
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1165

Management of a Smart Factory using Fog Computing

Jinsub Han1, Insub Kim2, Hyunmo Yu3, Hoon Choi4 *

1,2,3,4Department of Computer Science & Engineering,
Chungnam National University, Daejeon, Korea

 ORCID: 0000-0002-4435-3997
*Corresponding Author

Abstract

As the IoT system consisting of sensor/actuator devices for

monitoring industrial facility’s safety becomes popular, the

network traffic for sensor data is increasing rapidly. Moreover,

the workload at the operation & management (OM) server due

to these increased data cause another problem of slowing

down the server’s response, failing to process safety related

data in real time. Fog computing can solve these problems.

Fog nodes store data collected from sensors of IoT systems.

The nodes inspect the data and report to the OM server of only

abnormal data. Fog nodes also handle the requests from the

OM server by sending specific stored data. This paper

describes a fog node applied to a smart factory environment. A

simple, prototype implementation showed the feasibility of the

fog computing.

Keywords: IoT(Internet of Things), fog computing, smart

factory, fog node, software platform

I. INTRODUCTION

As IoT spreads, it is expected that massive data will be

produced from various devices. Cisco and other market

research organizations projected to create a huge network of

more than 50 billion devices in 2020 [1].

As the number and type of devices connected to IoT increases,

the amount and type of data to be processed by the operational

management server located in the cloud is increasing. Many

experts point out the risks of cloud computing architecture

where IoT systems are connected to and managed by

operations management servers and warn that overload will

occur within the next two years.

To solve this problem, fog computing has been proposed [2],

which is a distributed computing architecture for efficiently

processing large amounts of data generated by devices in the

Internet environment.

Fog computing is a distributed processing that stores data and

provides networking services at the fog nodes that exist

between cloud servers and IoT devices (Figure 1). Fog

computing is a method to solve network and server overload

problem [3]. Fog nodes placed adjacent to the IoT device store

and manage IoT data on behalf of the administration server or

the operation & management server at a distance.

Figure 1: Fog Computing Architecture

There have been many researches and applications of fog

computing in various fields such as IoT system monitoring [4],

smart home [5], smart office [6], smart city [7], and robot

industry [8].

This paper introduces Plant Eyes, a smart factory environment

using fog computing. Plant Eyes is a fog node-based software

platform that monitors the smart factory's work environment

and helps efficient managing of smart factories.

Plant Eyes consists of IoT devices, fog nodes, and an

operation & management(OM) server located in the Internet.

The fog node receives and stores the sensor data received from

the IoT device in the database. The fog node also analyzes the

received data. If the node judge the data value is abnormal, it

reports this situation to the OM server and controls the IoT

devices by itself. Therefore, small fraction of sensor data is

sent to the OM server. This reduces the network’s data traffic

and the server’s workload. The OM Server allows

administrators/users to view the status of the smart factory via

the Web.

This paper is organized as follows. Chapter 2 describes the

requirements and design issues of fog computing for a smart

factory environment. Then implementation of a prototype Plant

Eyes is followed; functions of IoT devices is describes in

Chapter 4, and functions of the fog nodes, the OM server in

Chapter 5 and Chapter 6 respectively. Chapter 7 mentions the

verification of the prototype implementation.

mailto:hc@cnu.ac.kr

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1166

II. FUNCTIONAL REQUIREMENTS OF THE PLANT

 EYES

Plant Eyes' role is to receive and intelligently process data of

industrial facility IoT on behalf of an administrator in the OM

server. The requirements are summarized as follows.

(1) Fog nodes should receive data related to environment and

industrial facility conditions collected from sensors

attached to industrial facilities via wired and wireless

communication.

(2) A hardware specification of a fog node may be less

powerful than an OM server. A lightweight database is

used in a fog node for the case low capability hardware is

used for a fog node.

(3) The data received from IoT devices should be analyzed in

real time to determine whether the data belongs normal

range or not. Upon receipt of the data representing some

abnormal situation in the factory, the fog node should

report to the OM server.

(4) In above case, the fog node also searches for methods of

coping this situation and notify immediately facility

workers and local managers.

