
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 6 (2019), pp. 814-819  
© International Research Publication House.  http://www.irphouse.com 

814 

The VLSI Design of a High-Speed Sorting Engine By Using 

Demultiplexer  Array  

 
 

Myungchul Yoon  

 

 Dept. of Electtronics and Electrical Engineering, Dankook University: Yongin, Gyeonggi-do, Republic of Korea.  
                                                            ORCID: 0000-0001-7952-4349 

 

  
 

Abstract  

A novel sorting engine called DAS (Demultiplexer Array 
Sorting engine) is presented in this paper. The algorithm used 
in DAS is based on radix-2 sort algorithm combined with 
counting sort algorithm. DAS implements the algorithm using 
an array of 1-to-2 deMUX. DAS uses NN deMUX array to 
sort N of k-bit data, and completes sorting operation in k cycles 
regardless of N. Although sorting is finished in a fixed number 
of cycles, the clock cycle time is proportional to N, so that time 
complexity of DAS is O(Nk). Although DAS has O(N2) 
hardware complexity due to the array of deMUX, the simple 
deMUX circuit makes DAS hardware-efficient implementation. 
DAS uses minimal memory because it does not move any data 
during the sorting operation, but regenerates input data to 
memory in sorted order. Therefore, only the memory to store 
the final result is required.  The speed of DAS is evaluated by 
simulations. The worst case cycle time is 20.8 ns for sorting 
100 data, and it linearly increases with N.  For sorting 1000 of 
32-bit data, about 200ns cycle time is required so that the 
sorting is completed in 6.4 sec. 

Keywords: Sorting, Sorting Engine, Sorting Network, Non-
comparison Sorting, Sorting Architecture. 

 

I. INTRODUCTION  

Sorting is a widely used essential operation in computer-related 
applications. Therefore, sorting has been extensively studied in 
both sequential [3] and parallel [4][5] models of operation, and 
many software-based and hardware-based solutions have been 
developed. Most of solutions are a comparison-based solution 
which compares two data and swap their positions. It is proved 
that comparison-based sequential sorting algorithm can achieve 
up to ( log )O N N  time-complexity to sort N of k-bit numbers [6]. 
Some sorting algorithms such as counting sort, radix sort, 
bucket sort, etc. do not compare data. The non-comparison 
sorting can achieve up to ( )O N time-complexity [6]. Although 
there are many sorting algorithms reported in the literature, 
their performance is discussed based on software 
implementations. Many sorting algorithms are inefficient for 
hardware implementation so that the number of hardware 
implementations of sorting algorithms is limited. 

Because sorting is a computationally intensive and expensive 
operation, finding an efficient hardware sorting engine has been 
a significant challenge to overcome the computational 
bottleneck of the sorting problems. Hardware implementations 
also can be divided into comparison-based implementations 
and non-comparison implementations. Most of comparison-
based hardware implementations use hardware parallelism, 
which requires many k-bit comparators and secondary storages 
to swap data. Although this type of implementations can 
achieve O(NlogN) time complexity through parallelism, it is 
hard to use them for a large number of data due to the large 
hardware overheads. Non-comparison hardware 
implementations, however, do not compare data one another, 
but use a special algorithm to sort. Most of them use bit-serial 
approach for bit-unit operations so that their hardware burden 
is much lighter than that of comparison-based implementations 
which perform word-unit operations. 

A new non-comparison sorting engine is presented in this paper. 
The new engine sorts N data in k cycle regardless of N using 
NN demultiplexer (deMUX) array. Although the number of 
clock cycle is fixed, the clock cycle time is proportional to N, 
so that its time complexity is O(Nk). The new engine neither 
compares nor swaps input data. Therefore, only Nk bit 
memory is required to store sorted data, and no other memory 
for swapping is necessary. Instead of moving input data, the 
sorted data are regenerated and inserted directly to the memory 
during the sorting process. 

The related sorting engines are reviewed in Section 2. The 
algorithm and implementation of the new sorting engine is 
described in Section 3. Performance evaluation of new engine 
is presented in Section 4, and Section 5 concludes this paper.  

