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Abstract  

In this paper we present a fast size-invariant method for 

binary image matching. The method, called Dissimilar 

Detection via Mapping (DDM), is based on probabilistic 

matching models that can quickly detect dissimilarity between 

binary images regardless of image size. Dissimilarity 

detection is performed quickly by comparing only a few 

points (pixels) between the images. As a result, image 

matching can be performed fairly quickly. A complete 

detailed analysis of DDM and the mathematical proof of its 

superiority over other methods as images become big is given.  

We compare DDM to three of the most popular matching 

methods employed in the image processing arena: image 

correlation, sum of the absolute difference and mutual 

information. We show that DDM is magnitudes faster than 

these methods –if the images are not small. Furthermore, we 

show how DDM can be used as a pre-processor for other 

matching methods to speed up their matching speed. In 

particular, we use DDM with image correlation to enhance the 

latter’s performance. Test results are presented for real images 

varying in size from 16 kilo-pixels to 10 mega-pixels to show 

the quickness of the method and its size-invariance.  

Keywords:  Binary image, image matching, size invariance 

matching, image correlation, image mapping, big image, 

image retrieval, sum of the absolute difference, mutual 

information 

 

NOMENCLATURE 

corr: Pearson's correlation coefficient 

cov: the Covariance matrix 

dH: Binary Hamming distance 

D: Distinct-dissimilar images;  = 0 

DC: Detection confidence  

DDM: Dissimilar Detection via Mapping 

E(A): Shannon entropy of A 

E(A,B): Joint Shannon entropy between A and B. 

E[p]: Expected value of p 

IB: Best image match 

Iq: Query image being matched  

Ii: Candidate image i from an image database 

I: Image database consisting of N images 

Lmap: Maximum number of mappings attempted to detect 

dissimilarity 

MI: Mutual Information. 

MRN: Number of mappings required to detect dissimilarity 

N: Total number of images of a database 

Nd: Number of dissimilar images detected from the database 

Ns: Number of similar images detected from the database 

n: image size. 

nc: critical image size; image size at which ηD,x = 1 

Pr: Probability of detecting dissimilarity between two images  

Po: Probability mass function  

Q: Quasi-dissimilar images; 0 <  < 1 

PMM: Probabilistic Matching Model  

PMMBI: Probabilistic Matching Model for Binary Images 

p: Number of  mappings 

R: Dissimilar images;   1 

rx: Ratio of time taken to match a single pixel between 

method-x and DDM 

S: Similar images;  = 1 

SADM: Sum of the absolute difference method 

SMD: Simple matching distance (Sokal-Michener distance). 

SSDM: Sum of the square difference method 

SD: Sum of the absolute difference distance 

SS: Sum of the square difference distance 

tp,d: Amount of time taken for DDM to map image pixels until 

pairs of images are determined to be dissimilar.  

t*p: Amount of time taken to map pixels between two images 

until Lmap is exhausted 

tp: Amount of time taken to map a single pixel.  

Tp: Total detection time for DDM to compare a query image to 

all images in a database set 

Tx: Detection time that method-x takes to match a query image 

to all images of a database to determine dissimilarity.  

xt : Mean time taken by method-x to determine an image pair 

to be dissimilar 

tx: Matching time per pixel for method-x 

D: Dissimilarity operation to be applied to the whole images. 

S: Similarity operation to be applied to the whole images. 

: Percentage of highly similar image pairs found when 

comparing a query image to the images of a database 

: Binary similarity distance 

L: maximum expected similarity value () at which images 

will be detected based on Lmap 

: Mean value of the similarity between the query image and 

the detected dissimilar images 

ηD,x: Ratio of the number of images processed by DDM for a 

single image processed by method-x to detect dissimilarity 

between two images. 

: Standard deviation.  
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I. INTRODUCTION  

The problem of image matching arises frequently in the field 

of image analysis under many topics such as, image 

registration [1] [2], template matching [3] [4], object tracking 

[5] [6] and video processing [7] [8]. Matching methods can be 

classified as either feature-based that rely on some method of 

extracting key salient image features and then matching these 

features (e.g. SIFT [9]), or area-based methods (also referred 

to as direct or intensity methods) that are based on comparing 

pixel image intensity values directly without feature extraction 

(e.g. image correlation [10]). Attempting to extract features 

from binary images is difficult due to the fact that they have 

two intensity levels only, resulting in a limited amount of 

scene detail. This makes feature-based methods difficult to 

apply and area-based methods seem to be the method of 

choice. However, area-based methods suffer from a serious 

handicap; they become very slow when the images are big. 

Image correlation and image subtraction [11] are perhaps the 

two most popular area-based methods for image matching and 

suffer greatly from this handicap. As a result, much research 

has been devoted to improving the performance of these 

methods [12] [13] [14]. Nevertheless, the size dependency 

problem of these two methods is still an unsolved problem, 

and is the most serious obstacle facing the continuous use of 

these methods for big images.  

In general, when matching a query image to a database of 

images, using image correlation –or any other intensity-based 

method– a similarity operation S is applied to the whole 

images to find the best match (other methods may apply a 

dissimilarity operation D). The candidate image that produces 

the maximum similarity with S (or minimum dissimilarity for 

D) is selected as the best image match IB, i.e.,    

 ),(βmaxarg),( iqS
i

qB IIIII 
 

Ii  I          (1)  

 or       

 ),(βminarg),( iqD
i

qB IIIII       Ii  I          (2) 

where, 

I = {I1, I2, …, IN}      (3) 

Iq is the query image being matched and Ii is the candidate 

image from an image database (I) consisting of N images. 