(5) When the OM server requests data, for example, location

information of a specific worker or temperature values of

a site for last two hours, to the fog node, the fog node

retrieves the data stored in the database that meet a

specific condition and transmits it to the server.

In order to show the feasibility of applying fog nodes to smart

factories satisfying the above requirements, we developed a

prototype fog node as described in Section 3.

III. STRUCTURE OF A PROTOTYPE

 IMPLEMENTATION

The Plant Eyes system consists of IoT devices installed at the

industrial facility, a fog node and an OM server (Figure 2).

Figure 2: Fog system implementation diagram

Raspberrypi3B+ was used for the fog node, and a laptop PC

was used for the OM server (<Table 1>) in the prototype

implementation.

Python3 is used to implement the fog node, and JavaScript is

used to implement the OM server. <Table 2> shows software

environment of the prototype implementation.

Table 1: HW Environment of a Prototype Implementation

 Fog node OM server

Hardware Raspberrypi3 B+ Samsung laptop series

9

CPU 1.2GHz QUAD Core

Broadcom BCM283

64bit ARMv7

Processor

Intel(R) Core(TM) i7-

6500U 2.59GHz

RAM 1GB 8GB

OS Raspbian 4.14 Windows10

Table 2: SW Environment of a Prototype Implementation

Implementation

Environment

Python3, JavaScript

Interface Purpose Providing smart factory

information

Data format JSON

Input Source and

Destination

Arduino sensor, Fog node,

OM server

OS Window, Raspbian

Database SQLite

Library BLE, Bootstrap

Communication between the fog node and the IoT device uses

a CoAP (Constrained Application Protocol) [9]. The OM

server uses datagram socket to communicate with the fog node.

IV. IOT DEVICE IMPLEMENTATION

4.1 Data Collection using the Arduino Sensors

In this paper, Arduino Uno SMD R3 board is used. The main

model of the Arduino board offer 14 digital I/O(Input/Output)

pins. The 14 pins consist of six PWM (Pulse Width

Modulation) pins, six analog input pins that can be mixed with

digital I/O pins, and two pins that provide interrupt handling

for event processing.

AVR functions as a base module of the ATmega chip

mounted in Arduino and provides various libraries used for

sensor control. This allows various sensors to be used in

Arduino.

The programs that run on Arduino are written in the Integrated

Development Environment. The program has a structure of

setup and loop. Setup sets the baud rate and pin mode of the

serial, and loop is the part where the user program is

repeatedly executed. The completed program can be uploaded

to the Arduino board via USB.

Arduino defines UART (Universal Async.

Receiver/Transmitter) communication as "Serial" and sets the

baud rate of the serial with the value set in the setup part by

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1167

the user. Arduino can acquire sensor values with UART

communication, sensor library and analogRead function.

This feature makes it easy to control external electronic

devices such as LEDs and motors.

4.2 Communication with Fog Node

Lightweight protocols for IoT networks include MQTT or

CoAP. The Plant Eyes system uses the CoAP protocol, which

is suitable for low-power, low-bandwidth and small-sized

nodes. It has a feature that can easily convert and interoperate

with the HTTP Web protocol because it conforms to the

RESTful scheme. Figure 3 shows the request and response

process of the CoAP.

Figure 3: CoAP request / response

A CoAP message is transmitted asynchronously in a datagram

transport layer protocol. The Arduino board used in this

prototype does not support Ethernet for UDP communication.

Arduino, an IoT system, is connected to the Raspberrypi3, a

fog node, via Ethernet shield (Figure 4).

Figure 4: Connection of Arduino and Raspberrypi3

The CoAP protocol works in client-server model. The server

and client are configured using Python's Txthings which is

implemented based on the Twisted framework. The Twisted

framework has most of standard protocols as libraries

available on the Internet, and it provides protocol classes and

Deferred, Callback, Error Back, Callback Chain, and Reactor.

The server creates a resource tree, manages resources with init,

render_GET and render_PUT for each resource, and processes

messages received from the fog nodes.