 

II. PREVIOUS WORKS . 

Most of hardware sorting implementations use parallelism for 
high speed operation. Sorting networks are a well-studied class 
of parallel sorting devices. Sorting network is a regularly 
connected network of processing elements which compare the 
magnitude of data and exchange their order. Batcher’s bitonic 

sorting network and odd-even merge sorting network [7][8] 
have  O(log2N) time complexity, while AKS sorting network 
[9] has O(NlogN) time complexity. Leighton [10] developed 
hardware-efficient sorting network with  O(logN)  time 
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complexity. Besides, a number of sorting networks have been 
developed. 

Comparison based hardware solution such as sorting networks 
requires many comparators and extra storages for swapping, 
which is limited in scalability for sorting a large number of data. 
Some hardware sorting solutions do not compare any data to 
one another. Most of them use bit-level parallelism while the 
majority of comparison-based implementations use word-level 
parallelism. Tugba et al. [1] proposed a sorting engine 
implemented by rank order filter and multi-input majority 
voters. Their engine completes sorting in N+k-l cycles. Srikanth 
et al. [2] presented a way to sort binary numbers by making a 
special NN matrix called rank matrix. The final rank matrix 
contains information on the positions of N input in sorted 
sequence. Their sorting engine complete the rank in N+2k 
cycles. Even though they have O(N) time complexity, the 
constant hidden in O(.) notation is very small because of the 
bit-level operation. Because of bit-unit operations, their 
processing elements are very small and fast which is suitable 
for building a scalable architecture to large number of data. 

 

III. THE DESIGN OF SORTING ENGINE USING 

DEMULTIPLEXER ARRAY 

A non-comparison type sorting engine is presented in this paper. 
The new sorting engine is implemented by using 1-to-2 
demultiplexer (deMUX) array so that it is named as DAS 
(DeMUX Array Sorting engine). The algorithm and VLSI 
implementation of DAS are as follows. 

 

III.I THE SORT ALGORITHM FOR DAS 

The sorting algorithm used in DAS is basically radix-2 sort 
algorithm combined with counting sort algorithm. That is, input 
data are sorted digit (bit) by digit from MSB (most significant 
bit) to LSB (least significant bit), and each digit is sorted 
according to counting sort algorithm. One of the characteristics 
of DAS is that DAS regenerates input data in sorted order rather 
than exchanges or moves them to other memory locations. 
Therefore, DAS need only Nk bit memory in sorting N of k-bit 
binary data.  

The algorithm of DAS for sorting N data in descending order is 
as follows. For the sorting in ascending order, just switch 0 and 
1 each other 

 

 Sorting Algorithm  

 To sort N of k-bit binary data, prepare Nk bit memory, M, 
to store the sorted results. The N rows of M will be filled 
with sorted N data after k cycles. N inputs and N rows of 
M are considered as a group. At the beginning of sorting, 
only one group exists. 

 In the first cycle following operations are performed  

 count the number of 1s in the MSB out of N input data 
(assume that the result is p). 

 insert 1 to MSBs of the first p rows out of N rows, and 
insert 0 to MSBs of the rest N-p rows. 

 divide N inputs and N rows into two independent groups, 
where one group includes the first p-rows out of N rows 
and p inputs of which MSB is 1, and the other group 
contains the rest N-p rows and N-p inputs. 

 At the end of the first cycle, two subgroups possibly exist. 
Likewise, maximum 2i subgroups can exist at the end of i-
th cycle. From the second cycle, the same operations as in 
the first cycle are applied to each subgroup independently 
and simultaneously. 

 Generally, the following procedure is performed in each 
cycle to every subgroup. 

For a subgroup with q inputs and q rows 

 In the i-th cycle (1  i  k), count the number of 1s in i-
th MSB out of q input data (assuming that the result is r). 

 insert 1 to i-th MSBs of the first r rows out of q rows and 
insert 0 to i-th MSBs of the rest q-r rows. 

 divide q inputs and q rows into two independent groups, 
one group includes the first r-rows out of q rows and r 
inputs of which i-th MSB is 1, and the other group 
contains the rest q-r rows and q-r inputs. 

