
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1239

Visualization and Synchronization of Object-oriented Programs using

Re-engineering Approach

Ahid Yaseen

Department of software engineering
Zarqa University, Zarqa, Jordan.

Hamed Fawareh

Department of software engineering
Zarqa University, Zarqa, Jordan.

Abstract

Software visualization considered as an essential approach in
software maintenance. This visualization approach used to
increase system understandability. In this paper, we proposed
a Maintenance Visualization and Synchronization Tool
(MVST). The tool developed to visualize and synchronize the
object-oriented program during the maintenance process.
MVST combine several tools to achieve their objectives. The
first one, java CC &Coco/R to transfer the code written by
Java and C++ to Abstract syntax tree and textual input.
Second tool CSSFormatter to produce the scalable Vector
Graphics (SVG) form the Textual Input. MVST extract the
information from SVG and send the extracted data to the third
tool PlantUML based on setting rules to produce a
MetaModel. At this stage, we allow maintainer to modify on
the UML diagram. The fourth tool JAD to decompile the
modified code. MVST constructs diagrams from existing
Object-Oriented code in both static and dynamic forms.
Maintainer changes the static and dynamic diagrams to reflect
directly to the source code.

Keywords: software visualization, software reengineering,
software maintenance

1.0 INTRODUCTION

Large applications build thousands Line Of Code (LOC),
which have a huge number of classes and complex
components. That makes maintaining software more hard and
complicated, precisely without written documentation, and
lack standardization of code. Also, the code understanding
will be a hard and consuming effort.

Object-Oriented Programs contains huge dependencies and
various relations between modules. Nevertheless, the
relationships have multi types of associations between classes
and objects. These associations mentioned as inheritance,
realization, composition, and aggregation. Each one has a
multiplicity of direct association or reflexive one [1].

Maintained application has enormous numbers of relations.
That is undoubted, make relationships discovery a bit hard on
maintainers and with difficulty, especially when do it
manually. Thus, an auto visualization tool is a better choice in
regards to saving times and improved coverage.

Most of the researchers in our literature reviews concern on
developing a tool to help maintainer on the comprehensive
and understanding source code. However, build visualization,
and synchronization tool is challenge research for all UML
diagram, in light of unstructured programming. Furthermore,
only 7% of visualization researches used efficient evaluation
method [2]. Moreover, Raibulet et al. [3] mentioned only 20%
of reverse engineering researches concern on UML Models
visualization as a maintenance process.

Integrated the static and dynamic visualizations during
maintenance OOP environment is a motivation in this
research; thus, we proposed a Maintenance Visualization and
Synchronization Tool (MVST), which supports Reengineering
concepts with high comprehension with both static and
dynamic dependencies.

This paper focuses on generating a visualization and
synchronization maintenance tool. The approach of this paper
will help to increase the rate of comprehension software and
better program understanding. The proposed tool aims to
reduce maintenance effort and cost. Moreover, make software
enhancement more efficiently to be suitable with new
requirement during the maintenance phase. The developed
tool in this paper will achieve: reduce efforts and costs
consumes in the maintenance phase, enhance the perfective
modification process by generating appropriate synchronized
tool and make automated re-engineering process more
efficient.

2.0 RELATED WORKS

In recent years, there has been an increasing amount of
literature on reengineering and the effect on maintenance.
Various approaches to reverse engineering and software
visualization, concern on static and dynamic transformation.

Martinez et al., [5] used RE to visualize source code to
sequence diagrams. Based on source code visualization, the
researchers created a class model as an initial phase and then
converted it to sequence diagram via Object Constraint
Language (OCL). These models help describe the dynamic
structures only. The researchers did not employ a full
reengineering concept but only created a visualization source
code without synchronizing with a sequence diagram.

mailto:ahidyaseen@gmail.com
mailto:fawareh@zu.edu.jo
mailto:fawareh@hotmail.com

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1240

Améndola [6] and Bruneliere et al.[7] proposed model-driven
reverse engineering for representing the legacy systems called
Model Discovery (MoDisco). This model based on two steps
start with detecting and finding primary artefacts in legacy
systems, then understanding and creating models. MoDisco
applied into java, JEE, and XML platform. The proposed idea
centres on just visualization the source code. Hence, it has a
shortage of alteration and refinement phases on the re-
engineering of the source code.

