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Abstract 

In this paper, we have proposed a tabu search (TS) based 

algorithm to optimize the allocation of pilots to the users 

during the uplink (UL) pilot transmission phase to alleviate 

the pilot contamination problem. The goal is to maximize the 

minimum UL signal-to-interference ratio (SIR) in the 

asymptotic massive multiple-input multiple-output (MIMO) 

system. The pilot allocation problem is combinatorial, and it is 

generally non-deterministic polynomial-time hard (NP-hard). 

We have proposed an algorithm that converges to a near 

optimal solution. Performance evaluation of our algorithm has 

been carried against that of exhaustive search and state-of-the-

art algorithm where the latter can be applied when the search 

space is prohibitively large for an exhaustive search. 

Simulation results have confirmed the superiority of our 

algorithm over the related published work. 
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I. INTRODUCTION 

Massive multiple-input multiple-output (MIMO) is a cellular 

network technology that has been proposed in [1] to increase 

the capacity of the network by adding more antennas to cell 

sites. Specifically, a very large number of antennas are 

deployed at a base station (BS), and it typically serves many 

single-antenna user equipment (UEs) simultaneously [2]. As a 

BS needs to estimate the channels from its serving UEs [3], 

each UE is assigned a unique pilot sequence where the set of 

these sequences are mutually orthogonal. Since the channel 

responses are static during time/frequency blocks, which is 

called coherence channel block [4], coherence block consists 

of a limited number of samples. Some of these samples, in a 

typical time-division duplex (TDD) massive MIMO system, 

are reserved for the uplink pilot signals while the remaining 

samples are for the uplink and downlink data transmission. 

Hence, pilots are overhead, and it is efficient to reserve less 

than half the samples in the coherence block to transmit them 

[4]. Therefore, the pilot sequence length is limited, and the 

number of unique mutual orthogonal pilots is limited. Hence, 

reusing the pilots by UEs across the cells is in inevitable. As a 

result, the asymptotic analysis in [1] has shown that as the 

number of antennas at the BS reaches infinity, the 

uncorrelated thermal noise, intra-cell interference, and fast 

fading effects vanish, and the only impairment resulted from 

the UEs that use the same pilot as the served user remains in 

the effective signal-to-interference ratio (SIR) calculated for 

that UE. This is referred to as pilot contamination. 

II. RELATED WORK 

Various solutions have been proposed to mitigate the effect of 

the pilot contamination by optimizing the pilot allocation to 

the UEs. The work in [5] has designed a greedy tabu search 

(GTS) algorithm with exponential complexity. Therefore, 

GTS is only applicable when the number of cells and users is 

small. The approach presented in [5] has adopted the tabu 

search (TS) method from [6], which has polynomial 

complexity and performance below the GTS. The goal of both 

algorithms is to maximize the normalized system data rate 

expressed in bits/second/Hertz. The authors in [7] have 

proposed a deep learning-based pilot allocation scheme (DL-

PAS) to reduce the computational time related to pilots’ 

assignment algorithms. DL-PAS is a deep multilayer 

perceptron system where the training data is the optimal pilot 

assignments (acquired through exhaustive search) with UEs’ 

locations. Then, DL-PAS provides the pilot assignment given 

UEs’ locations by inferring the relationship between the pilot 

allocation and the UEs’ locations. However, the 

computational complexity in DL-PAS is in the training phase 

because the size of the output label is factorial to the number 

of UEs in a cell, which is still not practical.  

The goal of the scheme in [8] is to maximize the minimum 

achievable rate for the target cell by assigning pilots used in 

the target cell to the UEs in the other cells in a way that 

minimizes the inter-cell interference to the UEs in the target 

cell. The authors in [9] have proposed an iterative pilot 

allocation scheme where each cell solves its optimization 

problem of maximizing the minimum UL signal-to-

interference-plus-noise-ratio (SINR) of its UEs. In the smart 

pilot assignment algorithm (SPA) [9], a cell assigns the UE 

with worst channel quality a pilot sequence that causes the 

least inter-cell interference, and it is carried out for all the UEs 

in the cell. Then, the algorithm is applied sequentially to the 

other cells in the system, and the procedure is iteratively 

applied to maximize the minimum UL SINR of all the UEs. 