4.3 Control of the IoT Device

In order to demonstrate the control message received by the

Fog Node, LED and DC motor are connected to Arduino as

shown below (Figure 5).

Figure 5: Environment connected with DC motor propeller

The CoAP protocol’s put message is used for controlling the

Arduino. The server checks the payload of the put message,

encodes the character according to the payload, and then

writes to the serial and sends it to the Arduino. In Arduino, it

checks if Serial.available is true for write. If it is true, encoded

letters are classified. If the payload value of the put message is

'motorON', the DC motor connected to the Arduino is

activated (Left of Figure 6).

Figure 6: Operation of DC motor propeller and LED light

The LED also lights when the payload value of the put message

is 'ledOn' (Right of Figure 7), and turns off the LED when

'ledOff'.

V. IMPLEMENTATION OF THE FOG NODE

5.1 Communication with Arduino

We configured the client using Twsited's Call back, Error back,

defer, and reactor. The fog node sends a CoAP Get Request

message and identifies the server's resources through

request.opt.uri_path. It accesses the IP address and the CoAP

port of Raspberrypi3 using the remote, and receives a response

from the server through the Call Back.

We configured the endpoint, protocol, and client before

running, and connected the port to the reactor, and then ran it

to cycle through the loop periodically. When the agent is

running through the reactor, it sends a Get message to the

CoAP server via the requestResource in the class, requesting

the sensor data value. It shows the sensor data received

through the PrintResponse.

5.2 Data Management

Fog node receives data from hundreds of sensors of

temperatures, humidity, CO2, and noxious gas concentrations

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1168

in IoT devices of the smart factory. The fog node temporarily

put received data in main memory, then checks abnormality in

the data. Only in case that the data are evaluated abnormal, the

fog node report the server. The node periodically stores the

data in the local storage.

The fog node has a function of searching the data stored in the

node's database in response to the OM server’s request. The

server may request the fog node to send the data of all sensors

during a given time span or requests data of a specific sensor

of a certain time. The fog node accesses its local data and

transmits the corresponding data to the OM server.

5.3 Autonomous Device Control

Temperature management in smart factory is important for the

safety of workers. It is also closely related to the life of

machine, which is essential for running smart factory.

Therefore, a smart factory may be equipped with an air

conditioner, a heater, and other thermostats. Since the proper

temperature of smart factory varies from each zone(area) or

each time period, it must be managed separately.

Plant Eyes' fog node is able to handle IoT devices real-time

based on the data generated by sensors in smart factory. The

fog node learns the normal temperature profile for each zone

based on data collected for a long time period. The fog node

was implemented to read values from the thermostat sensor

and controls an air conditioner or a heater accordingly.

The fog node may also control some IoT device in response to

the OM server’s request. The server may request the fog node

turn on or off a specific IoT device in the factory.

This is flexible and efficient because each fog node installed in

each zone of smart factory finds abnormal temperature and

handles this situation quickly without human support. The

node does not transmit normal data from IoT sensors to the

OM server, but informs the situation of the fog node. If the air

conditioner is activated, it sends to the OM server only the

information that the air conditioner has been turned on.

5.4 Quick Respond to Risky Situation

In the event of an accident or device malfunction in the smart

factory, the fog node detects it and notifies the administrator.

It is important to take quick action in a risky situation. In the

fog computing structure, it is possible for a fog node to react

and cope more quickly than the remote OM server. When the

fog node detects a dangerous situation or data abnormality, the

fog node first controls appropriate IoT devices, without having

to get approval from the OM server. The fog node reduces

chance to lead to significant damage in emergency situations

thanks to rapid measures and response.

5.5 Diagnosis of Emergency using OpenAPI

When the fog node recognizes a dangerous situation during the

process of received data as shown in Figure 8, the fog node

first sends an alarm to the workers. Then the node refers to the

public web site such as [11] provided by the government to

find out a countermeasure for the situation.

Figure 7: Risk situation response process

When a toxic gas or a dangerous chemical is spilled, it is

difficult for a fog node or the OM server to find out what kind

of chemical substance it is and how to cope with it. Therefore,

the fog node better refer to an outside expert system and

inform the site manager how to deal with this dangerous

substance. The factory facility may be controlled according to

a guideline provided by the expert system. Then the node

reports to the OM server (Figure 7).