Garzón et al., [8] visualized the Object Oriented (OO) into
UML called using a tool called Umplification. Umple is an
open source code support, C++, PHP, Java and Ruby
languages. The tool concern with refactoring system, by an
incremental stepwise transformation of source code. The
Umple approach is an increment approach does not deal with
a large system. Umple visualizes source code to state machine
only does not involve Static and dynamic structures.

Fawareh [9] developed an approach to solving the same
problem, but without completing the reengineering concepts.
The approach taken divides reverse engineering into three
significant levels. First one uses class level: extract the classes
and relationships — second level concerned with method
level: extract method association with themselves and with
variables. The last turn focuses on the lower level, statement:
explain association types. This approach did not provide
synchronized visualization.

Synchronized UML diagrams approach in many
programming; web-based and in OO programming. Several
tools used to support static and dynamic forms. Then merge
dynamic and static. Subsequently, transfers source code to
both views using suggested tools called PlantUML, Java
visualizer, JaguarCode and Javelina. The differences between
these tools in programming language and environment [10].

Merging both forms static and dynamic into one tool is a good
idea. However, this research focused on representing class and
sequence diagrams for educational purposes. Also, that simple
tool could not detect any errors in the maintenance phase.

3.0 MAINTENANCE VISUALIZATION AND

SYNCHRONIZATION TOOL (MVST)

This research proposes Maintenance Visualization and
Synchronization Tool (MVST). Essentially, MVST visualizes
the Object Oriented Programming (OOP) source code to both
Unified Modeling Language (UML) structure views: static
and dynamic. Furthermore, MVST allows the maintainer to
enhance the program directly to static UML Diagrams.
Subsequently, any modification for enhancement will
concurrently reflect directly to source code and vice versa,
this means to generate a new system as a Forward
Engineering phase.

As the Reengineering concept, MVST has three main
activities: Reverse engineering, Alteration and Forward
Engineering. Figure.1 shows the research methodology.

Figure 1: MVST methodology

Current researches concerning on visualizing single view of
UML and does not involve synchronization process.
Moreover, all of them visualize the structured code only.
Thus, the MVST proposes to achieve the following goals:

 The various format of visualization of the standard and
unstandard system. To help the maintainer to understand
source code, and increase programming comprehension
by supporting the two structures of UML view: static
and dynamic. Starting from each line of code that
executes, to the whole classes and methods.

 To create a chance to keep the maintenance phase and
program enhancement rapidly and efficiently.

 To re-engineer the modification in multiprogramming
language considering OOP.

3.1 MVST Approach

MVST applies the reengineering method on one part of the
system only, and then it integrates the non-engineered part of
the system. Thus, MVST follows partial reengineering
approach.

The partial approach is divided into three main steps as
follow:

• Firstly, the maintainer has to split the current system into
many parts: Only one part has to re-engineer, and others
have to re-engineer lately.

• Secondly, MVST performs the reengineering work using
the Big Bang .

• Thirdly, applies the integration between the components,
to produce the new system.

 External Tools

MVST utilized external tools with some modification in their
source code to deal with MVST contribution, which has a
significant role in supporting the research and facilitate the
implementation process. Similarly, it is most flexible and has
a shorter development time. This section explains all the tools
and describes its importance.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1241

 Coco/R

Coco/R is a parser and compiler generator considerable with
several languages including Java, C# and C++. Furthermore,
Coco/R converts the code to text, to be readable via JavaCC
parser. This text translates from several OO programming
language [11].

MVST hire Coco/R at the first phase based on its job as
virtual machine parser. That deals with JavaCC parser to
support various languages in the visualization process.

 JavaCC Parser

JavaCC is "an open-source analyzer and parser generator and
lexical analyzer generator written in the Java programming
language" [12].

Besides, JavaCC splits the code into tokens based on some
formal grammars. JavaCC also generates lexical analyzers.
Moreover, JJTree includes in JavaCC that is tree builder.

