
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1138

An Efficient Method to Generate Test Cases From UML - USE CASE

DIAGRAM

Eglal M. Khalifa

University Technology Malaysia

Johor Bahru, Malaysia.

Haitham A. Jamil

University of Elimam Elmahdi

Kosti, White Nile, Sudan.

DNA Jawawi

University Technology Malaysia

Johor Bahru, Malaysia.

Safa’ai bin Deris

Universiti Malaysia Kelantan

16100 Kota Bharu. Kelantan.

Abstract

Regression testing is a process to execute a set of test cases to

confirm that the performance of the software is not changed

after a modification. A test case is a group of conditions and

methods to verify the functionality of the software. A better

test case can improve the performance of overall testing

process. The manual process of generating test cases will take

more time and affect the cost of testing. The available

automated tools are simply executing test cases at random or

depend on the user commands. The aim of the study is to

generate test cases from use case diagram using a machine

learning method. A metaheuristic technique is used for the

automation of the process of generating test cases. The

accuracy and computation time are the metrics used to

evaluate the performance of the proposed method. The output

of the research has shown that the performance of the

proposed technique is better than existing techniques.

Keywords: Component: Metaheuristic; Test suite

prioritization; Artificial Intelligence ; Test case ; Regression

testing

I. INTRODUCTION

Software testing is an important phase in Software

Development Life Cycle (SDLC). It is used to find faults or

errors in Software[1]. The quality and performance of software

can be improved through testing. Regression testing (RT) is a

part of testing, which is to ensure the stability of existing

functionality of an application[2][3]. The nature of RT leads to

the consumption of more computation time and resources.

Modern programming languages are providing flexible

environment for programmers, but not for testers. Possibilities

of newer defects are higher in modern programming

environment[4]. The number of lines in codes are directly

proportional to the number of faults; so RT is in the situation to

retest whole code of software. Retest all, test selection, and test

case prioritization(TCP) are the types of RT. Many tools are

available to perform RT, but may create problem in software

development environment. Testing team has to study the whole

system before performing RT. TCP will reinforce RT to detect

errors and faults in newly updated software. It will help tester

to organize TC in an order according to their functionality. The

high priority TC will be executed to reduce time and cost[5][6].

TC is a set of action or condition to test a system.

Unified Modelling Language (UML) is widely used in software

industry to specify the key components of software. Use case

diagram (UCD) is a part of UML, to represent the user

interaction with the system. It is a set of actions and use cases

[7].

A. Types of TC

Generally,TCs are broadly classified into effective and non

effective. The following part of this section will discuss about

Tcs and types of methods to generate Tcs.

1. Effective TC: A known input and expected output will be

used to design an effective TC. A precondition will be applied

using a known input and a post condition needs to be tested

using an expected output. The code is known to work in

efficient manner if the output achieved is similar to the

expected output. Otherwise, there is a need of modification of

the code. Positive and negative test are the two minimal TC of

each requirement, which are necessary for testing all the

requirements of a complete application[7][8]. The positive test

is to ensure the proper functioning of software. Further, the

condition in which the software does not work efficiently as

per the expectations is known as negative test.

2. Non – Effective TC: There is no formal way in which the

TC can be written but once the tests have been run, it is

important to report the results [14]. For helping a tester to

provide a solution for a complex issue, hypothetical stories are

utilized generally. There is generally, no detailed description

related to these scenarios. Just like a diagram within a testing

scenario or a written description, these solutions can be

provided. In applications which do not require any formal

requirements, the non - effective TC is applied[9][10]. On the

basis of normal operation of programs of the same class, it is

possible to develop the TC.

RT can use partial or complete set of TCs to verify the

functionality of software. Generally, the processes of

generating TCs are classified into two types. The types are

manual and automatic. The following figure 1.1 represents the

types of methods to generate TC.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1139

Fig 1.1 Types of Test case generation

The manual process of generating TC will take more time. The

accuracy level of manual processing is high comparing to

automated methods[11][12]. The computing cost of manual

processing will cause more problems to software development

environment. Earlier researches [13] have proved that manual

generation of TCs are not effective for RT.

The automated generation of TC has showed some

improvement over manual generation. A number of tools are

available for the generation of TC for testing software[13].