Therefore, SPA always accepts the solution proposed by each 

cell. While the schemes in [5] are also based on TS, the 

proposed algorithm is different in the fitness function, tabu list, 

and the mechanism of exploring the neighborhood. E.g., the 

proposed algorithm depends on two matrices to set the 

forbidden rules and the stopping rule vs. a list with a specific 

length [5] that records the solution vectors of past few 

iterations (operates like a queue) to prohibit cycling. Like [9], 

our goal is to maximize the minimum UL SINR of all the UEs 

in the system. Thus, we started by regenerating [9] to serve as 

baseline evaluating our results when the exhaustive search is 

not feasible. 
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III. SYSTEM MODEL 

We consider the UL of time-division duplex (TDD) multi-cell 

massive MIMO system. The system consists of L hexagon 

cells, where each cell has one BS in the center. The BS is 

deployed with M antennas and serves K single-antenna UEs 

[1]. The channel vector from the k-th user in the j-th cell to the 

l-th BS is denoted by 𝐡𝑗𝑘
𝑙  ∈ ℂM. And 𝐡𝑗𝑘

𝑙 = 𝐠𝑗𝑘
𝑙  (𝛽𝑗𝑘

𝑙 )1/2 where 

𝐠𝑗𝑘
𝑙  ~ CN (0, IM) denotes the small-scale fading vector and 

𝛽𝑗𝑘
𝑙 = 𝑧𝑗𝑘

𝑙  / (𝑟𝑗𝑘
𝑙 )

𝛼
denotes the large-scale fading coefficient 

where 𝑧𝑗𝑘
𝑙  denotes the shadow fading, and 10log10( 𝑧𝑗𝑘

𝑙 ) is 

distributed as Gaussian with zero mean and standard deviation 

of 𝜎𝑑𝐵
𝑠ℎ𝑎𝑑; 𝑟𝑗𝑘

𝑙  is the distance between the k-th user in the cell j 

to the l-th cell, and α is the path loss exponent.  

During the UL pilot transmission, a pilot is assigned to each 

UE so that the BS can estimate the channel responses from its 

intended UEs during the current coherence block [3]. Pilot 

sequences are designed to be mutually orthogonal to get rid of 

the interference caused by the transmitting UEs other than the 

intended UE. Since the channel coherence time limits the 

number of unique pilots that can be assigned to the UEs in the 

system [3], typically, the UEs in the same cell are assigned 

unique pilots (no intra-cell interference), while the same set of 

pilots are reused in every cell. Therefore, using the maximum 

ratio combining (MRC), during the UL data transmission 

phase, the UL SINR of the k-th user in the j-th cell can be 

calculated as [9]: 

 

𝑆𝐼𝑁𝑅𝑗𝑘 =
|(𝐡𝑗𝑘

𝑗
)𝐻𝐡𝑗𝑘

𝑗
|2

𝛴𝑙≠𝑗 |(𝐡𝑙𝑘
𝑗

)𝐻𝐡𝑙𝑘
𝑗

|2+ |𝑣𝑗𝑘|2/𝜌𝑑

            (1) 

 

where 𝑣𝑗𝑘 denotes the uncorrelated noise and the intra-cell 

interference, and 𝜌𝑑 denotes the power of the transmitted UL 

data. As M →∞, only inter-cell interference that results from 

reusing the same pilot sequence remains, and (1) converges to 

below [1]: 

 

  𝛾𝑗𝑘 =
(𝛽𝑗𝑘

𝑗
)2

𝛴𝑙≠𝑗 (𝛽𝑙𝑘
𝑗

)2
             (2) 

 

where 𝛾𝑗𝑘is the effective UL SIR, and it only depends on the 

large-scale fading coefficients. Similar to the related works [5], 

[7-9] our proposed algorithm exploits the large-scale fading 

coefficients to optimize the pilot allocation, and our goal is to 

maximize the minimum uplink SIR in the system.  

 

IV. PROPOSED ALGORITHM 

The proposed TS based algorithm starts with the initial UL 

SIRs of the UEs in the system that are obtained by random 

pilot allocation, and the SIRs are calculated using (2). Hence, 

when each cell serves K UEs, each pilot will be shared by L 

UEs. Denote P, a pilot allocation K×L matrix with each entry 

𝑈𝑙𝑖
𝑘 represents an i-th UE from the l-th cell allocated the k-th 

pilot, and i = {1, ..., K}.  

