort N of k-bit binary data, prepare Nk bit memory, M,
to store the sorted results. The N rows of M will be filled
with sorted N data after k cycles. N inputs and N rows of
M are considered as a group. At the beginning of sorting,
only one group exists.

 In the first cycle following operations are performed

 count the number of 1s in the MSB out of N input data
(assume that the result is p).

 insert 1 to MSBs of the first p rows out of N rows, and
insert 0 to MSBs of the rest N-p rows.

 divide N inputs and N rows into two independent groups,
where one group includes the first p-rows out of N rows
and p inputs of which MSB is 1, and the other group
contains the rest N-p rows and N-p inputs.

 At the end of the first cycle, two subgroups possibly exist.
Likewise, maximum 2i subgroups can exist at the end of i-
th cycle. From the second cycle, the same operations as in
the first cycle are applied to each subgroup independently
and simultaneously.

 Generally, the following procedure is performed in each
cycle to every subgroup.

For a subgroup with q inputs and q rows

 In the i-th cycle (1  i  k), count the number of 1s in i-
th MSB out of q input data (assuming that the result is r).

 insert 1 to i-th MSBs of the first r rows out of q rows and
insert 0 to i-th MSBs of the rest q-r rows.

 divide q inputs and q rows into two independent groups,
one group includes the first r-rows out of q rows and r
inputs of which i-th MSB is 1, and the other group
contains the rest q-r rows and q-r inputs.

 After k cycles, the memory M is filled with sorted data in
descending order.

Note that the sorted data is gradually generated in M cycle by
cycle so that there is no extra memory to swap the data.

III.II IMPLEMENTATION OF THE DEMUX ARRAY

SORTING ENGINE

The block diagram of the newly designed sorting engine with
demultiplexer array (DAS) is shown in Fig. 1. DAS consists
of three major parts: sorting-cell array, zone control logic, and

Fig. 1. Block diagram of the demultiplexer array sorting engine

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

816

Fig. 2. A simplified circuit of 66 deMUX array

Fig. 3. The logic circuit of the sorting-cell (controllable
deMUX)

memory. The sorting-cell array is used to count the number of
1s in a given digit of N inputs. With the results of the sorting-
cell array, the zone control logic (ZCL) divides the array into
1-zone and 0-zone, and deactivates some selected deMUX cells
in the array. The memory is made by N of k-bit shift registers.
In each cycle, 1 is fed to the shift registers in the 1-zone, and 0
is fed to those in the 0-zone.

For sorting N binary inputs, the sorting-cell array is made by
NN controllable 1-to-2 deMUXs. A simplified deMUX array
is drawn in Fig. 2 to explain its operation. In each cycle, one bit
per input (from MSB to LSB) is fed to the array as in Fig. 2.
The purpose of the deMUX array is to count the number of 1s
in these inputs. The input bit iD is applied to all deMUXs in

the i-th row. The
iB represents a starting value. At the

beginning of sorting, all
iB s are set to 1 except the leftmost

one (
0B). The leftmost one (

0B) has 0 value permanently. In
each cycle, the 0s in the bottom starts its travel to the top. A
deMUX cell passes its input to vertical-upward if Di =0 while
it does right-upward when Di =1. Therefore, the 0 at the starting

 (a) (b)

(c) (d)

Fig. 4. Example of the DAS operation in sorting 8 values (1, 5,
15, 10, 8, 13, 5, 11) by descending order (a) 1st cycle, (b) 2nd
cycle, (c) 3rd cycle, (d) 4-th cycle

positions is moved one column to right whenever it meets a row
with Di =0.

By this ways, the 0 at
0B reaches to

mT when the number of
1s in the Di s is m, regardless of locations of 1s. A dummy
column is added to the NN cell array as in Fig. 2. The column
is used as a timing simulator such that the dummy

dT signal

becomes 0 at the same time with
mT .

Fig. 3 shows the circuit of actual sorting-cell. The sorting-cell
is devised by modifying basic deMUX circuit such that the
deMUX function can be deactivated by some control signals. If
a cell is deactivated,

iB is passed to vertical-upward regardless
of the value Di. All cells are activated by reset signal at the
beginning a sorting operation. The cells can be deactivated by
either Kill-1 or Kill-0 signal. The Kill-1 (Kill-0) signal is used
to deactivate the cells with Di =1 (Di =0). Once a cell is
deactivated, it cannot be reactivated until the sorting is finished.
The signal S is used to divide an array into two subarrays. If

jS becomes 0, the j-th column is separated from (j+1)-th
column so that the input cannot propagates to the right of j-th
column.