5.6 Data Communication with the OM Server

In this study, we used DDS(Data Distribution Service) as the

communication middleware between the fog nodes and the

OM server [13]. DDS is suitable for exchanging large amount

of data between communication nodes in real time in

distributed computing environment. (Figure 8).

Figure 8: Communication with fog nodes to Operations

Management Server

The fog nodes exchange data with the OM server in a DDS

topic defined by the fog management application.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1169

VI. IMPLEMENTATION OF THE OM SERVER

6.1 Requesting Stored Data to Fog Nodes

Figure 9 shows a web screen of the OM server.

Figure 9: Operations Management Web

Human administrator can click a zone of the factory to request

sensor data real-time. A request message including the smart

factory ID and the zone ID is sent to the fog node. The fog

node parses the request message and replies sensor data of the

corresponding zone to the OM server.

Figure 10: Real-time graph of sensor data installed in a

specific area

The response data consists of sensor ID with its value such as

temperature, humidity, carbon dioxide, oxygen concentration,

and date and time of data update. They are drawn in the form

of graph in Figure 10.

6.2 Request for Hardware Control

The OM server displays each zone with the names of installed

IoT devices and their operational state. Administrator can click

the on/off icon of a device to turn it on/off. Then the OM

server sends a request message including the factory ID, zone

ID, device name and command(on/off) to the fog node. The

fog node parses the requested data to turn on or off the

corresponding IoT device in the zone. Upon successful

completion of the control, the fog node replies on/off state

change back to the OM server. On the OM server, the new

state is displayed on the monitor.

6.3 Display and Notification of Risk Data

When a fog node detects a risky situation based on the sensed

data from IoT devices, and notifies it to the OM server, the OM

server emits a warning sound with a warning screen to inform a

human administrator.

VII. PERFORMANCE MEASUREMENT

A simple performance measurement has been carried out in

order to show the usability of fog computing. The time for the

fog node to receive, evaluate abnormalities of the sensor data

and control a IoT device is measured. This latency time is

compared with the latency time of OM server doing the same

jobs. We made the temperature rise on purpose and measured

the delay using the ‘time’ function from time point the fog

node receives the temperature until the on or off command is

sent out by the fog node. The same delay is measured at the

OM server.

It is reasonable to think that the computing power of the fog

node hardware is lower than the OM server’s. Therefore, we

used raspberrypi3 (B+) for the fog node and used a PC (i7) for

the OM server (Figure 11).

Figure 11: Prototype Implementation

Delays were measured by using the time function from time

when the sensor data enters the fog node and the data is stored,

processed until a command to control the air conditioner is

sent to the sensor. These delays are processing time of the fog

node and denote the response time to the sensor. The same

delay times were measured without the fog node, i.e., when

the sensor and the fan are connected directly to the OM server.

These delays denote the processing time of the OM server.

Response time of the fog node is the time measured from

when the sensor data were received till the time when the

command to control the air conditioner is sent out. As

mentioned in Section 1, fog nodes are usually located near to

the IoT sites. It is obvious that the distance of the network link

between a fog node and the devices is much shorter than the

distance from the fog node to the OM server. Data

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1165-1170

© International Research Publication House. http://www.irphouse.com

1170

transmission delay in the network is proportional to the

network distance. It is reasonable to assume that the network

delay between the devices and the fog node is very small

compared with the delay between the device and the OM

server. Therefore, we assumed in this experiment that the

network delay between IoT devices and the fog node is 0, and

considered three cases where the OM server is 2, 5, and 7

seconds away from the IoT devices.

Table 3 shows the response times. On the case of the fog node,

it took about 3 seconds. Because the fog node hardware used

in this prototype implementation is a low-end raspberrypi3, the

response times are rather long. High-end hardware of actual

system will provide much shorter response time.