 After k cycles, the memory M is filled with sorted data in 
descending order.  

 

Note that the sorted data is gradually generated in M cycle by 
cycle so that there is no extra memory to swap the data.  

 

III.II  IMPLEMENTATION OF THE DEMUX ARRAY 

SORTING ENGINE 

The block diagram of the newly designed sorting engine with 
demultiplexer array (DAS) is shown in Fig. 1.   DAS consists 
of three major parts: sorting-cell array, zone control logic,  and  

 

 
Fig. 1.  Block diagram of the demultiplexer array sorting engine 
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Fig. 2. A simplified circuit of 66 deMUX array 

 

 
Fig. 3. The logic circuit of the sorting-cell (controllable 
deMUX) 

 

memory. The sorting-cell array is used to count the number of 
1s in a given digit of N inputs. With the results of the sorting-
cell array, the zone control logic (ZCL) divides the array into 
1-zone and 0-zone, and deactivates some selected deMUX cells 
in the array. The memory is made by N of k-bit shift registers. 
In each cycle, 1 is fed to the shift registers in the 1-zone, and 0 
is fed to those in the 0-zone. 

For sorting N binary inputs, the sorting-cell array is made by 
NN controllable 1-to-2 deMUXs. A simplified deMUX array 
is drawn in Fig. 2 to explain its operation. In each cycle, one bit 
per input (from MSB to LSB) is fed to the array as in Fig. 2. 
The purpose of the deMUX array is to count the number of 1s 
in these inputs. The input bit iD  is applied to all deMUXs in 

the i-th row. The 
iB  represents a starting value. At the 

beginning of sorting, all 
iB s are set to 1 except the leftmost 

one (
0B ). The leftmost one (

0B ) has 0 value permanently. In 
each cycle, the 0s in the bottom starts its travel to the top. A 
deMUX cell passes its input to vertical-upward if Di =0  while 
it does right-upward when Di =1. Therefore, the 0 at the starting  

 
       (a)                                              (b) 

 
(c)                                              (d) 

Fig. 4. Example of the DAS operation in sorting 8 values (1, 5, 
15, 10, 8, 13, 5, 11) by descending order (a) 1st cycle, (b) 2nd 
cycle, (c) 3rd cycle, (d) 4-th cycle  

 

positions is moved one column to right whenever it meets a row 
with Di =0.   

By this ways, the 0 at 
0B  reaches to 

mT  when the number of 
1s in the  Di s  is  m, regardless of locations of  1s.   A  dummy 
column is added to the NN cell array as in Fig. 2. The column 
is used as a timing simulator such that the dummy 

dT  signal 

becomes 0 at the same time with 
mT . 

Fig. 3 shows the circuit of actual sorting-cell. The sorting-cell 
is devised by modifying basic deMUX circuit such that the 
deMUX function can be deactivated by some control signals. If 
a cell is deactivated, 

iB is passed to vertical-upward regardless 
of the value Di. All cells are activated by reset signal at the 
beginning a sorting operation. The cells can be deactivated by 
either Kill-1 or Kill-0 signal. The Kill-1 (Kill-0) signal is used 
to deactivate the cells with Di =1 (Di =0). Once a cell is 
deactivated, it cannot be reactivated until the sorting is finished. 
The signal S  is used to divide an array into two subarrays. If

jS  becomes 0, the j-th column is separated from (j+1)-th 
column so that the input cannot propagates to the right of j-th 
column.  

Let us explain the operations of DAS by using a simple sorting 
example. Assume that there are eight 4-bit binary numbers, (D1,  
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(a) 

 
(b) 

Fig. 5. The zone control logic (ZCL) and memory (a) The 
circuit of a ZCL cell with a k-bit shift register  (b) the structure 
of ZCL and memory 

 

 
Fig. 6. The timing diagram of major signals 

 

D2, ... D8) = (1, 5, 15, 10, 8, 13, 5, 11), which need to be sorted 
in descending order. Fig. 4 shows how the eight numbers are 
sorted by using the sorting-cell array. Since the data are 4-bit 
values, DAS sorts them in 4 cycles. The processes of DAS in 
each cycle are depicted through Fig. 4-(a) ~ 4-(d). 