There is no clear evidence to show the efficiency of automated

tools. Artificial intelligence based automated tools are required

for the process of generation of TC. Many research works are

in progress to improve the efficiency of automated tools.

B. Generating TC using Metaheuristics

Metaheuristics (Mh) is a problem independent technique, work

like black boxes. It is not a greedy approach ,ability to obtain

global optimum solution. It can be easily adapted to solve any

kind of complex problems. A set of guidelines and strategies

are developed for Mh based optimization problem. Some

researchers were misunderstand the concept of Mh for only

vague problems. It can be used as problem – specific by fine

tuning its intrinsic parameters[14]. Some researches[14][15]

have proved that Mh can be successfully implemented in field

of software testing. The optimization algorithms such as

constraint programming, mathematical programming, and

machine learning can be combined with Mh to solve a

problem[15]. The proposed method has further extended the

concept of Mh to generate TC from UCD.

C. Generation of TC

TCs are used to discover faults in the system. The newly

updated systems are having the possibilities of producing

errors, which are not detected easily. Mh techniques can be

implemented for the process of generating TCs. The technique

can produce an effective system to develop TCs to find

maximum faults in software. The manual process are

depending on the complete code. The testing team will explore

the complete code of a system to develop TC for RT. Mh

technique does not need to investigate code to generate TC. It

can generate TCs from UCD. UCDs are used to have complete

details of software.

D. Research Questions

The objective of the research is to frame a method to generate

TCs from UCD. The following Research Questions (RQ) will

be answered by the proposed study.

RQ1:- How to automate the process of generating TC?

RQ2:- How to classify TCs?

The proposed study has utilized Mh to generate TC from UCD.

The paper is structured as follows, The section 2 will provide

details about existing literatures on TC. The section 3 will

describe the methods and materials used in the research.

Results and discussions are provided in the section 4. Finally,

the section 5 will conclude the research.

II. REVIEW OF LITERATURE

The section will discuss the existing literatures in TC , TCP and

ML methods. The focus of the proposed method is on TC, but

TCP will give more information about TC. Information

retrieval techniques and machine learning methods are

becoming popular in the field of software testing. If TC is not

effective then the detection of fault is not possible for the tester.

A minor fault can cause an application to produce a wrong

result, which may lead to a huge failure. The proposed study

has used keywords such as “Test case”, Test case

prioritization”, “Metaheuristics”, “Machine learning”, and

“Test Case Generation. A systematic approach was followed in

the collection of literatures. Google scholar was used to search

the literatures. Year, Indexed portals, and Citation counts were

the criteria applied to filter the literatures. IEEE Explore and

Springer were major indexed portals to download the

literatures.

Shweta mittal and Om prakash sangwan[16] have used Mh

technique for the prioritization of test cases. Authors have used

Artificial Bee Colony (ABC) to prioritize the test cases. Test

suite prioritizations are useful to sort the test cases and perform

execution according to the priority basis. RT selection,

minimization, and prioritization are the different techniques

used to minimize the computation time. The research has used

Genetic Algorithm (GA) for ordering the test cases.

Representation, operator, and fitness functions are required to

implement GA. Array was used to represent the test suites.

Ordered crossover, mutation, and selection were the operators

used in the research. Cuscuta search was used to find the

maximum number of faults with maximum probability. The

minimum execution time of test cases of having same

probability was chosen for each Cuscuta. The execution time

was calculated according to left over starvation. The

experimental results had shown that the performance of

Cuscuta and GA were low comparing to ABC algorithm. The

research was conducted with less number of test cases. The

output of research will be varied with more number of test

cases.

Arjinder singh and Sumit Sharma[17] have proposed a method

to generate functional TCs from UCD. They have developed a

complete user based input UCD (UBUCD) to extract TC from

use cases. The initial part of the method was used to analyze

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1140

the methods based on the extraction of TCs from UCD. After

the development of UCD, activity diagrams were derived from

UCD. The process of parsing was used to convert the activity

diagram into XML file. A table called use case activity

development table used to generate activity graph. A traversing

technique based on depth first search was used for the

generation of functional TCs. A dedicated setup was used to

update the UCD after a modification in code. Authors have

argued that the study has covered a maximum part of software.