Hence, the k-th row vector of P, pk ≜   P(k, :) = 

{𝑈1𝑖
𝑘 , … , 𝑈𝐿𝑥

𝑘  }is a group of UEs that share the same pilot, and 

x = {1, ..., K}. Accordingly, the l-th column of P represents 

the UEs that are served by the l-th cell that each is assigned a 

unique pilot. Similarly, denote S a K×L matrix that stores the 

SIRs of the UEs that share pilots as recorded in the P matrix. 

Hence, sk   ≜  S(k, :) = {𝛾
𝑈1𝑖

𝑘 , … , 𝛾
𝑈𝐿𝑥

𝑘  } is the SIRs of the UEs 

that are assigned the k-th pilot. Since the goal is to maximize 

the minimum UL SIR in the network, the algorithm computes 

the minimum SIR among the UEs that share the same pilot as 

below: 

 

R(sk) = min (𝛾
𝑈1𝑖

𝑘 , ..., 𝛾
𝑈𝐿𝑥

𝑘 )                   (3) 

 

where R(sk) is the minimum SIR among the group of UEs of 

the k-th pilot (pk). In this work, the tabu list is a K×KL matrix 

where the k-th row represents the forbidden users for the k-th 

pilot, and the tabu list, which is denoted by T = [t <k, 𝑈𝑙𝑖
𝑘

>] K×KL 

will not erase any forbidden UEs until the algorithm stops. We 

also define the matrix D = [d<k, l>] K×L to record the cells that 

will not change pilots’ allocation to their UEs to enhance the 

R(sk) of pk. Therefore, the D matrix is another memory 

structure for the tabu list. Also, the D matrix will lead the 

algorithm to convergence, and the algorithm will stop when 

all the entries of the D matrix change values to 1, which 

serves as the stopping rule.  

In each iteration, the algorithm’s objective is to raise the 

minimum SIR in the system. Hence, it selects the p vector 

with least R(s) (target p) and a second p vector with next least 

R(s) to exchange UEs between these two vectors. Specifically, 

the algorithm swaps the UE with least SIR (least R(si)) with 

UE of the same cell that belongs to the pilot vector of the next 

least R(s). The change will be accepted if the minimum SIR 

among the UEs of the swapped vectors is greater than the least 

R(s). If the change is accepted, the algorithm begins a new 

iteration. Otherwise, the tabu list T records the forbidden 

UE(s) (for the pilot vector(s)) that result(s) in lowering R(s) 

less than the least SIR, and the algorithm selects another p 

vector with next least R(s) for swapping with target pilot 

vector. If all (K-1) pilots’ vectors have already been selected 

and the change has never been accepted, then the tabu list D 

records the forbidden cell index where the cells’ UEs will not 

change their pilots to enhance the R(s) of the target pilot.  

Therefore, in each iteration, the neighborhood of the target p 

selected UE is the (K-1) UEs of the other (K-1) p vectors (one 

UE from each other pilot vector) that will be exchanged with 

selected UE. However, the algorithm does not explore all the 

neighborhood members and then selects the change to keep. 

Instead, the algorithm stops exploring the neighborhood once 

a change is accepted by the fitness function (unlike [5] where 

the neighborhood is explored before the acceptance decision). 

Hence, the fitness function is maximizing the minimum R(s) 

among the p vectors. When the selected UE of the target cell 
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explores all the members in the neighborhood, and the R(s) of 

target pilot does not change, a new iteration begins with new 

UE that will be selected from the target p vector. The selected 

UE will be the one with the next lowest SIR in the target p 

vector. If all the UEs in the target p explore their 

neighborhood, which also means the tabu list D entries related 

to the target p vector all change to 1, then the algorithm takes 

the next pilot vector with least R(s) as the target vector and the 

old target pilot R(s) will be given the Num value. Therefore, 

the Num value is larger than any possible SIR, and the Num is 

increased and assigned to the target p pilot R(s) when its UEs 

explore all their options. Still, the vector with Num value will 

be an option to exchange for other pilot vectors, and the true 

R(s) (rather than the Num value) will be evaluated to decide 

on acceptance or rejection of the swap. In other words, the 

aspiration criterion is implemented through the tabu list D 

matrix. Although the forbidden pilot vector will lose the 

priority to explore, it is still an option for other pilots and 

improving its R(s) is possible until the last p vector explores 

its options. The algorithm would accept the change to raise the 

R(s) of this vector rather than the target vector if it would 

increase the minimum SIR in the system.  