MVST using JavaCC for parsing and analyzing OO source
code to textual input, by removing comments and other minor
parts to be able to convert it to Scalable Vector Graphics
(SVG).

 PlantUML

PlantUML is a web-based open-source visualization tool that
supports Reverse Engineering to create UML diagrams from a
plain textual description in simplified Scalable vector graphics
(SVG) form [13].

PlantUML can generate several UML diagrams from structure
code only: Sequence and State machine diagrams as a
dynamic structure. Also, Class, Use-Case and Object diagram
as a static structure.

PlantUML defines some rules and keywords to generate class
diagram and realize classes and relations from structured OOP
only. For instance, it searches about "interface" keyword for
defining Interface class. As well, "abstract, static" keyword
indicates the type of class and method. Nevertheless, for OOP
concepts like inheritance PlantUML searches about "extend"
keyword, etc.

 Customized PlantUML

Customized PlantUML: For the primary purpose, we made
some changes to be able to visualize unstandard code too. To
achieve this point we setting out our own new rules, such as
adding, inserting new colourful diagrams options and defined
the candidate dependencies. These rules and theory explained
in MVST model.

 NBJAD

NBJAD (NetBeans Java Decompile) is plug-in source codes
integrate JAD DEcompilation with NetBeans for java code.
De-compiler means of "taking an executable file as input, and
attempts to create a high-level source file that can be
recompiled successfully" [14].

MVST needs de-compiler at refinement phase for
decompiling the executed code to the source code before de-
compilation directly.

3.2 MVST Model

This section explains the proposed MVST model. MVST is
partially automated tool concern on perfective maintenance
and programming comprehensive. Hence, the maintainer has
to involve the modification process. Figure 2 shows the
MVST process.

Figure 2: MVST process

MVST divides the task into specified steps, shown in details
as follows:

Firstly, Coco/R parses the source code written in Java/C++ or
ruby language syntax to the Virtual Machine (VM). The
Coco/R parser is working on the source code by transforming
it to Abstract Syntax Tree (AST). Intending to access several
programming languages and including a large number of
applications.

Secondly, JavaCC analyzes the AST, to view the important
information and exclude all unimportant semantics, for
instance, comments. This output is called Textual Input.

Thirdly, the CSSFormatter tool produces the Textual Input to
Scalable Vector Graphics (SVG). That is needed to utilize an
external tool.

Fourthly, MVST sends SVG to External tool called PlantUML
that receives the SVG and extract the classes, objects and
elements based on some specific rules integrated by this
research rules and PlantUML MetaModel.

MVST Not only draw and view the static diagrams but also,
will represent Dynamic views when SVG compiled.

The visualized views synchronized with the original source
code. Thus, any modification on static views has to refine
again with rules. The main challenges face MVST is to
modify compiled code, so MVST using JAD to decompile the
codes.

 The first step on refinement is to parse the output. The
NBJAD will analyze and transform models into syntax
forms.

 Eventually, MVST will generate source code again

Class Diagram Visualization: class diagram consists of
necessary elements to display all relations and dependencies.
This part demonstrates how to convert SVG to the class
diagram in particular.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1242

In principle, MVST needs to define specific rules based on
definitions, our experience in coding and the literature review
for extracting and producing a class diagram, the rules set as
follows:

Classes Relations: The class is a set of objects created as a
group. Each class connects with others through links that have
different types of relations. This rule of this relation is
describe as follow:

Case1:

(∃𝐶1. 𝑣 𝑛𝑎𝑚𝑒 == 𝐶2 𝑛𝑎𝑚𝑒 ˅ ∃𝐶2. 𝑣 𝑛𝑎𝑚𝑒 =
= 𝐶1 𝑛𝑎𝑚𝑒)
→ 𝐶1, 𝐶2 ℎ𝑎𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

Case2:

∃ 𝐶1 𝑜𝑏𝑗1 = 𝑛𝑒𝑤 𝐶1(. .)˄𝐶2 𝑜𝑏𝑗2 = 𝑛𝑒𝑤 𝐶2(…)
→ 𝐶1, 𝐶2 ℎ𝑎𝑠 𝑎𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

Case3:

∀ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐶1 ∃ 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝐶2
∴ 𝐶1, 𝐶2 ℎ𝑎𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

Case4:
∃ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐶{. . 𝐶𝑙𝑎𝑠𝑠. 𝑚1()}

𝐶1. 𝑜𝑏𝑗. 𝑚1(𝐶2. 𝑜𝑏𝑗)

∴ 𝐶1, 𝐶2 ℎ𝑎𝑠 𝑎𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

o Dependency (Cause-Effect Association): indicates that
changes to one class can cause changes in another class.