Before the first cycle, all cells are activated by “Reset” signal, 
and all 

iB s except 
0B  are set to 1. At the first cycle, the MSBs 

of eight inputs are fed to the array as in Fig. 4-(a) and the only 
0 at the left-bottom cell propagates through the array. Since 
there are five 1s out of 8 inputs, the 0 terminates at 

5T  as in Fig. 

4-(a). The 
5T signal makes zone control logic (ZCL) to divide 

the array into two zones (groups), Z1L and Z1R. Z1L is called left-
zone (or 1-zone) in cycle 1 and Z1R is right-zone (or 0-zone) in 

cycle 1. The separation is performed by making 
5S  into 0. All 

columns of the array and the shift-registers in the left of 
5T  

belong to Z1L,  while those in the right of 
5T  belong to Z1R. The 

inputs for all shift-registers in Z1L are set as 1 by ZCL while 
those in Z1R are set as 0 as in Fig. 4-(a). In addition, ZCL 
activates Kill-0 signal over 1-zone while it triggers Kill-1 signal 
over 0-zone to selectively deactivate useless cells in the rest of 
cycles. The cells deactivated in cycle 1 are shown in Fig. 4-(b).  

In the second cycle, 
5B  becomes 0 by 

5S , hence, the leftmost 
inputs of two subarrays are become 0. As in Fig. 4-(b), the 0s 
at 

0B and 
5B  terminates at 

2T  and 
7T  respectively. Similarly 

in the cycle 1, Z1L and Z1R are bisected by 
2T  and 

7T  
respectively, and the left  pieces are grouped as Z2L and the right 
pieces as Z2R. The shift-registers in Z2L are shifted with input 1, 
and those in Z2R are done with input 0. Then, Kill-0 is generated 
over Z2L, and Kill1-1 over Z2R which result in increasing 
deactivated cells as in Fig. 4-(c). The same processes are 
repeated in the cycle 3 and the cycle 4. At the end of the cycle 
4, the registers are filled with sorted inputs as in Fig. 4-(d). 

The structure of ZCL is a cascade of N  ZCL-cells such as in 
Fig. 5. The role of ZCL is to divide the deMUX array and the 
memory (shift-registers) into subgroups, and to manipulate 
each subgroup independently.  The boundary of a subgroup is 
stored in the S R -latch of ZCL-cell. All latches of ZCL are set 
to 1 only at the beginning of sorting operation. In each cycle, 
the latch in a ZCL-cell is reset to 0 when its 

iT  becomes 0. A 
subgroup is defined as the columns of cell-array and memory 
from a 0-latches to the next 0-latch. In each cycle, a newly 
developed 0iT  signal, distinguishes a subgroup into left-

zone (1-zone) and right-zone (0-zone). If any 
iT  in a subgroup 

does not become 0 until 
dT  of the dummy column become 0, 

ZCL regards all Di’s in the subgroup are 1 by default, so that 
the subgroup is included in 1-zone. After 1-zone and 0-zone is 
identified, the Kill pulse is generated to trigger Kill-0 over 1-
zone and Kill-1 over 0-zone. The Kill signals deactivates 
sorting-cells selectively to exclude unnecessary inputs in the 
rest of cycles. Fig. 6. shows the timing diagram of major signals. 

DAS has O(N2) hardware complexity by sorting-cell array. 
Despite its O(N2) complexity, DAS is very hardware-efficient 
because the circuit of the cell is very simple as in Fig. 3. 
Furthermore, the memory size required for DAS is just the size 
needed to store the sorted data. 

Regardless of the number of data, DAS completes sorting 
operation in k cycles. If Tclk is the cycle time of clock, DAS 
requires kTclk in sorting. However, the clock cycle time Tclk is 
proportional to N, because the propagation time of 0 from the 
bottom to the top of the array is proportional to N. Therefore, 
the time complexity of DAS becomes O(Nk). The worst case 
delay of DAS happens in the first cycle, and when MSBs of all 
inputs are 0. In the worst case, 

0B  should pass N deMUX cells 

and then, the signal triggered by 
0T  should pass N ZCL-cells. 