Let us explain the operations of DAS by using a simple sorting
example. Assume that there are eight 4-bit binary numbers, (D1,

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

817

(a)

(b)

Fig. 5. The zone control logic (ZCL) and memory (a) The
circuit of a ZCL cell with a k-bit shift register (b) the structure
of ZCL and memory

Fig. 6. The timing diagram of major signals

D2, ... D8) = (1, 5, 15, 10, 8, 13, 5, 11), which need to be sorted
in descending order. Fig. 4 shows how the eight numbers are
sorted by using the sorting-cell array. Since the data are 4-bit
values, DAS sorts them in 4 cycles. The processes of DAS in
each cycle are depicted through Fig. 4-(a) ~ 4-(d).

Before the first cycle, all cells are activated by “Reset” signal,
and all

iB s except
0B are set to 1. At the first cycle, the MSBs

of eight inputs are fed to the array as in Fig. 4-(a) and the only
0 at the left-bottom cell propagates through the array. Since
there are five 1s out of 8 inputs, the 0 terminates at

5T as in Fig.

4-(a). The
5T signal makes zone control logic (ZCL) to divide

the array into two zones (groups), Z1L and Z1R. Z1L is called left-
zone (or 1-zone) in cycle 1 and Z1R is right-zone (or 0-zone) in

cycle 1. The separation is performed by making
5S into 0. All

columns of the array and the shift-registers in the left of
5T

belong to Z1L, while those in the right of
5T belong to Z1R. The

inputs for all shift-registers in Z1L are set as 1 by ZCL while
those in Z1R are set as 0 as in Fig. 4-(a). In addition, ZCL
activates Kill-0 signal over 1-zone while it triggers Kill-1 signal
over 0-zone to selectively deactivate useless cells in the rest of
cycles. The cells deactivated in cycle 1 are shown in Fig. 4-(b).

In the second cycle,
5B becomes 0 by

5S , hence, the leftmost
inputs of two subarrays are become 0. As in Fig. 4-(b), the 0s
at

0B and
5B terminates at

2T and
7T respectively. Similarly

in the cycle 1, Z1L and Z1R are bisected by
2T and

7T
respectively, and the left pieces are grouped as Z2L and the right
pieces as Z2R. The shift-registers in Z2L are shifted with input 1,
and those in Z2R are done with input 0. Then, Kill-0 is generated
over Z2L, and Kill1-1 over Z2R which result in increasing
deactivated cells as in Fig. 4-(c). The same processes are
repeated in the cycle 3 and the cycle 4. At the end of the cycle
4, the registers are filled with sorted inputs as in Fig. 4-(d).

The structure of ZCL is a cascade of N ZCL-cells such as in
Fig. 5. The role of ZCL is to divide the deMUX array and the
memory (shift-registers) into subgroups, and to manipulate
each subgroup independently. The boundary of a subgroup is
stored in the S R -latch of ZCL-cell. All latches of ZCL are set
to 1 only at the beginning of sorting operation. In each cycle,
the latch in a ZCL-cell is reset to 0 when its

iT becomes 0. A
subgroup is defined as the columns of cell-array and memory
from a 0-latches to the next 0-latch. In each cycle, a newly
developed 0iT signal, distinguishes a subgroup into left-

zone (1-zone) and right-zone (0-zone). If any
iT in a subgroup

does not become 0 until
dT of the dummy column become 0,

ZCL regards all Di’s in the subgroup are 1 by default, so that
the subgroup is included in 1-zone. After 1-zone and 0-zone is
identified, the Kill pulse is generated to trigger Kill-0 over 1-
zone and Kill-1 over 0-zone. The Kill signals deactivates
sorting-cells selectively to exclude unnecessary inputs in the
rest of cycles. Fig. 6. shows the timing diagram of major signals.

DAS has O(N2) hardware complexity by sorting-cell array.
Despite its O(N2) complexity, DAS is very hardware-efficient
because the circuit of the cell is very simple as in Fig. 3.
Furthermore, the memory size required for DAS is just the size
needed to store the sorted data.

Regardless of the number of data, DAS completes sorting
operation in k cycles. If Tclk is the cycle time of clock, DAS
requires kTclk in sorting. However, the clock cycle time Tclk is
proportional to N, because the propagation time of 0 from the
bottom to the top of the array is proportional to N. Therefore,
the time complexity of DAS becomes O(Nk). The worst case
delay of DAS happens in the first cycle, and when MSBs of all
inputs are 0. In the worst case,

0B should pass N deMUX cells

and then, the signal triggered by
0T should pass N ZCL-cells.

After the array is divided into subarrays, the propagation

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

818

Table 1. The worst case clock-cycle time for sroting N data

N 100 200 400 600 800 1000

Tcycle (ns) 20.8 40.3 79.4 118.4 157.5 196.4

lengths through ZCL-cells are shortened so that the cycle time
could be decreased.

IV. EXPERIMENTS

The speed of DAS is evaluated through simulation. The
simulation is performed by HSPICE with IBM’s “1.2V-0.13m
8RF-LM” model parameter.