Below is the detailed pseudocode of the proposed algorithm: 

Proposed Algorithm 

Input: K, L, P, S, 𝛽𝑙𝑘
𝑗

, j = {1, ..., L}, l = {1, ..., L}, k = {1, ..., 

K}, Num 

Output: P, S 

 D = 0, T = 0, iold = 0, cold = 0 

 Calculate R(s1), ..., R(sK) for p1, ..., pK using (3) 

 while ∃ d<k, l> = 0 do 

    Sort({R(s1), ..., R(sK)}) ascendingly and save the 

   sorted values in V (1, :) and corresponding pilot 

   number in V (2, :), where V is 2×K matrix  

    i = v<2,1>; x = v<2,2>     

   % v<2,1> and v<2,2> are entries in V matrix   

    Sort(si) ascendingly, and store the corresponding 

   indices of the sorted values (cells’ indices) in o 

    c = o(1) 

    if ((i = iold)˄(c = cold)) ˅ (d<i, c> = 1) 

       count = 2 

       c = o(count) 

       while (d<i, c> =1) ˄ (count ≤ L) 

          count = count+1 

          c = o(count) 

       end while 

    end if 

    SIRleast = R(si); SIRleastnew = -inf; count = 1  

    while (SIRleastnew  < SIRleast) ˄  (count < K) 

       if (t<i, px (c)> = 1) ˅ (t<x, pi (c)> = 1) 

          if count < (K-1) 

             count = count +1 

             x =v<2, count> 

             if count = (K-1) 

                d<i, c> = 1 

             end if 

          else 

             cold = c; iold = i; d<i, c> = 1; q =∑  𝐿
𝑙=1 d<i, l> 

             if q = L 

                Assign Num to the R(si); Num = Num +1  

             end if 

             count = K 

          end if 

          continue 

       end if 

       a1 = pi; a2 = px; Swap a1(c) with a2(c) 

       Calculate SIRs for UEs in a1 using (2) and store 

      in b1 

       Calculate SIRs for UEs in a2 using (2) and store 

      in b2 

       Calculate R(sx), R(b1), R(b2) using (3) 

       SIRleast = min (R(si), R(sx)) 

       SIRleastnew = min (R(b1), R(b2))  

       if SIRleastnew > SIRleast 

          Update V with values resulted from Swap 

          SIRleast = min (V(1, :)); cold = c; iold = i 

          if SIRleast = SIRleastnew 

             if R(b1) = SIRleastnew 

                t<i, a2(c)> = 1 

             else if R(b2) > R(sx) 

                         t<x, a1(c)> = 1 

                    end if 

             end if 

          end if 

          Update P, S, R(si), R(sx) 

       else 

          if R(b1) = SIRleastnew 

               t<i, a1(c)> = 1 

               if R(b2) < SIRleast 

                  t<x, a2(c)> = 1 

               end if 

           else 

              t<x, a2(c)> = 1 

              if R(b1) < SIRleast 

                 t<i, a1(c)> = 1 

              end if 

           end if 

       end if 

    end while 

 end while  

 

 

V. SIMULATION RESULTS 

In this section, we confirm the effectiveness of the proposed 

algorithm through Monte-Carlo simulations. The algorithm 

performance is compared with three alternatives. First, the 

trivial baseline of random pilot assignment (randomly assigns 

pilots to the users in each cell). Second, exhaustive search 

(evaluates (K!) L-1 pilot combinations and choose the one that 

maximizes the minimum SIRs), and third, SPA algorithm (the 

best solution during the non-exhaustive set of iterations is 

chosen).  
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The system parameters used in all simulation are [1]: L cells 

with a radius of 1600m, the cell radius hole (no UE is served 

within this distance) is 100m, α (path loss exponent) =3.8, and 

𝜎𝑑𝐵
𝑠ℎ𝑎𝑑  (the shadow fading standard deviation) = 8dB. Each 

cell serves K UEs, where the UEs are uniformly distributed. 