Table 3: Response times of fog node and OM server

(initial condition: air conditioner OFF)

Mean Response

Time of Fog Node

Mean Response time of OM server

Network delay Server processing time Sum

3.10s (air con. ON) 2s 1.02s (air con. ON) 3.02s

 5s 1.02s 6.02s

 7s 1.02s 8.02s

The OM server has been experimented under the same

condition. The OM server operated in 1 second when the air

conditioner is turned on, much faster than the fog node.

Including the transmission delay, total response times become

longer than the fog nodes’.

The actual values of Table 3 may not be significant because

we used assumed values of network delay. But we can argue

that if decent hardware, like the one used in a personal

computer, is used for the fog node, the processing time at the

fog node may be similar to that of the OM server. Then

response times depend on the network propagation delay.

Since the OM server is far from the IoT devices, the response

times of the OM server become longer than the fog node’s

response time.

There is another factor, though we do not show it by

experiment, that the fog node’s response time becomes faster

than the OM server’s. If not for fog nodes, all the traffic will

concentrate to the OM server, resulting in high workload at the

server. High workload makes the server respond slow.

In summary, fog nodes can monitor and control the IoT devices

much faster than the OM server does.

VIII. CONCLUSION

Fog nodes store operational data collected from sensors of

industrial facilities, smart factories, and so on. The nodes

inspect the data and report to the OM server of finding

abnormal data. They contribute to prevent unnecessary data

from being transmitted to the OM server through this

monitoring process. Fog nodes also handle the requests from

the OM server by sending specific stored data.

This paper described Plant Eyes, a smart factory environment

using fog computing. Plant Eyes consists of IoT devices, fog

nodes, and an OM server located on the Internet. A simple,

prototype implementation showed the feasibility of the fog

nodes. Experimental results show that the fog computing

method of processing data at the source using the fog nodes is

very efficient. Therefore, fog nodes are expected to provide

reliable data management for industrial facilities, smart

factories distributed nationwide.

ACKNOWLEDGEMENT

This work was supported by research fund of Chungnam

National University.

REFERENCES

[1] Zaigham Mahmood, “Fog computing: Concepts,

Frameworks and Technologies”,p3 ,2018.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, “Fog

computing and Its Role in the Internet of Things”,

Proceedings of the first edition of the MCC workshop on

mobile cloud computing, August 2012.

[3] I. Stojmenovic, “Fog computing: A cloud to the ground

support for smart things and machine-to-machine

networks”, Telecommunication Networks and

Applications Conference (ATNAC), 2014 Australasian.

IEEE, pp. 117-122, 2014.

[4] G. Yoon, D. Choi, J. Lee, H. Choi, "Manage-ment of IoT

Sensor Data using a Fog Computing Node", Journal of

Sensors, Feb. 2019.

[5] S. Yi, Z. Hao, Z. Qin and Q. Li, "Fog Computing:

Platform and Applications," 2015 Third IEEE Workshop

on Hot Topics in Web Systems and Technologies

(HotWeb), pp. 73-78, 2015.

[6] J. Li, J. Jin, D. Yuan, M. Palaniswami and K. Moessner,

"EHOPES: Data-centered Fog platform for smart living,"

2015 International Telecommunication Networks and

Applications Conference (ITNAC), pp. 308-313, 2015.

[7] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, Q.

Yang, “A Hierarchical Distributed Fog computing

Architecture for Big Data Analysis in Smart Cities”,

Proceedings of the ASE BigData & Social Informatics

2015, October 2015.

[8] Gartner, “Fanuc. Cisco, Rockwell, PFN Push ‘Edge and

Fog Computing’ Into Factory”,

https://www.gartner.com/doc/3290826/fanuc-cisco-

rockwell-pfn-push.

[9] Xi Chen, “Constrained Application Protocol for Internet

of Things“, https://www.cse.wustl.edu/~jain/cse574-

14/ftp/coap, 2014.

[10] Object Management Group. OMG, “The Real-time

Publish-Subscribe Wire Protocol DDS Interoperability

Wire Protocol”, version 2.1, 2010.

[11] Open Data Portal, Ministry of Environment _ Chemical

Substance Information,

https://www.data.go.kr/dataset/15029194/openapi.do.