Because S (or D) is applied to the whole image, these 

methods are image-size dependent; as size increases, more 

processing time is required. Today, with imaging applications 

producing high resolution images (e.g. 40 giga-pixel images 

[15]), these methods are not only computationally intensive, 

but are rather impractical. Even with today’s powerful 

computers, attempting to match such big images to databases 

consisting of tens of thousands of images, is simply 

impractical. The dependency on image size is a serious 

handicap to image matching that has not been fully addressed. 

One approach to quick matching is to scan the images quickly 

and discard any dissimilar images, and then only match 

images that have not been discarded as dissimilar; this is the 

approach we present. In this paper, we present and analyze a 

fast method for detecting dissimilar binary images. To detect 

dissimilarity among images we apply, 

 ),(βminarg),( oo i
'
D

i
B IIIII 

 
Ii  I    (4) 

D differs from D in that it detects dissimilarity by searching 

in similarity space. This is performed by exploiting the 

amount of similarity that exists (or is absent) between the 

images probabilistically. As a result, only few points (i.e. 

pixels) are compared rather than the whole image. This is true 

regardless of image size. This method is called the Dissimilar 

Detection via Mapping (DDM) method and is based on two 

established probabilistic models: the Probabilistic Matching 

Model (PMM) for binary image matching [16] and the 

Probabilistic Matching Model for Binary Images (PMMBI) 

[17]. In this paper we show that when images are dissimilar, 

DDM will always outperform current image-size dependent 

state-of-the-art similarity methods and hence detect 

dissimilarity quicker. On the other hand, when images are 

highly similar (i.e. near-duplicate, near-similar or exact 

replica) and dissimilarity cannot be detected, we show that 

DDM can still be used to estimate the similarity between the 

images with high confidence. The relative performance of 

DDM to other methods increases as image size increases due 

to its size invariance; the number of points required to detect 

dissimilarity remains constant and is not a function of image 

size, but rather a function of the amount of similarity between 

the images. We compare the performance of DDM with other 

well-established fast matching methods and show its 

superiority in detecting dissimilar images. We also show that 

DDM can be used with other matching methods to speed up 

their matching speed performance. As an example, we show 

this by applying DDM as a quick and efficient pre-processor 

for image correlation and show how it can speed up the 

matching process considerably, particularly for big images. 

After this brief introduction, the remainder of this paper is 

organized as follows: section 2 points out related literature by 

briefly presenting other matching methods, and reviews 

previous work related to our research, where PMM, PMMBI 

and the  binary similarity measure are summarized. Section 3 

presents the main theme of this paper and begins by 

explaining the strategy followed to detect dissimilarity quickly. 

Two algorithms are presented; one for dissimilarity detection 

and the other for using DDM with other matching methods for 

similarity detection. Section 4 introduces performance 

measures and presents a detailed analytical development and 

discussion of these measures. Section 5 presents tests 

conducted on real image sets of various sizes and compare 

DDM’s performance with other matching methods. We finally 

conclude our paper in section 8 and discuss where our future 

research is directed. 

 

II. RELATED WORK 

Image correlation is the most popular area-based method 

employed for image matching. Image correlation is based on 

Pearson's correlation coefficient [18] and is calculated by, 
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cov(I1,I2) is the covariance matrix of images I1 and I2, and I 

is the standard deviation of I. If corr(I1,I2) = 1 or -1 then the 

images are the same or inverted, respectively. A value of zero 

indicates that the images are completely different, and values 

in between reflect the amount of similarity between the 

images.  

A simpler method to detect similarity/dissimilarity between 

images, which is also popular in the image processing 

community, is the Sum of the Absolute Difference Method 

(SADM) [11], which is to simply subtract the two images and 

take the absolute value of the result,  

SD(I1,I2) = |I1 – I2|                    

 

 (6) 

I1 and I2 are the images to be compared. Other variations exist, 

e.g.  the Sum of the Square Difference Method (SSDM), 

SS(I1,I2) = (I1 – I2)2                            (7) 

In both cases, if the result is zero then the images are identical. 

Despite its simplicity, SADM is very powerful in detecting 

changes and is very popular in many applications, particularly 

in the time consuming application of motion detection in 

video scenes, promoting hardware implementation of it [19]. 

Another simple technique to detect differences in binary 

images is to logically exclusive-or (denoted by XOR) the 

images. For any two binary values u and v, the XOR operation 

–denoted by the  symbol– is computed by,  

)()( vuvuvu 
 

  

 (8) 

This produces a value of 1 when u and v are different and 0 

otherwise. If this expression is applied to the whole image on 

a pixel basis and its values are summed, the Binary Hamming 

distance (dH) [20] is produced,  

  )(),( 2121 IIIIHd
 

 (9) 

However, values produced by this expression are image size 

dependent and hence this expression needs to be normalized 

to give meaningful results. Once normalized, the Sokal-

Michener Distance [21], more commonly known as the 

Simple Matching Distance (SMD), is produced,  

  )(
1

),(
1

),( 212121 IIIIII
n

d
n

SMD H   (10) 

n is the image size. A value of zero for SMD indicates 

complete similarity between two images, while a value of 

unity indicates perfect dissimilarity. 

Measuring Mutual Information (MI) between two binary 

images can also be used for matching purposes [22] [23] [24]. 

From information theory [25], MI is computed by, 

))(),(max(

),(
2),(

21

21
21

II

II
II

EE

E
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E(I) is the Shannon entropy of I, and E(I1,I2) denotes the joint 

entropy between I1 and I2. MI is a metric with values              

0 ≤ M ≤ 1; a value of MI = 1 implies that the images are the 

same. Unfortunately, computing entropy is computationally 

intensive because of the multiple calls to the log function to 

compute E. However, lookup tables for the log function and 

hardware implementations of it [26] are two ways to improve 

the performance of systems employing MI.   