Wang Linzhang et.al.[18], have developed a method to

generate TCs from UCD. Gray box method was used to extract

TCs from UCD. The manual process of developing TCs will

consume more time and prone to errors. The automated testing

methods will handle the different phases of RT. It will generate

TCs, execute automatic test without human intervention and

evaluate test with relevant metrics. UML diagrams are widely

used to analyse and design the requirements of software.

Activity diagram is used to convey the activity with more

details. The practical approaches and tools for deriving TCs

from UML diagram are less in number. Nodes and edges of

activity diagram are used to represent processes and sequence

of activities. Authors have gray box method for the extraction

of TCs. The method is widely used on high level design

models. Normally, UML diagram designs are used to define

requirement specifications and final code. Gray box method is

the extended version of white box testing. Authors have used a

coverage criterion to cover the maximum part of code. The

activity diagram was parsed by gray box method to derive TCs

from the diagram. The derived TCs are verified with coverage

criteria.

Fernando Augusto Diniz Teixeria and Glaucia Braga e –

Silva[19] have developed an approach to generate TCs from

UML activity diagram. Existing automated tools have reduced

the computation time but did not produce optimum accuracy in

generation of TCs. Model – based testing has produced better

results than code based approach. UML models were used in

model based testing to derive system specification for TC

design. Authors have proposed a method, named as EasyTest to

generate TC from activity diagram. The approach has

suggested some detection technique to prevent the unidentified

defect in software. Authors have argued that activity diagram

could be used to produce defect free code. EasyTest has two

phases such as importing activity diagram as XML file and TC

generation. The first phase is used to derive activity diagram

details into a XML file. The XML files are lightweight and

easily parse by any algorithm. EasyTest has the advantage of

interoperability with different types of UML modelling tools.

The strategy applied by EasyTest was cheaper in terms of

computing time. The second phase consists of activity

depending table, activity depending graph, and test path

generation. Finally, TCs were applied in real time applications.

Noraida Ismail et.al.[20], have developed a method to

automate the process of generation of TCs from UCD. A small

delay in the software testing may maximize the number of

errors. A UCD will specify the requirements of a system. The

use case is used to represent the functionalities of the system.

Each use case represents a small task or a function in the

system. The manual conversion of use cases into a test case

will take more time. Generally, use cases are developed

according to the user requirement and TCs are designed by

tester. A better UCD can provide meaningful information about

software. A tool, Generator for Test Cases (GentTcase) was

proposed to carry out UCD of a system. It has the ability to

generate TCs from UCD. The tool will process all use cases

using a user defined keywords. According to the keyword, TCs

are generated from the use cases. A list of meta data are used to

locate the use cases. The search algorithm will apply a heuristic

to retrieve all TCs from the database.

Based on the literatures, the proposed study had chosen

UBUCD, EasyTest, and GenTcase for the generation of TC.

Theses methods are state – of – the art algorithms for the

extraction of TC.The following Table 1.1 shows the details of

existing methods.

Table 1.1 Selected methods for the comparison

Method Authors Year

GenTcase
Noraida Ismail, Rosziati Ibrahim,

and Noraini Ibrahim
2007

UBUCD Arjinder singh and Sumit sharma 2015

EasyTest
Fernando Augusto Diniz Teixeria

and Glaucia Braga e Silva
2017

Limitations in existing system

1. The manual process of generation of TCs from UCD had

consumed more computation time[17].

2. The number of errors and complexity was more in

manual generation[17][18].

3. The performance of automated tools is not sufficient for

modern programming concepts[19][20].

III. METHODS AND MATERIALS

TC is a collection of methods to find a fault in an application.

Test scenarios are a collection of TCs. The proposed study has

employed Mh to generate TC from UCD[18][19]. UCD is used

to understand the flow of data in an application[20][21]. Let D

be the UCD, A be a activity diagram, G is a activity graph, T is

a token. The following expression denotes the conversion of

UCD to activity graph.

 D -> A(D) (1)

 A(D) -> G[A(D)] (2)

G[A(D)] is an activity graph. The activity graph will be divided

into tokens, which is readable for the algorithm.

 G[A(D)] -> T(TC) (3)

T(TC) will be classified using bag of words technique. True

positive (Tp), True negative(Tn), False positive(Fp), and False

negative(Fn) are grouped into effective and non – effective Tcs.