∃ 𝐶2 𝑜𝑏𝑗2 = 𝑛𝑒𝑤 𝐶2 & 𝐶1. 𝑀1(𝑜𝑏𝑗2)
→ 𝐶1 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝐶2

o Aggregation: describe a class as a part of, or as
underlying to, another class. C1 is part of C2. However,
if C2 deleted that is not necessary to delete C1.

∃ 𝐶1{ 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐶2[] 𝐴𝑟𝑟𝑎𝑦 = 𝑛𝑒𝑤 𝐶2[10] … . }

o Composition: identify the lifetime of the part classifier is
contingent on the lifetime of the whole class.

∃ 𝐶1{ 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟(){𝑓𝑖𝑛𝑎𝑙 𝐶2 𝑜𝑏𝑗2=𝑛𝑒𝑤 𝐶2()}}

∴ C1 owns the responsibility of creating the C2.

o Generalization: that a specialized (child) class based on a

general (parent) class.
∃𝐶2 (∀ 𝐶1. 𝑚 & 𝐶1. 𝑣)

∴ 𝐶2 ⊆ 𝐶1

Explaining the prototype in more details and mentions the
reasons for limitation.

Static Diagram Modification

After visualization, the modification process starts. we
describe the modification types, which the maintainer could
do on the class diagram, as an Alteration activity. Figure 3
shows the operation on a class diagram.

Adding Process

Virtually, adding new features is too essential in perfective
maintenance, where the maintainer adds new variables or
methods. MVST provides this addition at the class diagram
level to facilitate the maintenance phase. That is to say, the
class diagram in MVST implement as a Stack Data Structure,

Deleting Process

In practice, maintenance maintainer rarely needs to eliminate
some features. MVST provides trait of deleting some features,
which depends on maintainer experience. This modification
includes variables, methods or the whole class. After that,
MVST pops the determined item out of the stack. Virtually,
the deleted object not really deletes, but only masks the
relations temporary.

- Determine the method to delete

- Tracing all related parts of coding (show them at real time)

- Display a Pop-up message to ensure the maintainer intended
the action

- Mask the methods as comments

- After a while, if the maintainer does not need a method and
all related parts will delete. This feature used traceable
algorithms to achieve this goal.

Changing Process

There are many simple changes needs in maintenance.
Markedly, changes include modifying types or multiplicity.
Thus, MVST firstly searches about the variable that required
changing type, secondly viewing any confused types or data,
afterwards, MVST modifies the selected type, and surely, a
modification will be fulfilled after it is agreed upon asking the
maintainer.

Renaming Process

Rename classes and variables more efficient when many
maintainers named classes with a different name. MVST
provides rename feature to simplify the correction process.

Dynamic Structure Visualization

Dynamic structures include several diagrams. MVST decided
to visualize sequence diagram because of its importance
during the analysis and design of OO systems.

Sequence Diagram Visualization

The sequence diagram is one of the dynamic structures, which
means to visualize after compiling the SVG of source code.
Initially, a sequence diagram concerns on an interaction
between object and system involving the time.

MVST read internal code specifically the operation's body so
that MVST could recognize the method invocations. Then
drawing sequence diagram depends on the invocations result
at runtime.

For more details, sequence diagram represents one method,
and his calls act as messages. Moreover, the dependencies
between classes represent in sequence diagram too.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1243

Object's Relations:

(𝑖𝑓 𝐶2 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐶1)˄ (∃ {𝐶1 𝑜𝑏𝑗=𝑛𝑒𝑤 𝐶2();
𝐶1.𝑚2(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)})↔𝑜𝑏𝑗1 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 𝑜𝑏𝑗2

Figure 4.7 below illustrates a sequence diagram and shows the
Activation bar. Activation bar brings to light the life of object
which still active during messaging.