Other area-based methods have also been developed based on 

a variety of principles over the last 40+ years. Mustafa et al. 

[27] matched images by minimizing the image intensity 

combinations between two images with excellent results. 

However, the method only works with multi-bit images and is 

not suited for binary images. Baudrier et al. [28] proposed a 

method to adaptively measure the local dissimilarities 

between two binary images using a modified Hausdorff 

distance producing measures that are richer than a single 

global measure. The local Hausdorff distance measures 

produce a local-dissimilarity map (LDMap) that contains the 

local distances and their spatial layout which are used to 

compare images. Tang et al. [29] presented an approach to 

accelerate multi-scale template matching by representing the 

template as a linear combination of a small number of Haar-

like binary features that can easily adapt to template scale 

changes with negligible extra computation cost. Vidal et al. 

[30] matched a sequence of binary images by using 

mathematical morphology to establish correspondences 

between connected component sets from the images. Teshome 

et al. [31] proposed a simple method for binary matching that 

is a two way process of comparing pixel values between an 

image and a database image and then they count the number 

of hits to find the best candidate image from the image 

database.  

Unfortunately, all of  the methods mentioned above are image 

-size dependent, since they process the value of every pixel in 

the image to measure the amount of closeness between images. 

In fact, most –if not all matching methods reported in the 

image processing literature, whether they are feature-based or 

intensity based, are image-size dependent. Throughout the 

remainder of this paper, we refer to such matching methods as 

Image Size Based Matching Methods (ISBMM). 

 

III. BINARY DISSIMILARITY DETECTION MODELS 

In this section we review and then discuss the dissimilarity 

detection models on which our method is based upon. For 

completeness and clarity, we first present a brief description 

of the similarity classification between binary images that we 

follow and review the  binary similarity distance that is 

employed to measure similarity between images. 

III.I Measuring Similarity between binary images  

Closeness between binary images follows the classification 

discussed in [32]. Images are classified as either Similar 

images (S) or Dissimilar images (R). Similar images are 

further classified as either  exact-similar images if all pixels 

mapped from one image to the other image have the same 

intensity values, or inverse-similar images if they have the 

inverted intensity values at each pixel. Dissimilar images are 

further classified as, either Distinct-dissimilar images (D) if 

the dissimilarity between two images is maximized, or quasi-

dissimilar images (Q) if the dissimilarity is not maximized. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12, Number 8 (2019), pp. 1293-1306 

© International Research Publication House.  http://www.irphouse.com 

1296 

Using the  binary similarity distance described next, the 

amount of dissimilarity between two images can be easily 

measured and checked if it is maximized or not. 

III.II The binary similarity distance  

Let  be the binary similarity distance [32] which measures 

the amount of similarity and concurrence between two binary 

images u and v based on a pixel-to-pixel mapping defined by, 

(u,v) = |1 – 2Po((z = uv) = Z)|,   Z {0,1}              (12) 

where  is the exclusive-or operation and Po denotes the 
probability mass function of the image intensities of        
z = uv. Hence,  is a quantitative measure of the closeness 

and has values in the range 0    1. Based on , the similarity 

between two images are classified as either Similar (S) if  = 1, 

or Dissimilar (R) if  0   < 1. Furthermore, the similarity is 
classified as Distinct-dissimilar (D) for the special case of        

 = 0, indicating that the two images are completely different 

(i.e. maximum dissimilarity). Quasi-dissimilar images (Q) 

have values of  in the range 0 <  < 1.  

III.III Probabilistic Matching Models: PMM and PMMBI  

The Probabilistic Matching Model (PMM) for binary image 

matching [16] is a model that describes how quick 

dissimilarity can be detected between completely different 

binary images. PMM states that by randomly mapping 

corresponding points (i.e. pixels) between any two distinct-

dissimilar (D) binary images, the probability of the images 

being detected as dissimilar by the pth mapping, P(D, p), is 

given by, 

12

1
1),(P




p
pD        p = 1, 2, …         (13) 

P can be interpreted as the confidence level or detection 

confidence (DC) of detecting dissimilarity after p mappings. 

This confidence increases rapidly as more pixels are mapped 

and approaches unity (e.g. P(D,3) = 0.75, P(D,4) = 0.875, 

P(D,5) = 0.9375, …). This implies that distinct-dissimilar 

images can be quickly detected. However, this model is only 

valid for distinct-dissimilar binary images. 

On the other hand, the more general Probabilistic Matching 
Model for Binary Images (PMMBI) [17] is a model that 
describes how quick dissimilarity can be detected between any 
pair of binary images, not just distinct-dissimilar binary 
images. PMMBI states that the probability of detecting 
dissimilarity between any two binary images based on the 

number of mappings (p) and the amount of similarity () 
between the images is given by, 




















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0    1, p = 1, 2, …      (14) 

As before, the probability value obtained from this equation 

can be thought of as the detection confidence (DC) in 

detecting dissimilarity for a given value of p and . The model 

shows that: 

 As similarity between two images become larger, 

more mappings are required to detect dissimilarity. 

 DC increases with increasing p for all values of . 
 With increasing values of p, DC reaches unity 

quicker for smaller values of  than larger values. 

Perhaps the most important result of PMM and PMMBI is their 
invariance to image size; dissimilarity detection quickness is 
not dependent on image size. Table 1 tabulates values of the 
minimum number of mappings (p) required for a given 

detection confidence (DC) for several values of . For 
example, a confidence level of 95% exists of detecting 
dissimilarity when mappings 7 pixels between pairs of images 

with  = 0.25. To attain the same confidence for pairs of 

images with higher similarity, say  = 0.90, requires 59 
mappings. To reach higher confidence levels requires 

additional mapping for any given value of .  