Since sorting is completed in k-cycles, regardless of the number
of data, the clock cycle time determines the speed of DAS. The
worst case clock cycle time Tclk is obtained by critical path
simulation for a various number of data. The results are shown
in Table 1. The worst case cycle time for sorting 100 data is
about 20.8 ns, and it increases linearly with N. For sorting 1000
of 32-bit data, Tclk is about 200ns (5 MHz) and therefore, the
sorting is completed in 6.4 sec. Because DAS needs to change
clock cycles according to the number of data for fast operation,
generally, a separate internal clock dedicated to DAS is
required.

The speed of DAS is compared to other sorting engines. Among
many previous sorting engines, two sorting engines in [1] and
[2] are selected for comparison, since these engines use a non-
comparison algorithm and bit-serial operation like DAS. The
comparison is summarized in Table 2. The major difference
between DAS and the other implementations is that DAS has
long clock cycle time (Tclk) but completes sorting in the smallest
number of cycles, while the others have short Tclk but require
many clock cycles. While Tclk is proportional to N in DAS, it is
slightly increases in [1] and [2]. Contrary, the number of cycle
to complete sorting is fixed in DAS but it is proportional to N
in the other engines.

Because the three implementations use different data size in
speed simulation, the sorting time per unit data (TD/N) is used
to compare their speeds. As illustrated in Table 2, DAS has the
shortest TD/N. Note that TD in [2] is not the time to get sorted
data but the time to complete rank matrix. Although the rank
matrix holds enough information to obtain sorted data, it is not
clear in the literature how much time is required to decode the
matrix and to get sorted data.

The simplicity of the sorting cell makes DAS a hardware-
efficient implementation. The simulation results shows that it
is faster than other existing sorting engines, and it can complete
sorting 1000 of 32-bit data in 6.4 sec.

V. CONCLUSION

The architecture and implementation of a new sorting engine
called DAS are presented in this paper. DAS uses well-known
radix-2 sort algorithm combined with counting sort algorithm.
The algorithm is implemented using NN deMUX array.

Table 2. Comparison of DAS to other sorting engines

 DAS engine in [1] engine in [2]
Time

complexity O(Nk) O(N+k) O(N+2k)

Technology 130 nm 350 nm 65 nm
Data size (N) 100 63 16
Data width

(k) 16 16 16

No. of cycles 16 78 48
(k) (N+k-1) (N+2k)

Tcycle 20.8 ns 5 ns 1.6 ns
Total delay

(TD) 332.8 ns 390 ns 76.8 ns

TD / N 3.33 ns 6.19 ns 4.8 ns
Final result sorted data sorted data rank matrix

DAS sorts N data in k cycles regardless of N, but the clock cycle
time is proportional to N. The cycle time is 20.8ns for sorting
100 data, and increases to about 200ns for sorting 1000 data.
Therefore, 1000 of 32-bit data can be sorted in 6.4 sec.

DAS has O(N2) hardware complexity. Although it requires N2
sorting-cells, the simplicity of sorting-cell reduces hardware
burdens. The memory size required for DAS is just the size
needed to store the sorted data. With the simple sorting-cell
structure, its optimal memory requirement makes DAS a
scalable architecture.

REFERENCES

[1] T. Demirci, I. Hatirnaz, and Y. Leblebici, 2003, “Full-
custom CMOS realization of a high-performance binary
sorting engine with linear area-time complexity,” in

International Symposium on Circuits and Signals, pp.
453-456.

[2] S. Alaparthi, K. Gulati, and S. P. Khatri, 2009, “Sorting

binary numbers in hardware – A novel algorithm and its
implementation,” in International Symposium on

Circuits and Systems, pp. 2225-2228.

[3] D. E. Knuth, 1973, The Art of Computer Programming,

vol. 3: Sorting and Searching, Addison-Wesley.

[4] R. S. Francis, and I. D. Mathieson, 1988, “Benchmark

parallel sort for shared memory multiprocessors,” IEEE

Tans. on Computers, vol. C-37, pp. 1619-1626.

[5] S. G. Akl, 1985, Parallel Sorting Algorithms. New York:
Academic Press.

[6] Wikipedia, https://en.wikipedia.org/wiki/Sorting

[7] K. E. Batcher, 1968, “Sorting Networks and Their

Applications,” Proc. AFIPS Conf., pp. 307-314.

[8] K. E. Batcher, 1990, “On Bitonic Sorting Networks,”

Proc. Int'l Conf. Parallel Processing, pp. 376-378.

https://en.wikipedia.org/wiki/Sorting

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819
© International Research Publication House. http://www.irphouse.com

819

[9] M. Ajtai, J. Komlos, and E. Szemeredi, 1983, “Sorting

in c log n Parallel Steps,” Combinatorica, vol. 3, pp. 1-
19.

[10] F. T. Leighton, 1985, “Tight Bounds on the Complexity

of Parallel Sorting,” IEEE Trans. Computers, vol. 34, pp.
344-354.