Message name: ∀ 𝑨𝒕𝒕=𝒎𝒆𝒔𝒔𝒂𝒈𝒆 𝒏𝒂𝒎𝒆

Synchronous message: occurs if the sender sent message to
receiver one and block or waits to process. ∃(𝑖𝑓 𝐶2
𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐶𝑙𝑖𝑠) ˄ ∃ 𝐶1 𝑜𝑏𝑗 = 𝑛𝑒𝑤 𝐶1(); 𝐶𝑙𝑖𝑠
𝑜𝑏𝑗 = 𝑛𝑒𝑤 𝐶2(); 𝑜𝑏𝑗.𝐶𝑙𝑖𝑠 𝑚 (𝑜𝑏𝑗); 𝑜𝑏𝑗.𝐶1 𝑚 (); ∴𝒎𝒆𝒔𝒔𝒂𝒈𝒆
𝒊𝒔 𝑺𝒚𝒏𝒄𝒉𝒓𝒐𝒏𝒐𝒖𝒏𝒔

Asynchronous message: the calling process does not block the
program from the code execution. ∃ 𝑛𝑒𝑤 𝑇ℎ𝑟𝑒𝑎𝑑(𝑛𝑒𝑤
𝑅𝑢𝑛𝑛𝑎𝑏𝑙𝑒()→𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑛𝑠

Reflexive message: object send message to itself. ∃
𝑜𝑏𝑗𝑒𝑐𝑡.𝑚(𝑡ℎ𝑖𝑠)→𝑜𝑏𝑗 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑖𝑡𝑠𝑒𝑙𝑓

Object Diagram Visualization

Object diagram "An object diagram is a graph of instances,
including objects and data values. A static object diagram is
an instance of a class diagram; it shows a snapshot of the
detailed state of a system at a point in time. The use of object
diagrams is fairly limited, namely to show examples of data
structure" [15].

Object diagrams will visualize after the compilation process.
The object diagram is related to the class diagram, so this
needs to create classes first then create an object diagram.

Object Names: ∀ 𝐶1→∃ 𝐶1 𝑜𝑏𝑗=𝑛𝑒𝑤 𝐶1();↔𝑜𝑏𝑗==𝑜𝑏𝑗
𝑛𝑎𝑚𝑒

Or, ∃ 𝐴𝑟𝑟[] 𝑜𝑏𝑗=𝑛𝑒𝑤 𝐴𝑟𝑟[]→𝑜𝑏𝑗=𝑜𝑏𝑗 𝑛𝑎𝑚𝑒

Object Attributes: ∀ 𝐶.𝑣 =𝑜𝑏𝑗 𝐴𝑡𝑡 ~ 𝐶.𝑠𝑡𝑎𝑡𝑖𝑐 𝑣∉𝑜𝑏𝑗 𝐴𝑡𝑡

At programming runtime, every value of an object sign to obj.
Att is set as the value. Also, all dependencies between objects
are related to class diagram dependencies that are already
mentioned before.

4.0 MVST Application

MVST aims to increase the quality and efficiency of the
maintenance process, which provides high comprehension of
source code by visualizing the program, to facilitate program
understanding. Therefore, we need to develop MVST to prove
the research theory and observe any effects of the proposed
tool.

Significantly, developing a full version of MVST will take a
time. Nevertheless, it will be costly as it needs huge effort and
professional team. Thus, the researcher decided to limit the
implementation of building a prototype focusing on one part
only of the whole model.

Furthermore, in light of choosing the best-selected part, the
researcher looked for the most essential and significant

diagram that directly affects the program understanding and
views software structure. This research found that the best
choice to consider in this research was to manipulate the class
diagram because of its positive impact on maintenance. Thus,
to employ a case study approach the researcher chose to
visualize and reengineer the class and sequence diagram.

Figure 3: MVST system overview

MVST Platform: MVST is being developed on NetBeans
Integrated Development Environment (IDE), which is written
in Java programming language. Java is selected based on the
platform independently. In another word, the MVST java
source code can run on all operating systems. The target users
of MVST are object-oriented maintainers, for valuable
understanding. Also, maintainers will use it for modification
purpose. Figure 4 shows flowchart for Visualization phase
includes Classes' Relation determining.