The expected value of p is the mean number of mappings 

required to detect dissimilarity for a given value of , and is 
given by [17], 

  1
γ1

4
γ)]([

2



pE        0   < 1       (15) 

Table 2 tabulates the expected number of mappings required 

to detect dissimilarity for several values of . It can be seen that 

the number of mappings are small for small values of , but 

grow very quickly as  approaches unity.  

The tabulated values shown in Tables 1 and 2 (and equations 
(14) and (15)) can be employed in an inverted manner; finding 

the values of  given p. For example, if the dissimilarity 
between two images were detected in 11 mappings, then there 
is a 95% confidence that the similarity between the two images 

is  = 0.5, or a 75% confidence that the similarity between the 

two images is  = 0.75. In fact, there is a confidence level 

attached to every  value as can be seen from Fig. 1, which 

plots the detection confidence (Pr) as function of  for a value 
of p = 11. The most probable value for this pair of images is 

that it has a similarity value of  = 0.817, which corresponds to 
the expected value of p = 11 mappings (obtained from (15)). 

 

IV. DISSIMILAR DETECTION VIA MAPPING (DDM) 

The Dissimilar Detection via Mapping (DDM) method is a 

probabilistic pixel mapping method where random image 

pixels are mapped until dissimilarity is detected. The 

quickness of detecting dissimilarity is governed by the two 

probabilistic models; PMM and PMMBI. To detect 

dissimilarity among images we apply (4). Hence only few 

points are compared rather than the whole image.  

When comparing images, we distinguish between three 

primary objectives:  
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Table 1: Minimum Number of Mappings (p) required for a Given Detection Confidence (DC) and similarity values () 

 
Detection Confidence (DC) 

0.5000 0.7500 0.9000 0.9500 0.9900 0.9990 0.9999 

0.0000 1 2 4 5 7 11  14 

0.2500 3 4 5 7 10 15 20 

0.5000 3 5 8 11 16 24 31 

0.7500 6 11 18 23 35 52 69 

0.8500 9 18 30 39 60 89 119 

0.9000 14 28 45 59 90 135 180 

0.9500 28 55 91 119 182 273 362 

0.9900 139 277 460 598 919 1379 1838 

0.9990 1386 2772 4600 5980 9190 13790 18380 

0.9999 13860 27720 46000 59800 91900 137900 183800 

 

Table 2. The expected number of mappings (p) 

required to detect dissimilarity for given values of .  

 p  p 

0.0000 3.00 0.8000 10.1 

0.1000 3.04 0.8500 13.4 

0.2000 3.17 0.9000 20 

0.3000 3.40 0.9500 40 

0.4000 3.76 0.9900 200 

0.5000 4.33 0.9980 1000 

0.6000 5.25 0.9990 2000 

0.7000 6.84 0.9999 20000 

 

 

Fig. 1. A plot of the detection confidence  

(Pr) vs.  for a value of p = 11. 

 

a) Detecting image dissimilarity: The objective is to 

determine if images are dissimilar.  

b) Detecting image similarity: The objective is to 

determine if images are exactly similar.  

c) Image matching: The objective is to measure the 

amount of closeness between a query image and a set 

of given images (say from an image database) based 

on some closeness or similarity criteria. The ultimate 

goal is to find the best match from among the given 

images. 

In this paper we show that DDM can be used for objective ‘a’ 

and ‘b’. Using DDM to address objective ‘c’ was briefly 

discussed in [16]. However, we do show in our later 

discussion how the amount of similarity between two images 

can be estimated with confidence if dissimilarity is not 

detected. An approach to binary similarity estimation between 

binary images, i.e. binary image matching, was presented in 

[33].  

To detect dissimilarity between two images DDM follows the 

mapping strategy outlined in [16]. As a result, DDM can be 

used to detect dissimilarity between binary images at a very 

fast rate with very high confidence (close to 100%), but it 

cannot detect similar images (S) with 100% confidence. 

However, if similar images are to be detected with 100% 

confidence, then DDM can be employed as an efficient pre-

processor with other matching methods to increase their 

matching speed, as we show later in this paper. Two DDM 

based algorithms for dissimilarity and similarity detection, 

were developed for this purpose and are described in [34]. 

To show the strength of DDM, two tools for measuring the 

relative performance of DDM to other methods were 

developed. The first performance measure compares the 

performance of DDM with respect to other matching methods 

in detecting dissimilarity. The other performance measure 

assesses the advantage of using DDM as a pre-processor with 

other matching methods for similarity detection. We will use 

the general term ‘method-x’ to refer to any ISBMM.  

Let N denote the total number of images of a given database 
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to which the query image is to be compared to. Furthermore, 

let Nd and Ns denote the number of dissimilar images and 

similar images in the database, respectively, with respect to 

the query image -as determined by DDM. Hence, 

N = Nd + Ns                                   (16) 

Define  such that, 

N

Nsζ            and     
N

Nd ζ1
   

    (17) 

i.e.,  is the percentage of highly similar image pairs found 

when comparing a query image to the images of the database. 

The phrase ‘highly similar image pairs’ refers to image pairs 

that cannot be detected as being dissimilar by DDM  

(e.g. exact-similar images).  is dependent on the maximum 

allowable mappings (Lmap) for each pair of images. For 

example, using Lmap = 1000 mappings results in DC = 0.993 

for images with a similarity of up to  = 0.99 (near-duplicate 

images). However, at this number of mappings, near-similar 

images ( = 0.999) have a low confidence level of DC = 0.394. 