The failures will be stored as separate entities. The clusters will

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1141

become key points. The key points will be clustered using

Library and distance. A constant value 4 is used with the

distance for the preparation of clusters. The constant value is

used to adjust the P – Mh intrinsic parameters.

The following procedures are used in the research.

Procedure_Generate TC

Step 1: Input UCD of an application

Step 2: Convert UCD into activity diagram

Step 3: Convert Activity diagram into activity graph

Step 4: Collect possible keywords and store as a library to

classify primary TCs

Step 5: Extract TCs as tokens from Activity graph

Step 6: Store tokens as a XML file

Step 7: Tokens are classified into TP,TN,FP, and FN.

Step 8: Majors clusters are formed as effective, non – effective

and failures.

Step 9: Clusters are further clustered using library and distance

with constant value 4.

Step 10: Final, TC clustered formed successfully.

Step 11: End

A. Concept of Library

The concept of library is used for inter clustering Mh

technique. The known Tcs are stored in the library and used to

identify useful Tcs. The bags of words are followed to store the

key points into library. Figure 3.1 shows the concept of library.

Figure 3.1 Concept of Library

B. Collection of Dataset

P – Mh, GenTcase, EasyTest, and UBUCD are the methods
employed in the research. UCD is the main source for the
algorithms. The study has collected all UCD with successful
Tcs for the purpose of evaluation of algorithms.

Table 3.1 Details of UCD

Datasets Total TC Failures

D1 2601 712

D2 3250 845

D3 10427 1280

D4 15165 1530

Figure 3.2 Clustering process of Tcs

Table 3.1 shows the details of collected UCD. D1 represents

UCD on online marketing application. D2 represents a mobile

application, which uses to know the capital market details. D3

is the communication system in University. D4 represents

banking software. Datasets were from familiar and reputed

organization. Tcs were collected from their testing team. Tcs

mentioned in Table 3.1 have produced faults in the system and

rectified by testing team. Failures indicate that the Tc, which

have failure results from testing. Figure 3.2 illustrates the

process of generating Tcs from UCD.

Algorithm_Generate_TC

Input:

UCD: DF

Library: Lb

Output: TCs

Start Algorithm _Generate TC

Tp : True Positive

Fp: False Positive

Tn: True Negative

Fn: False Negative

i = 1 to No. of elements

for each DF in DF(i)

 for j = 1 to n

 if DF == Lb(Tp)

 Tp = Tp + 1

else if DF == Lb(Fp)

 Fp = Fp + 1

else if DF == Lb(Tn)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1142

 Tn = Tn + 1

else if DF == Lb(Fn)

 Fn = Fn + 1

 else

 F = F + 1

 end if

 end for

end for

cluster1 = {Tp, Fp}

cluster2 = {Tn,Fn}

cluster3 = {F}

mdist = 4

for each clusters

calculate dist between smallest point in clusters

if dist <= mdist

form TC clusters

else

Leave as single cluster

Endif

End algorithm

C. Implementation of Algorithm

The proposed study was developed in Windows 10

professional – 64 bit operating system. Intel i7, 4th generation

processor with 8 GB RAM hardware configuration was used in

the development. JULIA 0.7 with Eclipse IDE was used to

develop P- Mh algorithm. The reason for using JULIA 0.7 was

its generic nature. The codes of UBUCD, GenTcase, and

EasyTest were transferred to JULIA platform. P – Mh is a

platform independent, difficult to implement for the generation

of TC. The intrinsic parameters of P – Mh were altered to have

inputs such as population of TC, image boundaries, and

features. The population of TC was used to represent the total

number of TCs. Image boundaries were used to restrict the key

points of activity graph and features values for the

representation of storage to store TCs. Figure 3.3 shows the

scheduling process for extraction of key points from activity

graph. Figure 3.4 shows the P – Mh code in Eclipse IDE. The

code in Figure 3.4 indicates the extraction of texts from image.