Figure 4: Relations Flowchart

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1244

Case Study

An inventory management system is a system that consists of
both software and hardware. This system track items and
goods, including each process from production to
warehousing to shipping.

Inventory management system plays a significant role in
business, which analyzes the entered data, predicts the future
demands, pricing and creates frequently reports.

Furthermore, there are many advantages of using inventory
management system: start with providing the best
organization of costs and cash flow. Nevertheless, it is an
excellent way to increase work efficiency and expand up to
date data.

On the other hand, an inventory system is very complex
structures and expensive systems.

To resolve the comprehension issue, the MVST has chosen to
visualize the system to a class diagram for the whole system
and provide a chance for maintainers to select a short method
of the class diagram. Currently choosing the quick process of
what needs maintenance allows the maintainers to understand
it quickly.

Then, the process addition methods of the MVST tool as well
as the class renaming done by the maintainer. Figures 6.1-6.5
below show classes diagrams of multi methods of inventory
system.

MVST Evaluation

To evaluate MVST, the researchers presented the tool and two
selected case studies and the points of views of software
maintenance experts. There are many characteristics of the
chosen experts to start with their background in their software
engineering, their experience in software maintenance and
java coding. In this research, the researcher followed Nielsen
heuristic evaluation (Nielsen, 1994)

Therefore, the choice of an expert's set is divided into three
Groups:

"Group 1" includes maintainers of selected case studies. This
group had to use MVST in the comprehension compared to do
it manually. Moreover, they evaluate MVST features and
assess the MVST relation's suggestion. Table 1 below
expresses Group 1.

Table 1: Group 1

*C.S: Computer Science, S.E: Software Engineering, BA:
Bachelor.

"Group 2" concerns maintainers who have a master degree in
software engineering and their knowledge on development for
more than one year. They had to evaluate MVST depending
on maintenance principles and its effectiveness. Table 2
indicates Group2 information

Table 2: Group2

"Group 3" interests on java maintainers that have a good
background in maintenance and more than two years of
programming experience. This group had to assess MVST
Design as an End-user from the usability side. See Table 3.

Table 3: Group3

The total number of participants is twelve persons that are
good depends on Nielsen evaluators numbering
recommendations.

At the evaluation training process, the participants give tasks
based on what they had learnt. Furthermore, there are two
categories of systems used during tasks; small systems have 2-
4 KLOC, and medium systems have 10-14 KLOC. Table 4
shows the tasks given to participants:

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1245

Table 4: Participants' Tasks

There is a positive relationship between a maintenance
experience and a cognitive of reengineering importance. In
this research, the researchers asked participants to assess
MVST usefulness. The high experience in maintenance makes
the assessment more transparent.

Figure 4 displays the relationship between the maintenance
experience and the MVST evaluation. Where number 5 is the
highest value of assessment and number 0 is the lowest value.
Y-axis cross maintenance years, while X-axis cross
participant number.

Figure 4: MVST Usefulness and maintenance experience

The chart expresses that MVST is very useful and has a
significant role in maintenance phases. Nevertheless, most
participants who have high expertise believe that visualizing
the code into the class diagram and reengineer have a
significant influence in software maintenance.

MVST Usability

Usability of the MVST focuses on four types: easy to use as a
first time, easy to learn after training on the tool, number of
steps acceptance needs to visualize and reengineer code and
number of helps acceptance.

The participant's assessment shows the easy to learn of
MVST. 91% of participants evaluate MVST as easy to
determine where value 5 is the highest value of outstanding,
9% assess MVST as value 4, and nobody assesses 0/1/2/3
benefits. This data indicates a high level of easy to learn.

While MVST easy to use evaluation presents as follows: value
5 occupies 83.3% of the total assessment, while 16.7% of
participants assess value 4 for easy to use, and 0% of
participants choose another value.

The number of steps acceptance has a significant impact on
the End-user impression. The result indicates the high
satisfaction of participants about the number of steps required
to complete tasks.