Increasing Lmap to 2000 mappings results in DC = 0.99996 for 

images with a similarity of up to  = 0.99, and DC = 0.632 for 

near-similar images. Only at Lmap = 4600 mappings does DC 

reach 0.9 for near-similar images. Clearly a trade-off exists 

between the amount of similarity between images not being 

detected, and the amount of time allowed to check for 

dissimilarity (Lmap). 

 

IV.I Dissimilarity Detection Performance 

As earlier discussed, detecting dissimilar images refers to the 

goal of asserting that an image pair is dissimilar. Furthermore, 

dissimilar detection is a function of the number of mappings 

allowed, Lmap. Let L denote the maximum expected similarity 

value at which images will be detected based on Lmap. This 

implies that image pairs with  > L will most likely not be 

detected as dissimilar. Hence, a value of Lmap = 1000 implies 

that L = 0.9980 (from Table 2), and image pairs with             

 > 0.9980 will most likely not be detected as dissimilar. A 

value of Lmap = 1000  is what is usually employed in our work. 

Let tp,d denote the amount of time taken for DDM to map 

image pixels until a pair of images are determined to be 

dissimilar. For image pairs that have great similarity and 

cannot be determined to be similar at a given Lmap value, tp,d is 

then, 

tp,d =  t*p  = Lmap · tp    (18) 

t*p is the amount of time taken to map points between two 

images until Lmap is reached, and tp is the amount of time taken 

to map a single point. As an example, on the system tested, it 

was found that t*p  3.433 ms for Lmap = 1000. Then if Tp 

denotes the total detection time for DDM to compare the 

query image to all images in the database set, then Tp can be 

calculated by, 

*
, ][E psdpdP tNtNT     (19) 

E[tp,d] denotes the expected time taken to map pixels until an 

image is determined to be dissimilar using DDM. From PMM,  

E[tp,d]  = E[] · tp      (20) 

Hence, 

pdp tDCMRNt  ),γ(][E μ,   
(21) 

MRN is the number of mappings required to detect 

dissimilarity which is a function of 1) the mean value of the 

similarity between the query image and the detected dissimilar 

images (), and 2) the desired detection confidence (DC). 

Hence, (19) becomes, 

 

pmapsd

pmapspdP

tLNDCMRNN

tLNtDCMRNNT

)),γ((

),γ(

μ

μ




  (22) 

If Tx denotes the detection time that method-x takes to match 

the query image to all images of the database to determine 

dissimilarity, then,  

xx tNT      (23) 

where xt  denotes the average time taken by method-x to 

determine an image pair to be dissimilar which is only a 

function of image size (n), 

xx ntt 
     (24) 

tx is the matching time per pixel for method-x. Hence, 

xx NntT      (25) 

Let ηD,x be a performance comparison measure between DDM 

and method-x. ηD,x is defined as the number of images 

processed by DDM for a single image processed by method-x 

to detect dissimilarity between images, and is computed by 

the ratio of the detection time of method-x to the detection 

time of DDM, 

p

x

T

T
xD,η     (26) 

Hence, a value of ηD,x > 1 indicates DDM outperforms  

method-x (i.e. faster), while a value of ηD,x < 1 indicates 

method-x outperforms DDM (i.e. DDM slower). Substituting 

(22) and (25) into (26) produces, 

pmapsd

x
xD

tLNDCMRNN

tnN

)),γ((
η

μ

,





 

 (27) 

Dividing by N and using (17) produces, 

map

x
xmapxD

LDCMRN

rn
rLDCn






ζ),γ()ζ1(
),,ζ,,γ,(η

μ

μ,

   (28) 

rx = tx / tp, is a constant dependent on method-x and DDM. 

Normalizing with respect to rx produces, 
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map

xxDmapD

LDCMRN

n

rLDCn






ζ),γ()ζ1(

/η),ζ,,γ,(η

μ

,μ

    

 (29) 

This equation shows ηD to be a function of several variables. 

The sensitivity of ηD to these variables is discussed next. 

IV.I.I Sensitivity Analysis of ηD 

Eq. (29) shows ηD to be a function of the parameters: n, , 

Lmap and MRN, where MRN is a function of both  and DC. It 

can be seen that, 

 ηD is directly proportional to n and inversely 

proportional to each of the three parameters: , MRN 

and Lmap.  

 Since MRN increases with an increase in either  or 

DC, ηD is inversely proportional to both  and DC.  

 A change in Lmap may or may not cause changes in 

the values of  and  for a given set, and hence may 

or may not affect ηD. For example, if an increase in 

Lmap results in more images being detected as 

dissimilar, then  will decrease while  will 

increase. On the other hand, if an increase in Lmap 

does not result in more images being detected, then  

and  will not be affected (only more search time 

has been wasted). 

1) Sensitivity Analysis of ηD to n 

Figure 2 shows curves of ηD versus n for several values of  

(for the sample case of  = 0.2 and Lmap = 1000). Due to the 

dominance of the effect of n on ηD, the curves are linear in n; 

as n increases so does ηD and as n  , then ηD  . This 

can be demonstrated to be true from (29); since Lmap has a 

finite value and by definition of MRN, 

 
mapLDCMRN ),γ( μ

   (30) 

Hence MRN(, DC) is also bounded and finite, resulting in 

the denominator of (29) also being finite, and hence, 




D
n

lim     (31) 

Hence, as image size increases and becomes very large, 

DDM’s dissimilarity detection will be magnitudes faster than 

any ISBMM. 