Figure 3.3 Scheduling of Bean to store key points into library

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1143

Figure 3.4 Implementation of P – Mh in JULIA – Eclipse IDE

IV. RESULTS AND DISCUSSIONS

The section discusses the details of results that are generated

from the proposed research. Table 4.1 shows the details about

effective and non – effective Tcs and no. of features extracted

from UCD. The reason for the extraction of features is for the

process of prioritization of Tcs. The existing methods were

used only for the extraction of effective and non – effective

Tcs. The details of accuracy are discussed in the later part of

the section.
Table 4.1 Details of extracted features from P - Mh

Datasets Total TC
Effective Non – Effective

No. of Features
TP FP TN FN

D1 2601 553 662 215 459 468

D2 3250 638 698 430 639 635

D3 10427 1645 2465 1358 3679 1836

D4 15165 3698 4599 2469 2869 3254

Table 4.2 shows the time consumed by each method during
training phase. The training phase will teach methods to learn
the environment. P – Mh is a slow learner, require more time to
learn to generate Tcs from UCD. It took a maximum of 0.903
seconds for D4. GenTcase has consumed less time during the
learning process. Figure 4.1 represents the related values of
table 4.2.The graph has clearly shown that P- Mh has
consumed more time than other methods.

Table 4.2 Training Time (in seconds)

Methods

/ Datasets
D1 D2 D3 D4

UBUCD 0.874 0.916 0.904 0.872

P-Mh 0.619 0.815 0.856 0.903

EasyTest 0.589 0.942 0.935 0.869

GenTcase 0.634 0.809 0.846 0.807

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1144

Figure 4.1 Training time (in seconds)

Table 4.3 shows the time taken by the methods during testing
phase. Datasets were divided into two unique sets. The testing
time shown that UBUCD has taken more time than other
methods. The computation time of P – Mh is average
comparing to other methods. P – Mh has taken more time for
the generation of TC because of its adaptability to this specific
problem. The adjustment in parameters had made the algorithm
slow in the production of results. Figure 4.2 is the graphical
view of table 4.3.

Table 4.3 Testing Time (in seconds)

Methods/
Datasets

D1 D2 D3 D4

UBUCD 0.348 0.304 0.394 0.415

P-Mh 0.226 0.264 0.389 0.364

EasyTest 0.257 0.289 0.378 0.349

GenTcase 0.284 0.319 0.406 0.395

Figure 4.2 Testing time (in seconds)

Table 4.4 shows the details of accuracy of each method. P –
Mh has achieved better accuracy than other methods. It has
scored a maximum accuracy of 91.3 % in D4 and minimum of
84.6% in D3. The accuracy level of EasyTest is average than
other methods. It has scored an minimum of 80.3% in D3 and
maximum of 86.4 in D1. Figure 4.3 represents the accuracy of

methods related to table 4.4. P – Mh has shown a better
accuracy in generation of TCs.

Table 4.4 Details of Accuracy

Methods /

Datasets

D1

(%)

D2

(%)

D3

(%)

D4

(%)

UBUCD 75.6 81.3 83.2 85.6

P-Mh 89.3 84.6 89.6 91.3

EasyTest 83.4 82.5 80.3 83.7

GenTcase 86.8 79.5 79.4 86.5

Figure 4.3 Accuracy

V. CONCLUSION

The process of generating test cases is complex and difficult.
The accuracy level was slow with existing methods.
Prioritizations of test cases are fully dependent on test cases. A
bad test case may create a huge impact on software. The
performance of the application can be improved through
regression testing.

The proposed method is based on metaheuristic, a machine
learning method. The state of the art methods such as UBUCD,
GenTcase, and EasyTest were employed and compared with
the efficiency of proposed metaheuristic. The trade-off such as
accuracy and time were measured for each method. The
proposed method has achieved an average of 90% accuracy for
all datasets. The computation time of the proposed method is
more compared to the other methods. The prime focus of the
research is on finding maximum faults from the system. The
accuracy is the most important trade-off compared to the
computation time.

The achievements of the proposed research as follows:

1. Achieved better accuracy than state of the art
techniques.

2. Achieved an average computation time to generate
results.

The future scope of the research is the development of a multi-
objective machine learning method to prioritize the test cases.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 7 (2019), pp. 1138-1145

© International Research Publication House. http://www.irphouse.com

1145

REFERENCES

[1] Wayne Jansen, GranceTimothy,“Guidelines on

Security and Privacy in Public Cloud

Computing”,National Institute of Standards and

Technology, 2011.