Moreover, the number of help needs impacts directly on the
tool usability, so the researchers asked participants about their
satisfaction.

Tool effectiveness means of the degree to which MVST is
successful in decreasing effort time and producing the desired
result of comprehensive. The effectiveness survey by
participants shows 75% of participants Rate the MVST idea as
5, and 25% of them assess the tool as four value. This
percentages is acceptance and indicates high satisfaction of
MVST

CONCLUSION

This paper addressed the problem of software maintenance
that considered as one of the most difficulties facing the
maintainers, such as the lake of documentation and
programmers changing. Researchers found software
visualization the best way to speed up the maintenance
process in an efficient way.

The main contribution in this thesis is to visualize
unstructured Object-Oriented code in both static and dynamic
views of Unified modeling language (UML), to make the
program comprehensive more efficiently. This contribution
creates a better chance for the maintainer of the understanding
program quickly.

Another contribution is to produce new rules of extracting
unstructured code, based on program behavior not only codes
syntax "keywords". This contribution makes more probability
of discovering relationships missed.

The last contribution is to facilitate perfective maintenance of
existing static diagrams to reflect directly to the code.

REFERENCES

[1] . Goyal, G., & Patel, S. (2012). Importance of
inheritance and interface in OOP paradigm measure
through coupling metrics. Int. J. Appl. Inf, 4, 14-20.

[2] . Merino, L., Ghafari, M., Anslow, C., & Nierstrasz,
O. (2018). A systematic literature review of software
visualization evaluation. Journal of Systems and
Software, 144, 165-180.

[3] . Raibulet, C., Fontana, F. A., & Zanoni, M. (2017).
Model-driven reverse engineering approaches A
systematic literature review. IEEE Access, 5, 14516-
14542.

[4] . Briand, L., Labiche, Y., & Leduc, J. (2004). Towards
the reverse engineering of UML sequence diagrams
for distributed, multithreaded Java software. Carleton
University, TR SCE-04-04, 1-85.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1239-1246
© International Research Publication House. http://www.irphouse.com

1246

[5] . Martinez, L., Pereira, C., & Favre, L. (2014).
Recovering sequence diagrams from object-oriented
code: An ADM approach. Paper presented at the
2014 9th International Conference on Evaluation of
Novel Approaches to Software Engineering
(ENASE).

[6] . Améndola, F., & Favre, L. M. (2013). Science &
engineering software migration: Moving from
desktop to mobile applications. Paper presented at
the V International Conference on Computational
Methods for Coupled Problems in Science and
Engineering (España, 17 al 19 de junio de 2013).

[7] . Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F.
(2014). Modisco: A model driven reverse
engineering framework. Information and Software
Technology, 56(8), 1012-1032.

[8] . Garzón, M. A., Lethbridge, T. C., Aljamaan, H., &
Badreddin, O. (2014). Reverse engineering of object-
oriented code into umple using an incremental and
rule-based approach. Paper presented at the
Proceedings of 24th Annual International Conference
on Computer Science and Software Engineering.

[9] . Fawareh, H. J. (2016). Reverse Program Analyzed
with UML Starting from Object Oriented
Relationships. International Journal of Computer
Science and Information Security, 14(3), 40.

[10] . Yang, J., Lee, Y., Gandhi, D., & Valli, S. G. (2017).
Synchronized UML diagrams for object-oriented
program comprehension. Paper presented at the 2017
12th International Conference on Computer Science
and Education (ICCSE).

[11] . www.Structured-parsing.wikidot.com, last visit 20th
of July 2019

[12] . www.Javacc.org, last visit 20th of July 2019

[13] . www.PlantUML.com, last visit 20th of July 2019

[14] . Emmerik & Waddington, "Using a decompiler for
real-world source recovery", 11th Working
Conference on Reverse Engineering, Delft,
Netherlands, Netherlands 2004.

[15] . Bézivin, J. (2001). "From object composition to
model transformation with the MDA". TOOLS USA
2001: Software Technologies for the Age of the
Internet, 39th International Conference & Exhibition,
Santa Barbara, CA, USA, July 29 - August 3, 2001.

https://ieeexplore.ieee.org/xpl/conhome/9462/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9462/proceeding