 

2) Sensitivity Analysis of ηD to  

A decrease in  (i.e. less similar images in the database with 

respect to the query image) results in a shift of the curves 

upwards; smaller values of  result in larger values of ηD and 

higher relative performance of DDM with respect to other 

methods. In the limit as  becomes very small and   0, (29) 

reveals that ηD essentially becomes a function of n,  

),(γ
lim

μ
0ζ DCMRN

n
D 


    (32)  

n dominates over the effect of MRN which is dependent on the 

two parameters,  and DC. Hence, ηD increases as image size 

increases. Figures 3 shows curves of ηD versus n for different 

values of  when  = 0 (for the case Lmap = 1000). ηD 

increases with n, but is inversely proportional to , where an 

increase in  shifts the curve downwards. The sensitivity of 

ηD to a change in the three parameters , DC and Lmap is very 

minimal, where an increase in any of these parameter will 

result in a small shift of the curves downwards and vice versa.  

It is important to note that when  ≠ 0, implies Ns = N images 

have not been determined to be dissimilar (inconclusive 

result), and are assumed to be similar up to a certain degree 

(with a predefined amount of confidence as earlier discussed).  

 

IV.I.II Critical Image Size Determination 

For DDM to outperform method-x, then, 

1),ζ,,γ,(η μ, mapxD LDCn    (33) 

must hold true. Then from (28), 

1
ζ),γ()ζ1( μ






map

x

LDCMRN

rn
        (34) 

must also hold true. Solving for n, 

 map

x

LDCMRN
r

n  ζ),γ()ζ1(
1

μ
   (35) 

When this condition is satisfied, then DDM will outperform 

any method-x. Let nc denote the critical image size, defined as 

the image size at which ηD,x = 1, then, 

 map

x

c LDCMRN
r

n  ζ),γ()ζ1(
1

μ
        (36) 

Thus, DDM outperforms any method-x when images of size n > 

nc are matched. Figures 4 and 5 show curves of nc versus  

for different values of  (with different values of Lmap and DC). 

A value of rx = 3.43410-3, was used to generate the plots, 

which was found to be the minimum value found for the 

methods tested. Graph regions above a given curve are where 

DDM will outperform other methods; the farther away 

upwards, the larger performance difference. From the plots, 

we see that nc increases as  increases. Also as  increases, 

the curves shift upwards and hence nc increases. Furthermore, 

as DC increases so does nc. Note that for highly similar 

images ( > 0.9) nc increases rapidly. 

 

IV.II Similarity Detection Performance 

If the goal is to assert if a pair of images is similar with 100% 

confidence, then DDM cannot be used independently. 

Alternatively, using DDM can be used to boost the 

performance of any method-x. In this section, the performance 

of using DDM with other methods is analyzed. 
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Fig. 2. Curves of ηD versus n for different values of  

( = 0.2, Lmap = 1000). 

 

 

 

Fig. 3. Curves of ηD versus n for different values of         

  ( = 0, Lmap = 1000). 

 

 

Fig. 4. Curves of critical image size (nc) vs.  for 

various values of  (Lmap = 1000, DC = 0.99). 

 

 

 

Fig. 5. Curves of nc vs.  for various values of  

(Lmap = 1000, DC = 0.5). 
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IV.II.I Performance Analysis 

The time DDM expends for similarity detection consists of 

two parts: tp,d and tp,x, where tp,d is the same as that was 

presented earlier for dissimilarity detection, and tp,x is the time 

taken to match a pair of images which were not determined to 

be dissimilar by DDM.  

tp,x consists of two parts; t*p: the time taken by DDM to map 

Lmap points and the time taken by method-x, 

tp,x =  t*p  + ntx    (37) 

Using (18) this becomes, 

tp,x =  Lmap·tp  + ntx    (38) 

tx is the same as before. Let Tpx denote the total matching time 

for DDM-x to detect similarity/dissimilarity between a query 

image and all images of the database, defined as, 

xpsdpdpx tNtNT ,,              (39) 

Let ηS,x denote the matching performance of DDM-x with 

respect to method-x, measured by the number of images 

processed by DDM-x for a single image processed by method-

x, and is computed by, 
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T
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   (40) 

Substituting (21), (25), (38) and (39) produces,  

)()γ(
η

μ

,

xpmapspd

x
xS

tntLNtMRNN

tnN






 

(41) 

Dividing by N, and using (17), 

)(ζ)γ()ζ1(
η

μ

,

xpmapp

x
xS

tntLtMRN

tn






 

(42) 

Rearranging the denominator, 

))γ((ζ)γ(
η

μμ

,

pxpmapp

x
xS

tMRNnttLtMRN

tn






  

(43) 

Dividing the numerator and the denominator by tp and setting 

rx = tx / tp finally produces the desired result,  

)),γ((ζ),γ(
),ζ,,γ,(η

μμ

μ,

xmap

x
mapxS

rnDCMRNLDCMRN

rn
LDCn






  (44) 

Figures 6 and 7 show plots of ηS,x curves versus n for various 

values of  and different values of Lmap,  and DC (for rx = 

3.43410-3). Figures 8 and 9 show typical plots of ηS,x curves 

versus n for different values of  (with different values of 

Lmap,  and DC values).  

IV.II.II Sensitivity Analysis of ηS,x 

A striking difference between the curves of ηS,x and ηD,x is that 

the ηS,x curves do not increase indefinitely with n, but reach a 

steady state value. Furthermore, 

 S,x only increases for small n values before reaching 

its steady state values. 

 As  or  increases, S,x decreases. 

n and  are the two most important factors affecting ηS,x and 

are discussed in more detail next. 

1. Sensitivity Analysis of ηS,x to  n   

S,x increases as n increases until it reaches its steady state 

value of 1/. This is due to the fact that for large n, 

 
xmap rnDCMRNL  ),γ( μ

   (45) 

Thus in the limit as n  , (44) reduces to, 

ζ

1

)(ζ
lim , 







x

x
xS

n rn

rn
     (46)  

Hence, as image size increases, ηS,x approaches a performance 

limit equal to the reciprocal of the percentage of very similar 

images to the query image in the set. Since (46) is not a 

function of rx then this is true for the performance of DDM-x 

with respect to any ISBMM. With   1, then DDM-x will 

outperform any image sized based matching method or in the 

worst case will have the same performance (when all images 

of the database are highly similar or near duplicate to the 

query image). 