After  the  array  is  divided  into  subarrays,  the   propagation  
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Table 1. The worst case clock-cycle time for sroting N data 

N 100 200 400 600 800 1000 

Tcycle (ns) 20.8 40.3 79.4 118.4 157.5 196.4 
 

lengths through ZCL-cells are shortened so that the cycle time 
could be decreased. 

 

IV. EXPERIMENTS 

The speed of DAS is evaluated through simulation. The 
simulation is performed by HSPICE with IBM’s “1.2V-0.13m 
8RF-LM” model parameter.  

Since sorting is completed in k-cycles, regardless of the number 
of data, the clock cycle time determines the speed of DAS. The 
worst case clock cycle time Tclk is obtained by critical path 
simulation for a various number of data. The results are shown 
in Table 1. The worst case cycle time for sorting 100 data is 
about 20.8 ns, and it increases linearly with N. For sorting 1000 
of 32-bit data, Tclk is about 200ns (5 MHz) and therefore, the 
sorting is completed in 6.4 sec. Because DAS needs to change 
clock cycles according to the number of data for fast operation, 
generally, a separate internal clock dedicated to DAS is 
required. 

The speed of DAS is compared to other sorting engines. Among 
many previous sorting engines, two sorting engines in [1] and 
[2] are selected for comparison, since these engines use a non-
comparison algorithm and bit-serial operation like DAS. The 
comparison is summarized in Table 2. The major difference 
between DAS and the other implementations is that DAS has 
long clock cycle time (Tclk) but completes sorting in the smallest 
number of cycles, while the others have short Tclk but require 
many clock cycles. While Tclk is proportional to N in DAS, it is 
slightly increases in [1] and [2]. Contrary, the number of cycle 
to complete sorting is fixed in DAS but it is proportional to N 
in the other engines. 

Because the three implementations use different data size in 
speed simulation, the sorting time per unit data (TD/N) is used 
to compare their speeds. As illustrated in Table 2, DAS has the 
shortest TD/N. Note that TD in [2] is not the time to get sorted 
data but the time to complete rank matrix. Although the rank 
matrix holds enough information to obtain sorted data, it is not 
clear in the literature how much time is required to decode the 
matrix and to get sorted data. 

The simplicity of the sorting cell makes DAS a hardware-
efficient implementation. The simulation results shows that it 
is faster than other existing sorting engines, and it can complete 
sorting 1000 of 32-bit data in 6.4 sec. 

 

V. CONCLUSION 

The architecture and implementation of a new sorting engine 
called DAS are presented in this paper. DAS uses well-known 
radix-2 sort algorithm combined with counting sort algorithm. 
The algorithm is implemented using NN deMUX array. 

Table 2. Comparison of DAS to other sorting engines 

  DAS engine in [1] engine in [2] 
Time 

complexity O(Nk) O(N+k) O(N+2k) 

Technology 130 nm 350 nm 65 nm 
Data size (N) 100 63 16 
Data width 

(k) 16 16 16 

No. of cycles 16 78 48 
( k ) ( N+k-1 ) ( N+2k ) 

Tcycle 20.8 ns 5 ns 1.6 ns 
Total delay 

(TD) 332.8 ns 390 ns 76.8 ns 

TD / N 3.33 ns 6.19 ns 4.8 ns 
Final result sorted data sorted data rank matrix 

 

DAS sorts N data in k cycles regardless of N, but the clock cycle 
time is proportional to N. The cycle time is 20.8ns for sorting 
100 data, and increases to about 200ns for sorting 1000 data. 
Therefore, 1000 of 32-bit data can be sorted in 6.4 sec. 

DAS has O(N2) hardware complexity. Although it requires N2 
sorting-cells, the simplicity of sorting-cell reduces hardware 
burdens. The memory size required for DAS is just the size 
needed  to store the sorted data.  With  the  simple  sorting-cell 
structure, its optimal memory requirement makes DAS a 
scalable architecture. 
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