Shadow fading is added such that a UEs is served by the BS, 

which provides it with the largest large-scale fading 

coefficient (𝛽𝑗𝑘
𝑗

) [3].  

Fig. 1 depicts the cumulative distribution function (CDF) of 

the minimum UL SIR in the system when L=3 and K=6. For 

this small system, exhaustive search is feasible and can be 

used as the performance benchmark limit. It is evident that our 

proposed algorithm’s performance surpasses that of SPA and 

the conventional method. For example, the probability of the 

minimum uplink SIR (dB) below 5 dB is approximately 5% 

using the exhaustive search, 12% using our proposed 

algorithm (iterated KLL times), 25% using SPA (with KLL 

iterations), 35% using SPA (with KL iterations), 49% using 

SPA (with L iterations), and 86% using the conventional 

approach. The only method outperforming our proposed 

algorithm is the exhaustive search. 

 

Fig. 1 CDF of the minimum UL SIR [dB] among all the UEs. 

 

Fig. 1 also shows the more SPA iterated, the better its 

performance; however, letting SPA iterated the same number 

as the proposed algorithm, the proposed algorithm 

outperforms SPA. Moreover, SPA computational complexity 

in each iteration is (LK log K) [9], while the proposed 

algorithm computational complexity is (K log K + L log L) 

where K log K results from sorting the R(s) related to pilot 

vectors, and L log L results from sorting the SIRs of UEs of 

the pilot with least R(s). Hence, the computational complexity 

of the SPA is more than the proposed algorithm. Also, the 

SPA as the proposed algorithm calculates SIRs of the UEs 

using (2) (L2 is the cost of computing the SIRs for two pilots’ 

UEs). Then, the total complexity of the proposed algorithm is 

O (N max {K log K, KL2}), where N is the number of 

iterations and N = KL2. 

Fig. 2 shows the convergence of the minimum UL SIR in the 

network (same setting as Fig. 1) where the minimum UL SIR 

is recorded in each iteration for all the realizations. Then, the 

mean of the realizations has been taken for each iteration. 

However, since SPA has L values of minimum SIR in each 

iteration, we first took the maximum SIR among the minimum 

SIRs of the L iterations, while in the second method we took 

the mean of the minimum SIRs in the L iterations. Then for 

both methods, we took the mean of the realizations for each 

iteration. It is obvious that the proposed algorithm converges 

around 30 iterations (when the D matrix entries change to 1) 

while the SPA algorithm has no convergence pattern. 

 

Fig. 2 The convergence of the average minimum uplink SIR 

(dB) in the system. 

 

Finally, Fig. 3 shows the CDF of the UL SIRs in the network 

when K=40 (is typical in massive MIMO systems [2,3]) and 

L=19 (two hexagonal tiers). The horizontal line indicates the 4 

percent value, and the vertical line indicates 10 dB. At the 

96%-likely UL SIR point, UL SIR is around 10dB using the 

proposed pilot allocation algorithm (iterated KLL times) while 

it is about -6dB using the SPA algorithm (iterated KLL times), 

and -8dB using the conventional approach.  

 

Fig. 3 CDF of the UL SIRs [dB] for all the UEs. The 

horizontal and vertical lines represent 0.04 value and 10dB, 

respectively. 
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An additional merit of the proposed algorithm over state-of-

the-art algorithm (SPA) is the mechanism of learning. 

Although the limitation of the coherence time requires 

immediate calculations to the SIRs using the large-scale 

coefficients instead of learning from the sensed values (SIRs), 

the proposed algorithm could learn from the environment 

using the tabu list. In contrary, the SPA needs to prioritize the 

assignment task according to the precise information about, 

for example, the large-scale characteristics of the fading 

channels between UEs and their serving BS to assign pilots to 

the cell’s UEs. 

 

VI. CONCLUSION 

We have proposed an algorithm that optimizes pilot 

assignment to the UEs in the asymptotic massive MIMO 

system. The proposed algorithm is superior to the state-of-the-

art in terms of computational complexity, accuracy, and it has 

an inherent learning mechanism.  
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