 

 

Fig. 6. Curves of S vs. image size for various values of  

(Lmap = 1000,  = 0.2, DC = 0.9). 

 

Fig. 7. Curves of S vs. image size for various values of 

 (Lmap = 1000,  = 0.2, DC = 0.9). 
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Fig. 8. Curves of M vs. image size for various values 

of  (Lmap = 100,  = 0.2, DC = 0.5). 

 

 

Fig. 9. Curves of M vs. image size for various values 

of  ( = 0.01, Lmap = 1000, DC = 0.5). 

 

 

2. Sensitivity Analysis of ηS,x to     

As  increases, S,x decreases. In the limit when  is very 

small, 

),(γ
lim

μ

,
0ζ DCMRN

rn x
xS





    (47)  

which is an identical result to (32). Hence, 

xDxS ,
0ζ

,
0ζ

limlim 


                           (48)  

i.e. i.e., when a query image is highly dissimilar with respect 

to the images of the database, employing DDM independently 

or with any method-x will produce the same result. This 

should not come as a surprise; when the image set contains no 

highly similar images, then DDM-x will detect dissimilarity 

by DDM only and method-x is never invoked. In a similar 

fashion, as     0 in (46), then, 




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xS
n

,

0ζ

lim                                    (49) 

This result agrees with (31). Hence, 

xD
n

xS
n

,,

0ζ

limlim 



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    (50)  

This implies that, when the query image is big and highly 

dissimilar with respect to the database images, then both 

DDM and DDM-x will produce the same result. 

V. DISCUSSION 

In this section we present our test results conducted on real 

images. The performance of DDM is compared to three 

intensity-based binary image matching methods:  

1. The sum of the absolute difference method (SADM).  

2. Image Correlation (Corr). 

3. Mutual information (MI).  

Seven image sets of different sizes with size ranging from 16 

kp to 8 Mp were employed. The  statistics for the image sets 

are shown in Table 3. A value of Lmap = 1000 was employed 

for DDM. 

 

V.I Detecting Dissimilar Images with  = 0  

The first series of tests are for image sets with  = 0; images 

are different with no similar or near-similar images in these 

sets. The performance curves for these tests are shown in Fig. 

10 and tabulated in Table 4. DDM clearly outperformed all 

methods by detecting dissimilarity faster than any other 

method. In general, D,x increased as size increased for all 

methods, 

 DDM performance with respect to correlation (D,corr) 

D,corr had a performance range from 152 to 141301, as 

image size increased from 16 kp to 10 Mp.  

 DDM performance with respect to SADM (D,SADM) 

D,SADM had a performance range from 450 to 227550, as 

image size increased from 16 kp to 10 Mp.  

 DDM performance with respect to MI (D,MI) 

D,MI had a performance range from 3409 to 373743, as 

image size increased from 16 kp to 10 Mp. 
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The values obtained for D,x are impressive; DDM is 

magnitudes faster than other methods. Values of D,x continue 

to grow with increased image size. Most impressive are the 

values obtained for the largest image size tested (10Mp); 

D,corr = 141301, D,SADM = 227550 and D,MI = 373743. This 

implies that DDM is 141301 times faster than using 

correlation! At this rate, we expect DDM to be a million times 

faster than corr for 100 Mp images, and well over 15 million 

times faster than corr for 1 Gp images. 

 

V.II Detecting Dissimilar Images with  ≠ 0 

The second series of tests are for image sets with  = 0.4; 

there are similar images in these sets (that DDM won’t be able 

to detect as being dissimilar). The performance curves for D,x 

for all methods are shown in Fig. 11 and tabulated in Table 5. 

We see as a result of the increase in  that the D,x curves have 

shifted down in comparison with Fig. 9, in agreement with 

our earlier analytical discussion. Once again, D,x > 1 for all 

image sizes tested for all methods, except for 16 kp images 

using correlation, where D,corr = 1 (i.e. employing either 

DDM or correlation yields the same performance at this 

particular image size). But as image size increases, DDM 

outperforms correlation once again. In general, 

 DDM performance with respect to correlation (D,corr) 

D,corr had a performance range from 1 to 1097, as image 

size increased from 16 kp to 10  Mp.  

 DDM performance with respect to SADM (D,SADM) 

D,corr had had a performance range from 3 to 1766, as 

image size increased from 16 kp to 10  Mp.  

 DDM performance with respect to MI (D,MI) 

D,MI had a performance range from 26 to 2901, as image 

size increased from 16 kp to 10  Mp. 

Despite the decrease in the performance of D,x for all 

methods in comparison with the previous case ( = 0) due to 

the presence of a significant percentage of similar images in 

the image sets, nevertheless the performance of D,x is greater 

than unity for all cases tested and increases as image size 

increases. The fact that D,x produced large values for big 

images (D,corr = 1097, D,SADM = 1766 and D,MI = 2901) 

despite a significant portion of the images being matched are 

similar, shows the strength of DDM.   

V.III Improving the Performance of Image Correlation 

with DDM 

In this section, we present the results of employing DDM in 

conjunction with another method to see the advantage of using 

DDM to speed up its performance. Since correlation was 

found  to be the 2nd fastest method in detecting dissimilarity 

after DDM, correlation was selected to be tested with DDM to 

detect similarity, denoted by DDM-corr. In this test 70 image 

pairs with  = 0.4 were tested using a value of Lmap = 1000. 