[2] Mollah Muhammad Baqer, Islam KaziReazul, Islam

Sikder Sunbeam,” Next Generation of Computing

through Cloud Computing Technology” In: Proc. Of

25th IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE), 2012

[3] Tianfield Huaglory,”Security issues in Cloud

Computing”, In : Proc of IEEE International

Conference on Systems, Man, and Cybernetics, Korea,

2012

[4] Gonzalez Nelson , Miers Charles , Redígolo Fernando

, CarvalhoTereza , Simplicio Marcos,” A quantitative

analysis of current security concerns and solutions for

cloud computing”, Journal of Cloud Computing:

Advances, Systems and Applications Springer, 2012

[5] Zissis Dimitrios ,LekkasDimitrios,” Addressing cloud

computing security issues”, SciVerse

ScienceDirect,2012.

[6] Buyya,”Cloud Computing and emerging IT platforms:

vision, hype, and relatity for deliverling computing as

the 5th utility”, Future Generation Computer System

25(6), 599–616, 2009.

[7] Santhosh kumar Swain, Durga Prasad Mohapatra,

Rajib Mall, " Test case generation based on use case

and sequence diagram", International journal of

software engineering,Vol. 3, No.2, July 2010.

[8] Winkler V,” Securing the Cloud: Cloud computer

Security techniques and tactics”, Elsevier Inc,

Waltham, MA, 2012

[9] Dawoud W,” Infrastructure as a service

security:Challenges and solutions”,In: Proc. of 7th

International Conference on Informatics and Systems

(INFOS), Potsdam, Germany. IEEE, 2010, pp 1–8.

[10] Paolo Tonella, Paolo Avesani, Angelo Susi(2009)”

Using the Case-Based Ranking Methodology for TC

Prioritization”. 22nd IEEE International Conference on

Software Maintenance (ICSM'06).

[11] Zheng Li, Mark Harman, and Robert M. Hierons”

Search Algorithms for Regression TC Prioritization”

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 33, NO. 4, APRIL 2007.

[12] Praveen RanjanSrivastava(2008)” TC

PRIORITIZATION” Journal of Theoretical and

Applied Information Technology.

[13] Ruchika Malhotra, Arvinder Kaur and Yogesh

Singh(June 2010)” A Regression Test Selection and

PrioritizationTechnique” Journal of Information

Processing Systems, Vol.6, No.2.

[14] Belinfante A., Frantzen L., Schallhart C. (2005) 14

Tools for Test Case Generation. In: Broy M., Jonsson

B., Katoen JP., Leucker M., Pretschner A. (eds)

Model-Based Testing of Reactive Systems. Lecture

Notes in Computer Science, vol 3472. Springer,

Berlin, Heidelberg

[15] Lingming Zhang," Hybrid Regression Test

Selection",ACM/IEEE 40th International Conference

on Software Engineering.May 27-June 3, 2018,

Gothenburg, Sweden.

[16] Shweta Mittal & Om Prakash Sangwan, "Prioritizing

test cases for regression techniques using metaheuristic

techniques", Journal of Information and Optimization

Sciences, 39:1, 39-51.

[17] Arjinder singh and Sumit sharma, " Functional test

cases generation based on automated generated use

case diagram", International journal of innovative

research in advanced engineering, Issue 8, volume 2

(August 2015) Pages 105 - 110.

[18] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu jun,

Li Xuandong and Zheng Guoliang," Generating test

cases from UML activity diagram based on Gray - box

method, " Asia - Pacific Software Engineering

Conference 2004, Pages: 284 - 291.

[19] Fernando Augusto Diniz Teixeria and Glaucia Braga e

Silva, " EasyTest: An approach for automatic test

cases generation from UML Activity Diagram",14th

International conference on Information technology:

New Generations(ITNG 2017)

[20] Noraida Ismail, Rosziati Ibrahim, Noraini Ibrahim,"

Automatic generation of test cases from Use - case

diagram", Proceedings of the international conference

on electrical engineering and informatics,

Indonesia,June 2007.

[21] P. McMinn, "Search-Based Software Testing: Past,

Present and Future," 2011 IEEE Fourth International

Conference on Software Testing, Verification and

Validation Workshops, Berlin, 2011, pp 153-163.