Table 6 shows values of Tp,c, Tc and ηS,corr for the image sets, 

and a plot of Tc and Tpc against image size is shown in Fig. 12. 

We observe,  

 For the two smallest image sets, the 16kp and 64kp 

image sets, Tc < Tpc and thus ηS,corr < 1. Hence, 

correlation outperforms using DDM-corr for small 

images. There is no advantage of using DDM as a 

pre-processor. 

 For the remaining larger sets Tc > Tpc, ηS,corr > 1. 

Thus DDM provides a great advantage to the speed 

of correlation as images become big. 

Fig. 13 shows a plot of ηS,corr for the results obtained 

experimentally. A plot of the theoretical equation developed 

for ηS,corr (i.e. (44)) is also plotted. We see that experimental 

data agree very well with the theory developed with very little 

discrepancy. We also observe that as n becomes large, ηS,corr 

approaches its steady state value of 2.5 in agreement with (46). 

Hence, using DDM with correlation boosted its detection rate 

by 250% for big images.  

Table 3:  Statistics for the image sets 

Image  

Set  

Image  

size 

  

Range  σ 

16 kp 128 x 128 0.000 – 0.364 0.140 0.128 

64 kp 256 x 256 0.093 – 0.284 0.196 0.068 

256 kp 521 x 512 0.024 – 0.206 0.102 0.056 

300 kp 640 x 480 0.002 – 0.256 0.145 0.090 

3 Mp 2048 x 1536 0.029 – 0.129 0.069 0.039 

8 Mp 3264 x 2448 0.122 – 0.479 0.297 0.130 

10 Mp 3648 x 2736 0.026 – 0.363 0.170 0.135 

Table 4: Values of ηD,x for the methods tested ( = 0) 

Image Image 

 

Method  

Set size SADM corr MI 

16 kp 128 x 128 450 152 3409 

64 kp 256 x 256 1691 662 5114 

256 kp 521 x 512 6784 4032 13677 

300 kp 640 x 480 7264 4368 14119 

3 Mp 2048 x 1536 87847 53474 149075 

8 Mp 3264 x 2448 138044 88140 223181 

10 Mp 3648 x 2736 227550 141301 373743 

Table 5: Values of ηD,x for the methods tested ( = 0.4) 

Image 

Set 

Image 

Dimensions 

M e t h o d (x) 

SADM corr2 MI 

16 kp 128  128 3 1 26 

64 kp 256  256 13 5 40 

256 kp 512  512 51 31 104 

300 kp 640  480 56 34 108 

3 Mp 2048  1536 660 402 1120 

8 Mp 3264  2448 1163 743 1880 

10 Mp 3648  2736 1766 1097 2901 

 

Table 6: Comparison of Time and Performance of DDM and 

DDM-corr 

Image 

Set 

Image 

Dimensions Tc (ms) Tpc (ms) ηS,corr 

16 kp 128128 2.1 13.6 0.15 

64 kp 256256 10.1 17 0.6 

256 kp 512512 85.8 48.2 1.78 

300 kp 640480 107 56.4 1.9 

3 Mp 20481536 1238 511.1 2.42 

8 Mp 32642448 3393 1371 2.47 

10 Mp 36482736 5026 2024 2.48 
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VI. CONCLUSION  

In this paper we have presented a fast method for detecting 

dissimilar binary images. The method is called the Dissimilar 

Detection via Mapping method (DDM) and is based on two 

established probabilistic models: the Probabilistic Matching 

Model (PMM) for binary image matching and the 

Probabilistic Matching Model for Binary Images (PMMBI).  

The method requires the comparison of only a few points to 

detect dissimilar images regardless of image size. DDM was 

compared to other matching methods such as, image 

correlation, sum of the absolute difference (SADM), and 

mutual information (MI). Results show that DDM is 

magnitudes faster than all of these methods, but is dependent 

on the amount of similarity between the query image and the 

database images, . For example, for 10 mega-pixel images, it 

was found that DDM was more than 140000 times faster than 

image correlation in detecting dissimilarity when matching a 

query image to a database of images containing highly 

dissimilar images ( = 0). When compared to other methods, 

the performance of DDM was even greater; DDM was more 

than 220000 times faster than SADM, and more than 370000 

times faster than MI. If the images of the database consists of 

highly similar or near duplicate images of the query image 

(more than 99% similar), then the performance of DDM 

decreases somewhat, but still outperforms other methods 

tested. For example, employing 10 mega-pixel images, it was 

found that if the image database contains 40% highly similar 

images to the query image ( = 0.4), then DDM was more 

than 1000 times faster than image correlation, and more than 

1700 times faster than SADM, and more than 2900 times 

faster than MI. 

A limitation of DDM is that, while it can detect dissimilarity 

extremely fast regardless of image size, it cannot be used to 

detect similarity 100%. However, DDM can be used as an 

efficient pre-processor with other matching methods to 

increase their matching performance. This increased 

performance has a limiting value of 1/. For example, using 

DDM with image correlation increased the time performance 

of correlation by 2.5 times for image sets containing 40% 

highly similar image pairs ( = 0.4). 

Our future work is headed towards the application of DDM to 

image registration and template matching. We hope to show 

the advantage of using DDM to reduce the computational cost 

for such applications. 

 

 

 

Fig. 10. Plots of ηD,x against image size for the various 

methods tested ( = 0.0). 

 

 

 

 

Fig. 11. Plots of ηD,x against image size for the various 

methods tested ( = 0.4). 
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Fig. 12. Plots of Tc and Tpc against image size. 

 

 

Fig. 13. Plots of ηS,corr against image size: theoretical and 

experimental results. 
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